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Two-channel pseudogap Kondo and Anderson models:
Quantum phase transitions and non-Fermi liquids
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We discuss the two-channel Kondo problem with a pseudogap density of states ρ(ω) ∝ |ω|r of the bath
fermions. Combining both analytical and numerical renormalization group techniques, we characterize the
impurity phases and quantum phase transitions of the relevant Kondo and Anderson models. The line of stable
points, corresponding to the overscreened non-Fermi-liquid behavior of the metallic r = 0 case, is replaced by
a stable particle-hole-symmetric intermediate-coupling fixed point for 0 < r < rmax ≈ 0.23. For r > rmax, this
non-Fermi-liquid phase disappears, and instead a critical fixed point with an emergent spin-channel symmetry
appears, controlling the quantum phase transition between two phases with stable spin and channel moments,
respectively. We propose low-energy field theories to describe the quantum phase transitions, all being formulated
in fermionic variables. We employ ε expansion techniques to calculate critical properties near the critical
dimensions r = 0 and 1, the latter being potentially relevant for two-channel Kondo impurities in neutral
graphene. We find the analytical results to be in excellent agreement with those obtained from applying Wilson’s
numerical renormalization group technique.
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I. INTRODUCTION

The two-channel Kondo effect represents a prime ex-
ample of non-Fermi-liquid behavior arising from a stable
intermediate-coupling fixed point.1 Theoretically, its physics
is essentially understood, thanks to an exact solution by Bethe
ansatz.2,3 In addition, boundary conformal field theory (CFT)
has proved to be a powerful technique to study the low-
energy properties of the multichannel Kondo model4 allowing,
in particular, the calculation of exact asymptotic Green’s
functions.5 CFT techniques have also been used to calculate
exact crossover Green’s functions.6 Further, by means of
Abelian bosonization and subsequent refermionization it has
been possible to map the two-channel Kondo problem onto a
resonant-level model which reduces to a free-fermion form for
a particular value of exchange anisotropy.7

On the experimental side, a number of heavy-fermion
materials, displaying deviations from Fermi-liquid behavior,
have been speculated to realize two-channel Kondo physics
arising from non-Kramers-doublet ground states of U or Pr
ions.8–10 However, to our knowledge, there is no unambiguous
verification of these proposals. Consequently, various attempts
have been made to realize the two-channel Kondo effect in
nanostructures, and indeed success was reported11 for a setup
of a semiconductor quantum dot coupled to two reservoirs.12

Very recently, signatures of two-channel Kondo behavior of
magnetic adatoms on graphene have been reported,13 and this
motivates a discussion of two-channel Kondo impurities in
nonmetallic hosts. In particular, neutral graphene realizes a
pseudogap density of states (DOS) ρ(ω) ∝ |ω|r with r = 1, at
low energies.

The single-channel pseudogap Kondo problem has been
studied extensively in the context of Kondo impurities in
unconventional superconductors. The main difference from the
familiar metallic Kondo problem14 is the absence of screening
at small Kondo coupling J , leading to a quantum phase

transition upon increasing J .15–19 The universality class of this
phase transition changes as a function of r ,19 and the relevant
low-energy field theories have been worked out in detail in
Refs. 20 and 21.

Although there has been speculation about two-channel
Kondo physics in the context of graphene,22 the two-channel
pseudogap Kondo model has received little attention. A central
question is about the fate and character of the non-Fermi-liquid
phase at finite r . To our knowledge, the only study of the model
has been reported in a brief section of Ref. 19, but there only
numerical results were given for small bath exponents r .23

The purpose of this paper is to close this gap: We shall
investigate the two-channel Kondo and Anderson models with
a pseudogap DOS in some detail, using both analytical and
numerical renormalization group (RG) techniques. Our main
findings for the two-channel Kondo model are as follows:

(A) The overscreened non-Fermi-liquid (NFL) phase of
the metallic two-channel Kondo model14 survives for 0 <

r < rmax ≈ 0.23, albeit with an important modification: It is
no longer represented by a line of NFL fixed points [where
particle-hole (p-h) asymmetry is marginal], but instead there
is only an isolated stable p-h symmetric NFL fixed point,
i.e., p-h asymmetry is irrelevant for r > 0.23 Furthermore,
this stable NFL phase is only reached for Kondo couplings
larger than a critical coupling, i.e., a boundary quantum phase
transition emerges between a local-moment phase with an
unscreened spin moment and the NFL phase. In contrast, for
r > rmax the NFL fixed point disappears, leaving only two
stable phases with unscreened spin or channel (i.e., flavor)
moment, respectively, which are separated by a quantum phase
transition.

(B) The two-channel pseudogap Kondo physics for both
r � 1 and r � 1 can be fully understood in the language of the
two-channel Anderson model, by virtue of a generalization
of the approach presented in Ref. 21. The low-energy field

125139-11098-0121/2011/84(12)/125139(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.125139


SCHNEIDER, FRITZ, ANDERS, BENLAGRA, AND VOJTA PHYSICAL REVIEW B 84, 125139 (2011)

theory describing the quantum phase transition between the
phases with free spin and flavor moments is given by a level
crossing of a spin doublet and a flavor doublet minimally
coupled to conduction electrons. As in the single-channel
pseudogap Kondo problem, r = 1 is found to play the role
of an upper critical dimension, where the hybridization is
marginal. For r > 1, the transition is a level crossing with
perturbative corrections but a nontrivial critical fixed point
emerges for r < 1. This fixed point is shown to display an
emergent spin-channel Z2 symmetry. As in the single-channel
case, none of the quantum phase transitions is described by
a Landau-Ginzburg-Wilson-type theory of a bosonic order
parameter; instead all are “fermionic” in nature.

The following section gives a more detailed summary of
our results.

A. Summary of results

The two-channel Kondo model with a pseudogap host
density of states can be written as H = HK + Hb, with

HK =
∑

i

[JK �S · c
†
iσ (0)�τσσ ′ciσ ′(0) + V0c

†
iσ (0)ciσ (0)],

(1)

Hb =
∑

i

∫ �

−�

dk |k|r k c
†
kiσ ckiσ .

Here, we have represented the bath Hb by linearly dispersing
chiral fermions ckiσ , where i = 1,2 is the channel index. �S
is a spin-1/2 SU(2) spin, �τ is the vector of Pauli matrices,
summation over repeated spin indices σ is implied, and
ciσ (0) = ∫

dk|k|rckiσ is the conduction electron operator at
the impurity site. The spectral density of the ciσ (0) fermions
follows the power law |ω|r below the ultraviolet (UV) cutoff �;
details of the density of states at high energies are irrelevant for
the discussion in this paper. In addition to the Kondo coupling
JK, we have also included a potential scatterer of strength V0

at the impurity site which will be used to tune p-h asymmetry.
(An asymmetry of the high-energy part of the DOS would
have a net effect similar to nonzero V0; for simplicity we will
assume in the following that the DOS is p-h symmetric.)

