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Anisotropic perturbations in three-dimensional O(N)-symmetric vector models
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We investigate the effects of anisotropic perturbations in three-dimensional O(N )-symmetric vector models.
In order to assess their relevance for the critical behavior, we determine the renormalization-group dimensions of
the anisotropic perturbations associated with the first few spin values of the representations of the O(N ) group,
because the lowest spin values give rise to the most important effects. In particular, we determine them up to
spin 4 for N = 2, 3, 4, by finite-size analyses of Monte Carlo simulations of lattice O(N ) models, achieving
a significant improvement of their accuracy. These results are relevant for several physical systems, such as
density-wave systems, magnets with cubic symmetry, and multicritical phenomena arising from the competition
of different order parameters.
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I. INTRODUCTION AND SUMMARY

Many continuous phase transitions observed in nature
belong to the O(N ) vector universality classes, which are
characterized by an N -component order parameter with O(N )
symmetry and the symmetry breaking O(N )→O(N − 1). The
superfluid transition in 4He, the formation of Bose-Einstein
condensates, density wave systems, transitions in magnets
with easy-plane anisotropy, and in superconductors belong
to the XY or O(2) universality class; the Curie transition
in isotropic magnets, zero-temperature quantum transitions
in two-dimensional antiferromagnets, are examples for the
Heisenberg or O(3) universality class; the O(4) universal-
ity class is relevant for the finite-temperature transition in
two-flavor quantum chromodynamics, the theory of strong
interactions. See, for example, Refs. 1 and 2 for reviews.

In the absence of external fields, the phase transition
of O(N )-symmetric vector models is driven by only one
relevant parameter, which is usually associated with the
temperature. The corresponding RG dimension is yt = 1/ν

where ν is the correlation-length exponent. The leading odd
perturbation, which breaks the O(N ) symmetry, is associated
with the external field h coupled to the order parameter;
it has RG dimension yh = (d + 2 − η)/2, where η is the
exponent controlling the power-law space dependence of
the two-point correlation function of the order parameter at
criticality. The asymptotic critical power-law behaviors of
O(N )-symmetric vector models have been determined with
high accuracy. In Table I we report some of the most accurate
estimates of the critical exponents ν and η, and of the leading
and next-to-leading scaling-correction exponents ω and ω2,
which characterize the dominant corrections to the universal
scaling.

In this paper we study the effects of anisotropic perturba-
tions breaking the O(N ) symmetry, which cannot be related
to an external vector field coupled to the order parameter,
but which are represented by composite operators with more
complex transformation properties under the O(N ) group.
An interesting question is whether they change the critical
behavior, or whether they do not affect it so that the symmetry

shown by the critical correlations is larger than that of the
microscopic model. This issue arises in several physical
contexts. Anisotropy in magnetic systems may naturally arise
due to the cubic structure of the underlying lattice, giving
rise to anisotropic interactions terms (see, e.g., Ref. 12). The
relevance of the anisotropic perturbations determines also the
nature of the multicritical behavior at the meeting point of two
transition lines with different O(n1) and O(n2) symmetries, in
particular, whether the symmetry gets effectively enlarged to
O(n1 + n2) (see, e.g., Refs. 11, 13, and 14). Another interest-
ing issue is the critical behavior of secondary order parameters,
which are generally represented by powers of the order
parameter transforming as higher representations of the O(N )
group; their critical behaviors can be measured in density wave
systems, such as liquid crystals15–17 (see also Refs. 18–21).

Let us consider the general problem of the O(N )-symmetric
theory in the presence of an external field hp coupled to a
perturbation P . Assuming P to be an eigenoperator of the RG
transformations, the singular part of the free energy for the
reduced temperature t → 0 and hp → 0 can be written as

Fsing = |t |dνf (hp/|t |ypν), (1)

where yp is the RG dimension of hp, and f (x) is a scaling
function. Therefore, the RG dimensions of the anisotropic ex-
ternal fields quantitatively control their capability to influence
or change the asymptotic critical behavior when yp > 0.