As we shall show below, a comprehensive analysis requires
us to consider—in addition to the two-channel Kondo model—
the two-channel Anderson model, commonly written as
H = HA + Hb with8

HA = εs

∑
σ

|σ 〉〈σ | + εq

∑
i

|i〉〈i|

+ g0

∑
kσ i

(|σ 〉〈i|ckiσ + H.c.) + V0

∑
σ i

c
†
iσ (0)ciσ (0). (2)

Here, the isolated impurity has four states, i.e., a spin doublet
|σ 〉 = |↑〉,|↓〉 and a channel doublet |i〉 = |1〉,|2〉. Their mass
difference ε0 ≡ εs − εq will play a role as a tuning parameter
of the quantum phase transition.

For a given value of the bath exponent r , the two-channel
pseudogap Kondo and Anderson models display common RG
fixed points. The phase diagram and critical behavior depend
on r , with r = 0, r = rmax, and r = 1 marking qualitative
changes and playing the role of critical “dimensions.” In
the following, we describe our central results for the phase
diagrams and RG flows, which are partially consistent23

with the ones reported in Ref. 19. The qualitative behavior
is visualized in the RG flow diagrams in Fig. 1 for the
two-channel Kondo model and Fig. 2 for the two-channel
Anderson model, respectively. In the latter case, a cut through
the RG flow at V0 = 0 is shown.

The metallic case r = 0 has been studied extensively, and a
line of infrared-stable NFL fixed points governs the behavior
at any finite coupling—this is the well-known two-channel
(or overscreened) Kondo effect. In the two-channel Anderson
model, this line of fixed points can be accessed by varying ε0,
i.e., initial parameters with different ε0 flow to different fixed
points along this line25—note that this flow leaves the v = 0
plane for ε �= 0 (dashed lines in Fig. 2; all symbols denote the
renormalized coupling parameter).

For positive r with 0 < r < rmax, the line of stable NFL
fixed points collapses to an isolated p-h-symmetric NFL fixed
point. In addition, the local-moment (LM) fixed point of an
unscreened spin moment now becomes stable. In the language
of the Kondo model, LM corresponds to j = v = 0, while
in the Anderson model it corresponds to ε = −∞, g = 0.
The phase transition between the LM and NFL fixed points
is controlled by a p-h-symmetric critical (SCR) fixed point;
note that this p-h-symmetric fixed point is located outside
the v = 0 plane for the Anderson model shown in Fig. 2.
As r → 0 SCR approaches LM and the critical behavior of
SCR is perturbatively accessible for small Kondo coupling
JK. The phase diagram of the Anderson model is mirror
symmetric, i.e., there exists also an unscreened channel (or
flavor) local-moment fixed point LM′ at ε = ∞, g = 0,24 and a
corresponding critical intermediate-coupling fixed point SCR′
at positive ε.

As r → rmax SCR approaches NFL, and the two fixed points
disappear for r > rmax. In the p-h-symmetric Kondo model,
this implies that the flow is toward LM for any value of j , but
for large asymmetries, LM′ may be reached.24 In the Anderson
model, the hybridization g remains relevant at ε = 0 for rmax <

r < 1, but the flow is toward a single unstable intermediate-
coupling asymmetric critical (ACR) fixed point in the v =
0 plane, i.e., ACR is p-h asymmetric, but is invariant under
the Z2 transformation (4). At finite coupling, the transition
between the two stable fixed points LM and LM′ is controlled
by ACR.

Finally, as r → 1 ACR moves toward g → 0 and for r � 1
the phase transition becomes a level crossing with perturbative
corrections, controlled by the free-impurity fixed point (FImp)
at ε = 0,g = 0.

B. Outline

The bulk of this paper is organized as follows: We start
in Sec. II by discussing the relevant impurity models, suitably
generalized to higher degeneracies, along with their underlying
symmetries. In Sec. III we present selected results from
Wilson’s numerical renormalization group (NRG) for the
two-channel pseudogap Anderson and Kondo models which
illustrate the content of the flow diagrams in Figs. 1 and 2. In
particular, we show properties of the nontrivial intermediate-
coupling fixed points as functions of the bath exponent r .
Sections IV and V are devoted to the ε expansion studies of
the critical fixed points, using the variables of the Kondo model
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FIG. 1. (Color online) Schematic RG flow diagrams for the
two-channel Kondo model with a pseudogap DOS ρ(ω) ∝ |ω|r .
The horizontal axis denotes the renormalized Kondo coupling j ,
and the vertical axis is the renormalized potential scattering v,
representing particle-hole asymmetry. Dashed flow lines symbolize
a flow out of the plane shown here. The thick lines correspond to
continuous boundary phase transitions; the full (open) circles are
stable (unstable) fixed points. (a) r =0, i.e., the familiar metallic
case. For any finite j the flow is toward the line of NFL fixed points,
describing two-channel non-Fermi-liquid behavior. (b) 0<r <rmax:
p-h asymmetry is irrelevant in the NFL phase, such that the line
of fixed points is replaced by a single p-h-symmetric NFL fixed
point. The local-moment fixed point LM is stable and separated
from NFL by a p-h-symmetric critical (SCR) fixed point. For r → 0
(r → rmax), SCR approaches LM (NFL). Depending on microscopic
details, a second NFL′ phase may be reached at large couplings
and asymmetries, separated by a critical ACR fixed point; see text.
(c) r � rmax: The NFL phase disappears, and the only phase transition
is between LM and LM′, the latter representing a free-channel (i.e.,
flavor) moment. This transition is controlled by ACR. Note that the
character of this transition changes at r = 1, where ACR merges with
FImp; see text.

(Sec. IV) and those of the Anderson model (Sec. V). The latter
provide access to the physics near the upper critical dimension
r = 1. Concluding remarks close the paper. A discussion of the
Majorana representation of the two-channel Kondo problem
and its fate in the presence of a pseudogap DOS is relegated
to the Appendix.
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FIG. 2. (Color online) As Fig. 1, but for the two-channel Ander-
son model. The horizontal axis denotes the energy difference ε be-
tween spin and flavor impurity levels, and the vertical axis is the renor-
malized hybridization g. The diagrams represent cuts, taken at v = 0,
through the full RG flow. The flow diagrams are mirror symmetric by
virtue of the Z2 transformation (4). (a) r =0. The line of NFL fixed
points, describing two-channel non-Fermi-liquid behavior crosses the
v = 0 plane at ε = 0. (b) 0 < r <rmax: The fixed points LM, LM′ are
stable, corresponding to unscreened spin and flavor moments, respec-
tively. Within the v = 0 plane, NFL is replaced by ACR, whereas
two isolated p-h-symmetric NFL and NFL′ fixed points exist outside
this plane. The transitions to NFL and NFL′ are controlled by the
p-h-symmetric SCR and SCR′ fixed points (located outside the v = 0
plane). (c) rmax � r <1: g is still relevant at ε = 0. However, NFL is
now replaced by a single unstable fixed point (ACR) located in the v =
0 plane. At finite g, the transition between the two stable fixed points
LM and LM′ is controlled by ACR. (d) r �1: g is irrelevant, and the
only transition is a level crossing (with perturbative corrections) oc-
curring at g = ε = 0, i.e., at the free-impurity fixed point (FImp).