In the field-theoretical (FT) framework the O(N )-
symmetric vector model is represented by the O(N )-symmetric
Landau-Ginzburg-Wilson theory

H=
∫

ddx

[
1

2
(∂μ�)2 + 1

2
r�2 + 1

4!
u(�2)2 + h · �

]
, (2)

where � is an N -component real field and h an external field.
The anisotropic perturbations are conveniently classified2,22

using irreducible representations of the O(N ) internal group,
characterized by the spin value l. Let us consider the perturba-
tion Pm,l defined by the power m of the order parameter and
the spin representation l of the O(N ) group

P
a1···al

m,l (�) = (�2)(m−l)/2Q
a1···al

l (�), (3)
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TABLE I. Some of the most accurate results for the critical
exponents of the three-dimensional O(N ) vector universality classes
with N = 2, 3, 4, 5. We report estimates of ν and η, and of the
leading and next-to-leading scaling correction exponents, obtained
by lattice techniques (LT) based on Monte Carlo simulations and/or
high-temperature expansions, and by quantum field theory (FT)
techniques such as high-order perturbative expansions. The results
without reference have been obtained in this paper. A more complete
review of results can be found in Ref. 2.

N Method ν η ω ω2

2 LT 0.6717(1)3 0.0381(2)3 0.785(20)3

FT 0.6703(15)4 0.0354(25)4 0.789(11)4 1.77(7)5

3 LT 0.7112(5)6 0.0375(5)6 0.7738

0.7117(5)7 0.0378(5)7

0.7116(10) 0.0378(3)
FT 0.7073(35)4 0.0355(25)4 0.782(13)4 1.78(11)5

4 LT 0.749(2)8 0.0365(10)8 0.7658

0.7477(8)9 0.0360(4)9

0.750(2) 0.0360(3)
FT 0.741(6)4 0.0350(45)4 0.774(20)4

5 LT 0.779(3)10 0.034(1)10

FT 0.762(7)11 0.034(4)11 0.790(15)11

where Q
a1···al

l is a homogeneous polynomial of degree l that is
symmetric and traceless in the l indices:

Qa
1(�) = �a, (4)

Qab
2 (�) = �a�b − 1

N
δab�2, (5)

Qabc
3 (�) = �a�b�c − �2

N + 2
(�aδbc + �bδac + �cδab),

(6)Qabcd
4 (�)

= �a�b�c�d − 1

N + 4
�2(δab�c�d + δac�b�d

+ δad�b�c + δbc�a�d + δbd�a�c + δcd�a�b)

+ 1

(N + 2)(N + 4)
(�2)2(δabδcd + δacδbd + δadδbc), (7)

etc. The classification in terms of spin values is particularly
convenient: (i) under the RG flow the operators with different
spin never mix; (ii) all parameters h

a1···al

m,l associated with the
components of P

a1···al

m,l have the same RG dimension Ym,l . On
the other hand, operators with different m but with the same l

mix under renormalization.
The spin-0 operators are already present in the �4 Hamilto-

nian (2): the RG dimension of P2,0 is related to the correlation
length exponent Y2,0 = yt = 1/ν, while the RG dimension of
P4,0 (after an appropriate subtraction to cancel the mixing with
P2,0) gives the leading scaling correction exponent, indeed
Y4,0 = −ω. The spin-1 perturbation is related to the external
field coupled to the order parameter, thus Y1,1 = yh. (The
perturbation P a

3,1 is redundant23 because a Hamiltonian term
containing P3,1 can be always eliminated by a redefinition
of the field �a . Anyway, using the equation of motion, one
obtains Y3,1 = (d − 2 + η)/2.) Close to four dimensions, thus
for small ε ≡ 4 − d, Ym,l < 0 for l � 5, which implies that the
only relevant operators have l � 4. It is reasonable to assume
that this property holds up to d = 3. Moreover, near four

dimensions we can use standard power counting to verify that
the perturbation with indices m,l mixes with Pm′,l , m′ � m,
but their RG dimensions are significantly smaller. In principle,
one should also consider terms with derivatives of the field, but
again one can show that they are all irrelevant or redundant.

The above arguments show that the most interesting
anisotropic perturbations are represented by the spin-2, spin-3,
and spin-4 operators

Qab
2 = P ab

2,2, Qabc
3 = P abc

3,3 , Qabcd
4 = P abcd

4,4 , (8)

because they provide the leading effects of anisotropy for each
spin sector. As we shall see, the leading RG dimensions within
each spin sector,

Yl ≡ Yl,l, (9)

characterize interesting critical behaviors in various physical
contexts. Some Yl have been already estimated by using FT
approaches based on high-order perturbative calculations, and
lattice techniques, such as high-temperature (HT) expansions
and Monte Carlo (MC) simulations. In Table II we report
some results for N = 2, 3, 4, 5. In most cases these results
already provide a clear indication of the relevance of the
perturbation, with the only exception of the spin-4 perturbation
in the O(3) universality class, where the value of Y4 is close
to zero. While high-order FT results indicate the relevance
of the spin-4 perturbation, the MC estimate of Y4 appears
compatible with zero. Since the issue concerning its relevance
is of experimental interest, an accurate determination of Y4 is
called for to conclusively settle it.

In this paper we present new accurate estimates of the RG
dimensions Yl of the anisotropic perturbations for N = 2, 3, 4.
For this purpose we perform finite-size scaling (FSS) analyses
of Monte Carlo (MC) simulations of lattice O(N ) spin systems.
We achieve a significant improvement of the accuracy of the
estimates of Yl , essentially by combining the FSS method of
Ref. 24 with the use of improved Hamiltonians,28 which are
characterized by the fact that the leading correction to scaling
is suppressed in the asymptotic expansion of any observable
near the critical point. Our results are also reported in Table II.
As we shall explain later, the errors in the estimates of Yl ,
and in particular of Y4, are quite prudential, they are largely
dominated by the systematic error arising from the necessary
truncation of the Wegner expansions22 which provide the
asymptotic FSS behavior of the quantities considered. The
results are a good agreement with the estimates obtained
by the analyses of high-order FT perturbative expansions,
in particular with those obtained by resumming sixth-order
d = 3 expansions. Our results show that spin-4 perturbations
in three-dimensional Heisenberg systems are relevant, with a
quite small RG dimension Y4 = 0.013(4), which may give rise
to very slow crossover effects in systems with small spin-4
anisotropy. The apparent discrepancy with the MC result of
Ref. 24, obtained using the standard nearest-neighbor O(3)
spin model, can be explained by the presence of sizable scaling
corrections. We overcome this problem by using improved
lattice Hamiltonians. The relevance of the spin-4 perturbations
is important for systems with cubic perturbations,12 and also
systems whose phase diagram presents two transition lines,

125136-2



ANISOTROPIC PERTURBATIONS IN THREE- . . . PHYSICAL REVIEW B 84, 125136 (2011)

TABLE II. Estimates of the RG dimensions Yl of the couplings hl associated with the leading anisotropic perturbations Ql for the
three-dimensional O(N ) vector universality classes with N = 2, 3, 4, 5. We report results obtained by various methods, such as FT perturbative
expansions within d = 3 and ε-expansion schemes, and lattice techniques, such as high-temperature expansions (HT) and finite-size scaling
analyses of Monte Carlo simulations (FSS MC). Notice that in the MC estimates of Y4 reported in Ref. 24 only statistical errors are explicitly
given; the authors write that systematic errors are likely of a similar size.

N Method Y2 (spin 2) Y3 (spin 3) Y4 (spin 4)

2 FT fifth-order ε expansion 1.766(6)11 0.90(2)25 −0.114(4)26

FT sixth-order d = 3 expansion 1.766(18)11 0.897(15)25 −0.103(8)26

HT 1.75(2)27

FSS MC −0.171(17)24

FSS MC (this paper) 1.7639(11) 0.8915(20) −0.108(6)

3 FT fifth-order ε expansion 1.790(3)11 0.96(3)25 0.003(4)26

FT sixth-order d = 3 expansion 1.80(3)11 0.97(4)25 0.013(6)26

HT 1.76(2)27

FSS MC −0.0007(29)24

FSS MC (this paper) 1.7906(3) 0.9616(10) 0.013(4)

4 FT fifth-order ε expansion 1.813(6)11 1.04(5)25 0.105(6)26

FT sixth-order d = 3 expansion 1.82(5)11 1.03(3)25 0.111(4)26

FSS MC 0.1299(24)24

FSS MC (this paper) 1.8145(5) 1.0232(10) 0.125(5)
5 FT fifth-order ε expansion 1.832(8)11 1.08(4)25 0.198(11)11

FT sixth-order d = 3 expansion 1.83(5)11 1.07(2)25 0.189(10)11

FSS MC 0.23(2)10

XY and Ising transition lines, meeting at a multicritical point.13

We shall further discuss these physical applications later.
The remainder of the paper is organized as follows. In

Sec. II we present the lattice φ4 model which we consider
in our MC simulations, and provide the definitions of the
quantities that we consider in our FSS analyses, in particular,
those related to the spin-l anisotropies. In Sec. III we describe
our FSS analyses of MC simulations which lead to our final
estimates already reported in Table II. Finally, in the conclusive
Sec. IV we discuss a number of physical applications of our
results. Appendices A and B contain some details of the MC
simulations, and further results on the critical behavior of O(N )
vector models.