II. MODELS, SYMMETRIES, AND MAPPINGS

A. Anderson model

The two-channel Anderson model can be understood as
describing the level crossing between two impurity doublets—
one spin doublet and one channel (i.e., flavor) doublet—
coupled to conduction electrons via a hybridization term. The
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model features an SU(2)spin × SU(2)flavor symmetry. This can
be straightforwardly generalized to SU(N )spin × SU(K)flavor

symmetry, where N is the number of spin degrees of freedom
and K the number of flavors. The Hamiltonian can be written as

HA = Hb + εs

∑
σ

|σ 〉〈σ | + εq

∑
α

|ᾱ〉〈ᾱ|

+ g0

∑
kασ

(|σ 〉〈ᾱ|ckασ + H.c.) + V0

∑
ασ

c†ασ (0)cασ (0).

(3)

Here, the conduction electrons ckασ transform under a
fundamental representation of SU(N ) and SU(K) and
carry the corresponding spin σ and flavor α indices. ᾱ

indicates a transformation behavior according to the conjugate
representation. For N = 2, K = 1, the Hamiltonian in Eq. (3)
describes the single-channel Anderson model in the limit of
infinite Coulomb repulsion (U = ∞), studied using the RG in
Ref. 21. In the case of a metallic host, r = 0, the multichannel
Anderson model is integrable and has been solved using the
Bethe ansatz25–27 and the numerical RG method.28

The metallic two-channel Anderson model, i.e., N = 2,
K = 2, has been proposed as a model for the observed non-
Fermi-liquid behavior of the heavy-fermion superconductor
UBe13.29 In this scenario, the 5f 2 ground state of the U
ion is identified as the 
3 nonmagnetic quadrupolar doublet,
while the first excited state is the 5f 3 
7 magnetic doublet.8

This then can promote a quadrupolar Kondo effect where
the quadrupolar doublet is quenched by the hybridization
with 
8 conduction electrons which carry both magnetic
and quadrupolar degrees of freedom.9 In particular, since
the energy difference between the two doublets appears to
be small, a mixed-valence state is likely, requiring the study
of the full Anderson model.30 Consequently, the model (3)
with a pseudogap DOS is of potential relevance, not only to
two-channel impurities in graphene, but also to quadrupolar
Kondo impurities in unconventional superconductors.

The Anderson model (3) is not particle-hole symmetric
for any value of V0, due to the asymmetric structure of the
impurity. However, p-h symmetry is dynamically restored for
0 < r < rmax both inside the NFL and NFL′ phases and at the
critical SCR and SCR′ fixed points; see Fig. 1.

Interestingly, for N = K and a p-h-symmetric bath, the
Anderson model displays a spin-channel symmetry, i.e., is
invariant under the combined transformation

|σ 〉 ↔ |ᾱ〉, ckασ ↔ c
†
kασ ,

(4)
ε0 ↔ −ε0, V0 ↔ −V0.

Here, the spin-carrying impurity states are transformed into
the flavor-carrying states and vice versa, i.e., the two SU(N )
sectors are interchanged, together with a p-h transformation.

B. Kondo models

The Anderson model (3) has two Kondo limits. On the
one hand, for ε0 = εs − εq → −∞ it maps to a K-channel
SU(N )spin Kondo model, where a spinful impurity is coupled

to K channels of conduction electrons. For N = 2 the
Hamiltonian reads

HK = Hb + JK �S ·
∑
ασσ ′

c†ασ (0)�τσσ ′cασ ′ (0)

+V0

∑
ασ

c†ασ (0)cασ (0), (5)

where �S is a spin-1/2 SU(2) spin and σ,σ ′ = ↑, ↓. For N > 2
the impurity spin is in a fundamental representation of SU(N ).
The parameters of the Kondo model (5) are related to that of
the V0 = 0 Anderson model (3) through

JK = NV0 = g2
0

|ε0| . (6)

The Kondo limit is reached by taking ε0 → −∞, g0 → ∞,
keeping JK fixed. Note that a potential scattering term is always
generated.

On the other hand, for ε0 → +∞ the Anderson model
can be mapped to an N -channel SU(K)flavor Kondo model,
where �S represents an SU(K) impurity which is screened by
the N spin degrees of freedom of the conduction electrons.
This multichannel flavor Kondo effect is relevant, e.g., to the
charging process of a quantum box, where the flavor degree of
freedom is taken by the physical charge.31,32

We note that the multichannel Kondo model cannot be ob-
tained by a Schrieffer-Wolff transformation from any standard
Anderson model (i.e., one written with free-electron operators
and local Coulomb interaction).

C. Large-N limit

The SU(N ) multichannel Kondo model can be solved in a
dynamic large-N limit for both fully symmetric (bosonic) and
fully antisymmetric (fermionic) representations of SU(N ).33

The fermionic version of this solution, with K = γN and
K,N → ∞, has been generalized to the pseudogap case.34

The large-N phase diagram, Fig. 1 of Ref. 34, is similar to
that of the N = K = 2 case, i.e., the overscreened non-Fermi-
liquid phase survives for small r , where it is reached for a
certain range of couplings only, while this phase disappears for
larger r � 1. Also, all leading anomalous dimensions vanish
for r > 1.

Two qualitative differences between the large-N scenario
and N = K = 2 are worth noting: (i) The critical “dimension”
rmax of N = K = 2 splits into two in the large-N limit, with
their values and the detailed behavior depending upon the
value of γ . (ii) The quantum phase transitions in the large-N
limit are governed by lines of fixed points, with continuously
varying exponents as functions of the particle-hole asymmetry,
in contrast to the isolated critical fixed points SCR and ACR
in Figs. 1 and 2. This implies that the scaling dimension of
V0 vanishes at criticality as N → ∞, rendering the large-N
limit partially singular. We therefore refrain from a detailed
discussion of the models (3) and (5) for large N .

D. Observables

In the bulk of the paper, we will focus on a few
important observables which characterize the phases and
phase transitions of the impurity models under consideration.
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Those include the correlation-length exponent, the impurity
entropy, various susceptibilities, and the conduction-electron
T matrix (or impurity spectral function). Their definition is
standard, and we refer the reader to Refs. 19,21,35–37 for
a detailed exposition. Here we only summarize a few key
aspects.

The spin susceptibilities χ (spin) are obtained by coupling
external magnetic fields to both the bulk and impurity degrees
of freedom as explained in detail in Ref. 37. For the impurity
part, here, this reads

−Himp,i|σ 〉λi
σσ ′ 〈σ ′|, (7)

where Himp,i is the magnetic field coupling to the impurity spin,
while the λi

σσ ′ with i = 1,N − 1 are generators of SU(N ). In
the following, we exploit the SU(N ) symmetry and evaluate the
corresponding susceptibility tensor only in the one-direction,
choosing the representation λ1

σ,σ ′ = 1
2 (δσ,1δσ ′,1 − δσ,2δσ ′,2).38

We proceed as usual by calculating the magnetic susceptibili-
ties via the corresponding linear response functions. Note that
the impurity susceptibility is composed of

χimp(T ) = χimp,imp + 2χb,imp + (
χb,b − χ0

b,b

)
, (8)

where χimp,imp is the response to Himp, χb,b measures the bulk
response to the field applied to the bulk, χb,imp are the cross
terms, and χ0

b,b denotes the bulk response in the absence of
the impurity. The flavor susceptibilities χ (flavor) can be defined
in the Anderson model in analogy to the spin susceptibilities
(i.e., with σ → α).

Owing to symmetries, the total magnetization in both the
spin and flavor sectors is conserved. This implies that the
impurity contributions to the spin and flavor susceptibilities,
χ

(spin)
imp and χ (flavor)

imp , do not acquire anomalous exponents
at the intermediate-coupling fixed points, but instead obey
Curie laws with (in general) fractional prefactors. In contrast,
the local spin and flavor susceptibilities follow anomalous
power laws, χ (spin)

loc ∝ T −1+η
(spin)
χ and χ

(flavor)
loc ∝ T −1+η(flavor)

χ , with
universal r-dependent exponents ηχ . We note that a direct
calculation of both susceptibilities is possible only in the
Anderson model, as the Kondo limit suppresses the local piece
of one of the susceptibilities. To shorten notation, we employ
the convention χ ≡ χ (spin) and ηχ ≡ η

(spin)
χ in the following.

Similar to T χ
(spin,flavor)
imp , the impurity entropy approaches a

universal fractional value as T → 0. The conduction-electron
T matrix, on the other hand, follows an anomalous power law
similar to that of the local susceptibility, T (ω) ∝ ω−1+ηT .

At the non-Fermi-liquid fixed point of the familiar metallic
two-channel Kondo model (r = 0), power laws are replaced
by logarithms, χloc,χimp ∝ ln 1/T ; this also implies that the
prefactor of the leading Curie term in χimp vanishes due to an
exact compensation.

III. SELECTED NUMERICAL RESULTS

The NRG technique39 is ideally suited to study properties of
quantum impurity models, including non-Fermi-liquid phases
and quantum phase transitions. Initial NRG results for the
two-channel pseudogap Kondo model were shown in Ref. 19.
Here we extend and complement this early analysis by NRG
results for the two-channel (N = K = 2) Anderson model.

0 0.2 0.4 0.6 0.8 1
r

0

0.05

0.1

0.15

0.2

0.25

C
im

p 
=

 T
 χ

im
p

(s
pi

n)

ACR
SCR
NFL

FIG. 3. (Color online) NRG results for the impurity susceptibility
T χimp at the intermediate-coupling fixed points ACR (�), SCR (�),
and NFL (�). Also shown are the results from the renormalized
perturbation theory of the Kondo model, which allows us to access
SCR near r = 0 [Sec. IV, Eq. (14), dashed], and those from the
Anderson model, appropriate for ACR for r � 1 [Sec. V, Eq. (49),
dash-dotted]. The SCR data are partially taken from Ref. 19. The
vertical dashed lines indicate the critical dimensions r = rmax and
r = 1.

We perform explicit calculations for a bath density of states
ρ(ω) = (1 + r)/(2D)|ω/D|r�(D2 − ω2) with D = 1. Unless
otherwise noted, we employ NRG parameters39 � = 6 and
Ns = 600.

The qualitative behavior of the two-channel Anderson
model is summarized in the flow diagram in Fig. 2. In addition
to the stable LM and LM′ phases, these flow diagrams feature
three nontrivial fixed points: the stable NFL and NFL′ fixed
points, and the critical fixed points SCR, SCR′, and ACR. Some
of their key properties are summarized in Figs. 3 and 4, which
show the numerically determined impurity contributions to the
spin susceptibility and the entropy, respectively, together with
analytical results obtained from the ε expansion of Secs. IV
and V. These plots nicely show that NFL and SCR approach

0 0.2 0.4 0.6 0.8 1
r

0

0.25

0.5

0.75

1

1.25

S i
m

p

0.1 0.15 0.2

0.5

0.6

0.7

ACR
SCR
NFL

FIG. 4. (Color online) As Fig. 3, but for the impurity entropy
Simp. The perturbative expansions are in Eq. (15) (dashed) and
Eq. (53) (dash-dotted). The dotted horizontal lines correspond to
Simp = 0.5 ln 2, ln 2, and ln 4. The inset shows a zoom onto the region
r � rmax.
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FIG. 5. (Color online) Phase diagram of the two-channel An-
derson model as a function of the energy difference ε0 and the
bath exponent r , keeping g2

0 = 4 fixed. The discontinuous change
at r = rmax is apparent.

each other as r → rmax, while ACR evolves continuously
near rmax. The fixed-point properties also show that SCR
approaches LM as r → 0, with T χimp → 1/4 and Simp → ln 2,
and ACR approaches FImp as r → 1, with T χimp → 1/8
and Simp → ln 4. Further, the stable NFL fixed point follows
T χimp → 0 and Simp → 0.5 ln 2 as r → 0—the well-known
properties of the metallic two-channel Kondo problem.

The disappearance of both NFL and SCR upon increasing
r beyond rmax implies a discontinuous evolution of the phase
diagram as a function of r . In Fig. 5 we present a cut through
the phase diagram of the Anderson model at fixed g0 which
illustrates this fact. We note that such a discontinuous evolution
occurs if a stable intermediate-coupling fixed point disappears
(here NFL); in contrast, if a trivial fixed point changes its
nature from stable to unstable, the evolution is continuous, as
in the single-channel pseudogap Kondo model.

The correlation-length exponents ν are displayed in Fig. 6,
illustrating that r = 0 and rmax play the role of lower critical
dimensions for the p-h-symmetric transition controlled by

0 0.2 0.4 0.6 0.8 1
r

0

0.2

0.4

0.6

0.8

1

1 
/ ν

ACR
SCR

FIG. 6. (Color online) Inverse correlation-length exponent 1/ν

obtained from NRG calculations for the ACR (�) and SCR (�)
critical points, together with the analytical RG results from the
expansions in r [Sec. IV, Eq. (12), dashed] and in (1 − r) [Sec. V,
Eq. (38), dash-dotted]. Note that ν of ACR becomes very large for
small r—this corresponds to the extremely slow flow from ACR to
NFL for 0 < r < rmax.
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p
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χ i

m
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ε0 = 0
ε0 = 0.5
ε0 = 1
ε0 = 2

ACR →
NFL →

ACR →

NFL →

FIG. 7. (Color online) NRG results for (a) the impurity suscep-
tibility T χimp and (b) the impurity entropy Simp of the two-channel
Anderson model at r = 0.22. Parameter values are g2

0 = 2 and ε0 = 0
(dashed), 0.5 (solid), 1 (long-dashed), and 2 (dash-dotted). Both
ε0 = 0.5 and 1 are located in the NFL phase while ε0 = 2 corresponds
to the LM phase. The ε0 = 0.5 curves show the flow from ACR to NFL
upon lowering T , where in particular the impurity entropy increases
along the RG flow. (The flow is too slow to reach its fixed point within
the accessible temperature range.)