II. THE LATTICE MODEL AND THE ESTIMATORS OF
THE ANISOTROPY RG DIMENSIONS

A. Improved lattice O(N)-symmetric φ4 models

In this numerical study of O(N ) vector models with
N = 2, 3, 4, we consider the φ4 O(N )-symmetric lattice
Hamiltonian

Hφ4 = −β
∑
〈xy〉

φx · φy +
∑

x

[
φ 2

x + λ
(
φ 2

x − 1
)2]

, (10)

where φx is an N -component real variable, x and y denote
sites of the simple-cubic lattice, and 〈xy〉 is a pair of nearest-
neighbor sites. In our convention, the Boltzmann factor is
given by exp(−Hφ4 ). For λ = 0 we get the Gaussian model,
while in the limit λ → ∞ the O(N )-symmetric nonlinear σ

model is recovered. For any 0 < λ � ∞ the model undergoes
a continuous phase transition in the universality class of the
O(N )-symmetric vector model.

In our FSS analyses we consider cubic L3 lattices with
periodic boundary conditions. We consider standard finite-
volume quantities such as the magnetic susceptibility and
second-moment correlation length related to the two-point
function G(x − y) ≡ 〈φx · φy〉, that is,

χ ≡ 1

L3
〈M2〉, M =

∑
x

φx, (11)

and

ξ ≡
√

χ/F − 1

4 sin2 π/L
, F ≡ 1

L3

〈∣∣∣∣∣∑
x

exp

(
i
2πx1

L

)
φx

∣∣∣∣∣
2〉

.

(12)

Another standard quantity for FSS analyses is the quartic
Binder cumulant

U4 ≡ 〈(M2)2〉
〈M2〉2

. (13)

The ratio ξ/L and U4 are RG-invariant phenomenological
couplings, thus their large-volume limit at Tc is universal.
We also consider quantities defined keeping one of the
phenomenological coupling fixed, in particular keeping the
ratio ξ/L fixed (see, e.g., Ref. 29). We define Ū4 as the Binder
cumulant at fixed ξ/L. (In previous studies (see Refs. 3,6,
and 29) another RG-invariant quantity turned out to be very
useful, i.e., the ratio Za/Zp of partition functions of a system
with antiperiodic boundary conditions in one direction and
periodic ones in the other two directions and a system with
periodic boundary conditions in all directions. Since here we
focus on the anisotropy, we have not implemented it to keep
the project manageable.)
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Improved Hamiltonians are characterized by the fact that
the leading correction to scaling is eliminated in any quantity
near the critical point. Therefore in a MC study, the asymptotic
behavior at the phase transition can be determined more
precisely. Improved Hamiltonians were first discussed in
Ref. 28 for the three-dimensional Ising universality class
using high-temperature series expansions. This idea was first
implemented in MC simulations of φ4 O(N )-symmetric lattice
models for N = 2, 3, and 4 in Refs. 8 and 30. In the case of the
φ4 lattice model (10), the improved model is obtained by tuning
the parameter λ to the particular value λ∗, where the leading
O(L−ω) scaling corrections vanish in the FSS behavior of any
quantity. For this purpose, the RG-invariant phenomenological
couplings turn out to be particularly useful. Indeed, along
the critical line βc(λ) or keeping another phenomenological
coupling constant, they behave as

R(L,λ) = R∗ + c(λ)L−ω + · · · , (14)

where c(λ) is a smooth function of λ. Therefore, the equation
c(λ∗) = 0 determines λ∗.

The best estimate of λ∗ for N = 2 is λ∗ = 2.15(5) obtained
in Ref. 3. In the case of N = 3, 4, the MC simulations
performed for this numerical work lead to a revision of the
earlier estimates of λ∗, see Appendix B for details. We obtain
λ∗ = 5.2(4) for N = 3 and λ∗ = 20+15

−6 for N = 4, which
update earlier estimates, respectively, λ∗ = 4.6(4) of Ref. 6
and λ∗ = 12.5(4.0) of Ref. 8.

B. Anisotropy estimators

In order to compute the spin-l RG dimensions Yl , we
consider appropriate anisotropy correlators. We use the mag-
netization Ma = ∑

x φa
x and the normalized magnetization ma

defined as

ma ≡ Ma

|M| (15)

to construct objects with given spin properties, such as Qab
2 (m),

Qabc
3 (m), and Qabcd

4 (m), obtained by replacing �a with ma in
the expressions of Ql [cf. Eqs. (5)–(7)]. Then we consider the
correlators

C2 =
∑
ab

〈 ∑
x

Qab
2 (φx)Qab

2 (m)

〉
, (16)

C3 =
∑
abc

〈 ∑
x

Qabc
3 (φx)Qabc

3 (m)

〉
, (17)

C4 =
∑
abcd

〈 ∑
x

Qabcd
4 (φx)Qabcd

4 (m)

〉
, (18)

where Ql(φx) are the operators (5)–(7) constructed using the
lattice variable φa

x . Note that they can be rewritten in term of
the angle αx defined as φx · m = |φx |cos αx , as

C2 =
〈∑

x

|φx |2
(

cos2 αx − 1

N

)〉
,

C3 =
〈∑

x

|φx |3
(

cos3 αx − 3

N + 2
cos αx

)〉
,

C4 =
〈 ∑

x

|φx |4
[

cos4 αx − 6

N + 4
cos2 αx

+ 3

(N + 2)(N + 4)

]〉
.