SCR, with ν → ∞, whereas r = 1 is the upper critical
dimension of the ACR transition, with ν = 1 for all r > 1
(and logarithmic corrections at r = 1).

Figure 7 shows the temperature evolution of both T χimp

and Simp for r = 0.22, i.e., slightly below rmax. Here, the flow
from ACR to NFL [compare Fig. 1(b)] is nicely visible at
ε0 = 0.5 where both T χimp and Simp increase along the RG
flow. (The large value of ν at ACR renders the flow very
slow.) Remarkably, the fact that SACR < SNFL violates the
so-called g-theorem,40 which states that the impurity entropy
should decrease along the flow. As this theorem applies to
conformally invariant systems only, we conclude that the fixed
points under consideration are not described by a conformally
invariant theory. (The same conclusion can be drawn for the
quantum phase transitions of the single-channel pseudogap
Kondo problem; see Ref. 21. Also, such “uphill flow”
may occur in models with long-range interactions; see e.g.
Ref. 41.)

IV. WEAK-COUPLING EXPANSION FOR THE
MULTICHANNEL KONDO MODEL

In this section we review the standard weak-coupling
expansion42 for the multichannel SU(2) Kondo model in
Eq. (5), extended to a pseudogapped bath density of states.15,19

As we show below, this expansion captures the properties of the
critical fixed point SCR at small r . In principle, it also allows

125139-6



TWO-CHANNEL PSEUDOGAP KONDO AND ANDERSON . . . PHYSICAL REVIEW B 84, 125139 (2011)

one to access the stable NFL fixed point, but this requires a
particular limit of large K which does not allow quantitative
results for the K = 2 case of interest to be extracted.

RG equations can be derived, e.g., using the field-theoretic
scheme43,44 where logarithmic divergencies, occurring for
r = 0, are replaced by poles in r by means of dimensional
regularization. Doing so will cause r to enter only in the bare
scaling dimension of the couplings. To two-loop order, the
equations for the renormalized couplings j and v read

β(j ) = rj − j 2 + K

2
j 3, β(v) = rv, (9)

where K is the number of equivalent screening channels.
Importantly, there is no renormalization of v, a result which
persists to higher orders.

Apart from the LM fixed point, j = v = 0, the function
β(j ) in Eq. (9) yields two further zeros, given by j = (1 ±√

1 − 2Kr)/K . The smaller one corresponds to an infrared
unstable fixed point at

j ∗ = r + K

2
r2 + O(r3), v∗ = 0, (10)

which can be perturbatively controlled for r → 0 and any K .
We label this fixed point by SCR. As r → 0 SCR approaches
LM. The larger zero predicts an infrared stable fixed point at

j ∗ = 2

K
− r − K

2
r2 + O(r3), v∗ = 0. (11)

Strictly speaking, this fixed point is perturbatively accessible
only if the limits r → 0 and K → ∞ are taken either in this
order (this corresponds to r = 0) or together such that Kr is
kept fixed. For r = 0, where v is marginal, this zero of β(j ) is
commonly associated with the line of stable non-Fermi-liquid
fixed points of the multichannel Kondo model, which exists for
all K � 2. For r > 0 now v becomes irrelevant, in agreement
with our numerical results23 which show that the NFL line
of fixed points shrinks to a single p-h-symmetric NFL fixed
point, Fig. 1.

A. Observables near criticality

The properties of the p-h-symmetric critical fixed point
SCR, existing for 0 < r < rmax, can be determined in analogy
to the single-channel case, with explicit calculations given,
e.g., in Ref. 37. Expanding the β function (9) around the fixed
point value (10) yields the correlation-length exponent ν:

1

ν
= r − K

2
r2 + O(r3). (12)

The leading-order perturbative corrections to the impurity
susceptibility and entropy are given by

�(T χimp) = −Kj

4
, �Simp = 3π2 ln 2

8
Kj 2 r. (13)

Inserting the fixed-point value j ∗ (10), we obtain

T χimp = 1
4 (1 − Kr) + O(r2), (14)

Simp = ln 2

(
1 + 3π2

8
Kr3

)
+ O(r5). (15)

The anomalous exponent of the local susceptibility is given by
ηχ = Kj 2 to leading order, which evaluates to

ηχ = Kr2 + O(r3) . (16)

Finally, the T matrix exponent is ηT = 1 − j (with no factor
of K , as the T matrix describes the scattering of electrons from
one specific channel), resulting in

ηT = 1 − r. (17)

Note that this result is exact.21

V. HYBRIDIZATION EXPANSION FOR THE
MULTICHANNEL ANDERSON MODEL

We now turn our attention to the multichannel Anderson
model. As we show below, the variables of the Anderson model
will allow us to obtain an essentially complete understanding
of the multichannel pseudogap Kondo effect for both r � 1 and
r � 1. A similar conclusion was reached for the single-channel
case in Refs. 20 and 21, and—on a technical level—our work
represents a generalization of the calculation for the infinite-U
Anderson model in Ref. 21.

A. Trivial fixed points

For vanishing hybridization g0, the multichannel Anderson
model (3) features three trivial fixed points: for ε0 < 0 the
ground state is the spinful N -fold-degenerate local-moment
state (LM) and, analogously, for ε0 > 0 it is the K-fold-
degenerate flavor local-moment state (LM′). In these cases
the impurity entropy equals ln N and ln K , respectively. For
ε0 = 0 there are (N + K) degenerate impurity states; we refer
to this as the free-impurity fixed point (FImp), with entropy
ln(N + K). The impurity spin susceptibilities are

T χ (spin)
imp =

⎧⎪⎨
⎪⎩

1
2N

, LM,
1

2(N+K) , FImp,

0, LM′.
(18)

The corresponding values of T χ (flavor)
imp follow via Eq. (4) from

LM ↔ LM′. The hybridization term g0 is irrelevant at LM and
LM′ for r > 0.

B. Hybridization expansion and upper critical dimension

In the following we perform an expansion around the FImp
fixed point, i.e., around ε0 = 0, g0 = 0. The impurity states
are represented by bosonic operators b

†
ᾱ for α = 1, . . . ,K and

fermionic operators fσ for σ = 1, . . . ,N . Single occupancy of
the localized levels is enforced by the Hilbert space constraint
Q̂ ≡ ∑

α b
†
ᾱbᾱ + ∑

σ f †
σ fσ = 1 which will be implemented

using a chemical potential λ0 → ∞. Observables are then
calculated as45,46

〈Ô〉 = lim
λ0→∞

〈Q̂Ô〉λ0

〈Q̂〉λ0

, (19)

where 〈· · ·〉λ0 denotes the thermal expectation value in the
presence of the chemical potential λ0.

Furthermore, we need to introduce chemical-potential
counterterms which cancel the shift of the critical point
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occurring in perturbation theory upon taking the limit of
infinite UV cutoff. Technically, this shift arises from the real
parts of the self-energies of the bᾱ and fσ particles. We
introduce the counterterms as additional chemical potentials
for the auxiliary particles,

δλb b
†
ᾱbᾱ, δλf f †

σ fσ . (20)

The δλb,f have to be determined order by order in an expansion
in g0. Note that counterterm contributions in observables in
general enter both numerator and denominator in Eq. (19).

In the path integral form the model (3) is written as

S =
∫ β

0
dτ

[
f̄σ (∂τ + λ0 + εs + δλf )fσ

+ b̄ᾱ(∂τ + λ0 + εq + δλb)bᾱ + g0(f̄σ bᾱcασ (0) + c.c.)

+
∫ �

−�

dk |k|r c̄kασ (∂τ + k)ckασ

]
, (21)

where λ0 is the chemical potential enforcing the constraint
exactly. Here, we implicitly sum over σ and α.

The model (21) shows a transition driven by variation of
ε0 = εs − εq . At the ε0 = g0 = 0 fixed point, tree-level scaling
analysis shows that

dim[g0] = 1 − r

2
≡ r̄ , dim[ε0] = 1. (22)

As in the single-channel model,20,21 this establishes the role of
r = 1 as an upper critical dimension where g0 is marginal.

We perform a field-theoretical RG analysis using the
minimal subtraction scheme.43,44 Renormalized fields and
dimensionless couplings are introduced according to

fσ = √
Zf fRσ , (23)

bᾱ =
√

ZbbRᾱ, (24)

g0 = μr̄Zg√
Zf Zb

g, (25)

where μ is the renormalization group energy scale. No
renormalizations are needed for the bulk fermions as their self-
interaction is assumed to be irrelevant. The RG is conveniently
performed at criticality, i.e., we assume that ε0 is tuned to the
critical line and set εq = εs = 0.

To determine the RG β function β(g) we evaluate the
fermionic self-energy up to one-loop order,

�fσ
(iωn) = Kg2 μ2r̄

β

∑
iω′

n

∫ �

−�

dk |k|r 1

iω′
n − k

1

iω̄n − iω′
n

,

(26)

corresponding to the diagram in Fig. 8(a). Here, we have
introduced the abbreviated notation iω̄n = iωn − λ0 for the
Matsubara frequencies iωn = iπ (2n + 1)/β. In the limit
λ0 → ∞ and β → ∞ we obtain

�fσ
(iωn) = Kg2μ2r̄

∫ �

0
dε εr 1

iω̄n − ε
(27)

≈ −Kg2

(
μ2r̄ �r

r
+ iω̄n

1

2r̄

)
. (28)

An analogous expression is found for the bosonic self-energy
�bᾱ

depicted in Fig. 8(b).

FIG. 8. Feynman diagrams entering the self-energies up to
quadratic order in g0. Full, dashed, and wiggly lines denote fσ , cσ , and
bᾱ propagators, respectively; the full dots are g0 interaction vertices.

The renormalization factors are determined such that they
cancel the 1

2r̄
pole in the self-energies minimally and render

finite the inverse Green’s function. We thus find

Zf = 1 − K
g2

2r̄
, Zb = 1 − N

g2

2r̄
. (29)

The mass counterterms are given by the real parts of the self-
energies,

δλf = Kg2μ2r̄ �r

r
, δλb = Ng2μ2r̄ �r

r
. (30)

To one-loop order, there is no vertex renormalization of g;
hence we have Zg = 1 at this order (note that a g3 diagram
does not exist due to the directed nature of the propagators).
The β function

β(g) ≡ μ
dg

dμ
(31)

can now be obtained by taking the logarithmic μ derivative
of Eq. (25). Since μ

dg0

dμ
= 0 we can solve for β(g) and finally

obtain

β(g) = −1 − r

2
g + K + N

2
g3 (32)

to one-loop order. One can also consider the flow away from
criticality, i.e., the flow of the renormalized tuning parameter ε

using S2 insertions. The resulting correlation-length exponent
is given in Eq. (38) below.

C. rmax < r < 1

For r < 1 the trivial fixed point g∗ = 0 is unstable, and the
critical properties are instead controlled by an interacting fixed
point (labeled ACR) at

g∗2 = 1 − r

K + N
(33)

with anomalous field dimensions

ηb = β(g)
d ln Zb

dg

∣∣∣∣
g∗

= Ng∗2
, (34)

ηf = β(g)
d ln Zf

dg

∣∣∣∣
g∗

= Kg∗2
. (35)

The corresponding RG flow diagram is displayed in Fig. 2(c).
ACR describes a quantum phase transition below its

upper critical dimension. As a result, low-energy observables
calculated at and near ACR will be fully universal, i.e., cutoff
independent, and hyperscaling is fulfilled.

D. r � 1

For all r � 1, i.e., above the upper critical dimension, the
phase transition between LM and LM′ is now controlled by the
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noninteracting FImp fixed point at g = ε = 0. Hence, for all
r > 1 the phase transition is a level crossing with perturbative
corrections—this results, e.g., in a jump of the order parameter
T χloc (see below), i.e., the transition is formally of first order.
Consequently, hyperscaling is violated, and all observables
depend upon the UV cutoff.

For the marginal case, r = 1, we expect a logarithmic flow
of the marginally irrelevant hybridization g, characteristic of
the behavior at the upper critical dimension. The RG β function

β(g) = K + N

2
g3 (36)

can be integrated [recall that β(g) ≡ dg

d ln �
where � describes

the reduction of the UV cutoff � → ��] to give

g2(�) = g2
0

1 − (K + N )g2
0 ln �

(37)

with g(�=1) = g0. This result can be used to determine
logarithmic corrections to observables.

E. Observables near criticality

1. Correlation-length exponent

We start with the correlation-length exponent ν of the
ACR fixed point. This exponent describes the vanishing of
the characteristic crossover temperature in the vicinity of the
critical point T ∗ ∝ (ε − ε∗)ν . The lowest-order result for ν,
which can be obtained either using the field-theoretic RG
scheme via composite operator insertions or using the familiar
momentum shell scheme, is

1

ν
= r + O(r̄2) (r < 1). (38)

For r � 1 the transition is a level crossing, formally ν = 1.

2. Local susceptibility

The local susceptibility χloc = χimp,imp at the critical point
follows the scaling behavior χloc ∝ T −1+ηχ with an anomalous
exponent ηχ . To obtain the corrections to the tree-level result
χloc ∝ T −1, we introduce a χloc renormalization factor Zχ

from which one obtains the anomalous exponent according to

ηχ = β(g)
d ln Zχ

dg

∣∣∣∣
g∗

. (39)

We determine Zχ by calculating 〈χloc〉 directly using perturba-
tive corrections up to quadratic order in g0. The corresponding
diagrams entering 〈χloc〉λ0 are given in Fig. 9. In terms of the

FIG. 9. Feynman diagrams entering 〈χloc〉λ0 up to quadratic order
in g0. Open circles are sources, and blank boxes denotes the
counterterms δλf . Notation otherwise as in Fig. 8

FIG. 10. Feynman diagrams entering the corrections to the
unperturbed part of 〈Q̂〉λ0 up to quadratic order in g0. Notation as
in the previous figures. Black boxes denote the counterterms δλb.

renormalized coupling constant g we find at the energy scale
μ = T

〈χloc〉λ0 = e−λ0/T

(
1

2T
+ Kg2

T

∫ �/T

0
dx

xr

x3

[
2 tanh

x

2

+ x2

2
tanh

x

2
− x − x2

2

])
. (40)

Furthermore, the denominator 〈Q̂〉λ0 receives corrections from
the diagrams in Fig. 10, resulting in

〈Q̂〉λ0 = (N + K)e−λ0/T + 2NKg2e−λ0/T

×
∫ �/T

0
dx

xr

x

[
tanh

x

2
− 1

]
. (41)

The local susceptibility χloc can then be directly obtained by
Eq. (19). The renormalization factor Zχ is then determined,
using minimal subtraction of poles, in an expansion in r̄ as

Zχ = 1 − Kg2 1

r̄
, (42)

and from this we can directly deduce the anomalous exponent
of the local spin suceptibility,

η(spin)
χ = 2Kg∗2 = 2K

K + N
(1 − r). (43)

The expression for η(flavor)
χ follows by the replacement K ↔ N .

Above the upper critical dimension, r > 1, we simply have
ηχ = 0 and, thus, χ

(spin)
loc ,χ

(flavor)
loc ∝ T −1 or ∝ ω−1. For the

marginal case r = 1, a calculation analogous to that in Ref. 21,
using Eq. (37), gives

χ
(spin)
loc ∝ 1

ω| ln ω|2K/(K+N)
(r = 1). (44)

3. Order parameter

Inside the stable phases LM and LM′, χloc can be used to
define an order parameter for the quantum phase transition:
T χ

spin
loc is finite (zero) for ε0 < 0 (ε0 > 0), and similarly

T χ
(flavor)
loc is finite (zero) for ε0 > 0 (ε0 < 0). On approach to

the critical point, both order parameters vanish continuously
according to

T χ
(spin)
loc ∝ (−ε0)νη

(spin)
χ , T χ

(flavor)
loc ∝ ε

νη(flavor)
χ

0 (45)

for r < 1, which follows, e.g., from hyperscaling. Note that
these order parameters display a jump upon crossing the
transition for r > 1.
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FIG. 11. Further Feynman diagrams entering corrections to the
impurity susceptibility to quadratic order in g0. Notation as in the
previous figures.

4. Impurity susceptibility

The evaluation of the impurity susceptibility χimp to second
order in g0 requires the summation of further diagrams as
depicted in Fig. 11. In terms of the renormalized coupling g

we obtain

2〈χb,imp〉λ0

= Kg2

T
e−λ0/T

∫ �/T

0
dx

xr

x3

[
x + x

cosh2 x
2

− 4 tanh
x

2

]

(46)

and〈
χb,b

〉
λ0

− 〈
χ0

b,b

〉
λ0

= Kg2

T
e−λ0/T

∫ �/T

0
dx

xr

x3

×
[

2 tanh
x

2
− x

cosh2 x
2

− x2 tanh x
2

2 cosh2 x
2

]
.

(47)

Collecting all contributions to χimp to second order in g, the
poles present in the χloc diagrams cancel and the remaining
momentum integrals are UV convergent for r < 1. On per-
forming these integrals for r < 1, the impurity susceptibility
reads

T χ (spin)
imp

= 1

2(N+K)

[
1−g2K

(
1+ln 4 − 2N

N+K
ln 4

)]
+ O(g4).

(48)

As above, the expression for T χ (flavor)
imp follows by the replace-

ment K ↔ N . With the value of the coupling at the ACR fixed
point (33), we finally find for N = K = 2, to leading order in
(1 − r),

T χ (spin)
imp =

{
1
8 − 1

16 (1 − r) + O(r̄2) (r < 1),
1
8 (r � 1),

(49)

with T χ (flavor)
imp = T χ

(spin)
imp due to the emergent Z2 symmetry

(4). A comparison to NRG data is in Fig. 3. Note that T χimp

receives only weak additive logarithmic corrections at r = 1;
multiplicative logarithms as in χloc are absent here. The same
applies to Simp below.

5. Impurity entropy

The impurity contribution to the entropy can be obtained
from the thermodynamic potential �imp by Simp = −∂T �imp.
At the FImp fixed point the entropy is Simp = ln(N + K),
and the lowest-order correction is computed by expanding the

thermodynamic potential in the renormalized hybridization g.
Note that this correction vanishes for r � 1, as g∗ = 0 there.
Here, we write the partition function in the physical sector of
the Hilbert space (Q̂ = 1) as37

Zimp

Zimp,0
= lim

λ0→∞
〈Q̂〉λ0

〈Q̂〉λ0,0
, (50)

where 〈· · ·〉λ0,0 is the expectation value in the presence of λ0

without coupling to the bath. The thermodynamic potential is
given by

�imp − �imp,0 = −T ln
Zimp

Zimp,0
. (51)

The correction to 〈Q̂〉λ0 due to the coupling to the bath up to
quadratic order in g has already been calculated in Eq. (41),
which enables us now to directly evaluate Eq. (51). Taking
the temperature derivative of the resulting expression and
evaluating the remaining integral in the limit T → 0 and
r → 1, we obtain

Simp = ln(K + N ) − g2 4NK

N + K
ln 2 + O(g4). (52)

As expected, the entropy correction is fully universal and finite
in the limit T → 0. Note that in higher-order terms of the
diagrammatic expansion for the thermodynamic potential �imp

disconnected diagrams appear.37

Finally, inserting the fixed-point value of the coupling g

into Eq. (52), we find the impurity entropy in the two-channel
case N = 2 and K = 2 to be

Simp =
{

ln 4 − (1 − r) ln 2 + O(r̄2) (r < 1),
ln 4 (r � 1). (53)

Comparison with the numerical result again shows very good
agreement, Fig. 4.

6. Conduction-electron T matrix

For the single-channel pseudogap Kondo problem, it has
been shown that the conduction-electron T matrix T (ω)
displays a power-law divergence of the form T (ω) ∝ |ω|−r at
all intermediate-coupling fixed points.20,21 Analytically, this
follows—for all perturbative expansions—from the diagram-
matic structure of the T matrix (or, alternatively, from a Ward
identity).

In the two-channel case, we find that the same qualitative
arguments apply, i.e., at the NFL, SCR, and ACR fixed points
the T matrix obeys the exact result

T (ω) ∝ |ω|−r (r < 1). (54)

At one-loop level, an explicit calculation gives ηT = (K +
N )g2, which yields ηT = 1 − r as expected. For r > 1,
Im T (ω) ∝ δ(ω).

For r = 1, the logarithmic flow of the coupling, Eq. (37),
can used to deduce T (ω) ∝ 1/(ω| ln ω|), which gives

Im T (ω) ∝ 1

ω| ln ω|2 (r = 1), (55)

in analogy to Ref. 21.
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VI. CONCLUSIONS

We have explored the two-channel Kondo effect for mag-
netic impurities embedded into a fermionic host with a power-
law pseudogapped density of states. We have determined
the phase diagram as a function of the DOS exponent r

and discussed the boundary quantum phase transitions of the
relevant Kondo and Anderson models. These transitions are
described by fermionic (as opposed to the usual bosonic)
quantum field theories; from their properties we conclude that
there is no underlying CFT description.

Our results demonstrate the versatility of the Anderson-
model ε expansions developed in Refs. 20 and 21: Those
have allowed a full understanding not only of the critical
behavior of the single-channel (S = 1/2) pseudogap Kondo
problem, but also of the corresponding underscreened47 and
overscreened pseudogap Kondo models (this work). Further
applications, e.g., to multi-impurity models, appear possible.
Also, the Anderson model formulation should enable studies
of nonequilibrium dynamics of pseudogap Kondo problems.

Our results are of potential relevance to two-channel
impurities in unconventional superconductors and in graphene;
for the latter case the extension of the present calculations to
finite bias48 is an interesting future topic.
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APPENDIX: COMPACTIFIED σ -τ KONDO MODEL AND
O(3)-SYMMETRIC ANDERSON MODEL

Here we briefly discuss an alternative formulation of the
two-channel Kondo model which eventually leads to a theory
of noninteracting Majorana fermions.

1. Metallic bath, r = 0

The low-energy physics of the standard two-channel Kondo
problem (r = 0) has been argued to be equivalent to that of the
so-called σ -τ Kondo model—this is a “compactified” single-
channel Kondo model where the roles of the two screening
channels are taken by spin and a charge pseudospin.49,50 The
corresponding Hamiltonian can be expressed as

Hσ-τ = [J1 �σ (0) + J2 �τ (0)] · �S +
∫ �

−�

dk k c
†
kσ ckσ , (A1)

where, as above, �S is a spin-1/2 SU(2) spin and we have
represented the bath by linearly dispersing chiral fermions ckσ .
Spin degrees of freedom σ = ↑, ↓ are implicitly summed.
The conduction-electron spin �σ (0) and pseudospin �τ (0) are
defined as

�σ (0) = (c†↑(0),c†↓(0)) · �τ ·
(

c↑(0)

c↓(0)

)
, (A2)

�τ (0) = (c†↑(0),c↓(0)) · �τ ·
(

c↑(0)

c
†
↓(0)

)
, (A3)

where cσ (0) = ∫
dk ckσ . Interestingly, the low-energy physics

of the σ -τ Kondo model is described by a fixed point
with non-Fermi-liquid behavior which is located at strong
coupling, not at intermediate coupling as in the two-channel
Kondo problem. The equivalence of the two-channel Kondo
model and the σ -τ Kondo model has been established using
bosonization and conformal field theory techniques.49–51

The nature of the low-energy non-Fermi liquid becomes
transparent by considering the so-called O(3)-symmetric
Anderson model which displays an anomalous hybridization
term. Its Hamiltonian is given by HO(3) = H1cA + Hahyb with

H1cA = U

(
nf ↑ − 1

2

) (
nf ↓ − 1

2

)

+
∫ �

−�

dk k c
†
kσ ckσ + g0

∑
σ

[f †
σ cσ (0) + H.c.]. (A4)

Hahyb = −ga[f †
↓c

†
↓(0) + f

†
↓c↓(0) + H.c.], (A5)

where f †
σ creates the localized impurity state with spin σ and

nf σ = f †
σ fσ . Note that the chemical potential on the impurity

site has been chosen such that the model is p-h symmetric. In
the Kondo limit, the O(3)-symmetric Anderson model maps
onto the σ -τ Kondo model.51

Consideration of the adiabatic continuity between the U =
0 and large-U limits in this Anderson model suggests discus-
sion of the weakly interacting case. The Hamiltonian HO(3)

can be conveniently rewritten in terms of Majorana fermions:

HO(3) = Ud1d2d3d0 + i

3∑
α=0

∫ �

−�

dk k ψ−kαψkα

+ ig0

3∑
α=1

ψα(0)dα + i(g0 − 2ga)ψ0(0)d0. (A6)

Here, the impurity Majorana fermions are defined by

f↑ = 1√
2

(d1 − id2), f↓ = 1√
2

(−d3 + id0), (A7)

where d†
α = dα and {dα,dβ} = δα,β for α = 0,1,2,3. The

Majorana fermions for the conduction electrons are defined
similarly;51 in Fourier space they read

ck↑ = 1√
2

(−iψk1 − ψk2) , ck↓ = 1√
2

(iψk3 − ψk4) (A8)

with ψ
†
kα = ψ−kα . Remarkably, for 2ga = g0 the impurity

couples only via dα for α = 1,2,3 to the conduction Majorana
fermions while d0 remains free.

The Hamiltonian in Eq. (A6) is suitable to study ther-
modynamic quantities in particular. Note that for U = 0 the
model is exactly solvable and the impurity Green’s functions
Gα(τ ) = −〈Tτdα(τ )dα(0)〉 are known exactly. For U = 0 and
2ga = g0, their Fourier counterparts read

G0(iωn) = 1

iωn

, Gα(iωn) = 1

iωn + iA0sgn(ωn)
, (A9)

for α = 1,2,3. Here, we have introduced A0 = πg2
0 .
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A straightforward calculation now shows that there is a
residual impurity entropy Simp = 1

2 ln 2 of a free Majorana
fermion.52 By adiabatic continuity, this entropy persists into
the regime of large U and then corresponds to the entropy of
the overscreened two-channel Kondo impurity.

2. Pseudogap bath

The obvious question is whether the σ -τ Kondo and
O(3)-symmetric Anderson models continue to represent the
physics of the two-channel Kondo problem for a pseudogap
bath DOS with r > 0. To answer this, let us consider the
noninteracting limit and 2ga = g0 of the O(3) Anderson model.
The Green’s functions in Eq. (A9) for ωn/� � 1 are now
given by21

G0(iωn) = 1

iωn

, (A10)

Gα(iωn) = 1

iωn + iA0sgn(ωn)|ωn|r (A11)

for α = 1,2,3. They yield an impurity entropy of

Simp = 1
2 ln 2 + 3

2 r ln 2 (A12)

and an impurity susceptibility of

T χimp(T ) = 3r

32
. (A13)

This result is not in agreement with the numerical data in
Figs. 3 and 4, which instead are well fitted by Simp = 1

2 ln 2 +
2r ln 2 and T χimp(T ) = r

6 (Ref. 19). We are forced to conclude
that the low-energy behavior of the σ -τ Kondo and O(3)-
symmetric Anderson models is not identical to that of the two-
channel Kondo model once r > 0. In other words, the equiv-
alence is restricted to the metallic r = 0 case. Given the fact
that neither bosonization nor CFT appears to be applicable to
the pseudogap Kondo models, this may not come as a surprise.

Let us finish with the remark that an extension of the
Majorana resonant-level model that corresponds to the
solvable point of the two-channel Kondo model7 to a
pseudogap DOS also does not yield the numerically found
impurity entropy.
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