This expression of C4 shows that it is equal to the improved
quantity considered in Ref. 24 to compute the RG dimension of
the cubic-symmetric perturbation, apart from a constant factor.
The asymptotic power-law FSS behavior of Cl at Tc, that is,

Cl ∼ LYl , (19)

allows us to estimate the RG dimension Yl of the anisotropy
associated with Ql . Alternative estimators analogous to Cl are
also

Dl =
∑
ab...

〈∑
x Qab···

l (φx)Qab···
l (M)

〉
〈M2〉l/2

, Dl ∼ LYl . (20)

Note that 〈Qab···
l (m)〉 and 〈Qab···

l (M)〉/〈M2〉l/2 are by con-
struction RG-invariant quantities (with special symmetry
properties). Their derivatives with respect to hp [cf. Eq. (1)]
provide the correlators Cl and Dl . We also consider the
corresponding quantities C̄l and D̄l at a fixed value of ξ/L.

III. FSS ANALYSES OF THE ANISOTROPY
CORRELATORS

In this section we present FSS analyses of high-statistics
MC simulations for the O(2), O(3), and O(4) φ4 lattice
models (10) for values of the parameter λ close to λ∗
providing the suppression of the leading scaling correction.
Appendix A 1 presents some details of the MC algorithm
used in the simulations; Appendix A 2 reports the values of
the parameters considered in our MC simulations, the lattice
sizes, and the statistics; finally in Appendix A 3 we discuss the
behavior of the variance of the observables considered, which
influenced the strategy of our FSS analyses of MC simulations.

Most simulations were performed for the O(3) case, where
the spin-4 RG dimension Y4 is close to zero, and therefore
high accuracy is needed to determine its sign. This task is
made particularly hard by the rapid increase of the cost to
get accurate data for C4 and D4 with increasing the lattice
size, essentially due to a significant increase of their variance
(see the discussion in Appendix A 3). As a consequence, our
FSS analyses to determine Y4 are limited to relatively small
lattice sizes. On the other hand, the systematic error due to the
necessary truncation of the Wegner expansion22 [see Eq. (21)
below] of the quantities considered turns out to be significant,
and its reduction requires accurate results for large lattice sizes.
This represents the major limitation for the accuracy of our
numerical determination of Y4.

Appendix B reports further FSS analyses of the MC
simulations which allow us to update some of the results
concerning the O(N ) vector models, such as the estimates
of λ∗, of the critical exponents and other universal quantities.

A. General strategy of the FSS analysis

In order to obtain accurate estimates of the universal
quantities, such as the critical exponents and RG dimensions
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Yl , it is important to have a robust control of the corrections to
the asymptotic behaviors, which are suppressed by powers of
the lattice size L. The behavior of general quantities introduced
to estimate critical exponents, such as Cl and Dl defined in the
previous section, can be expressed by an asymptotic Wegner
expansion22 as

A(λ; L) = c(λ)Ly

[
1 + a(λ)L−ω +

∑
i=2

ai(λ)L−ωi

]
, (21)

where y is the leading universal exponent that one wants
to accurately estimate. In the case of O(2), O(3), and O(4)
vector models the leading scaling correction exponent is given
by ω ≈ 0.8 (see Table I). Numerical approaches based on
improved Hamiltonians allow us to suppress these leading
scaling corrections, and also those related to nω, where
n = 2, 3, 4, . . . , whose coefficients behave as (λ − λ∗)n. The
next-to-leading correction is controlled by the exponent ω2,
estimated in Ref. 5 by ω2 ≈ 1.8 (see Table I). Then there are
well established corrections with ωi ≈ 2, for example related
to the breaking of spatial rotational invariance in cubic lattice
systems,31 but also to analytic backgrounds, etc. Moreover,
in the case of the spin-l anisotropy correlators, we may
also have scaling corrections induced by higher-dimensional
spin-l operators, such as Pl+2,l [cf. Eq. (3)]. On the basis
of a dimensional analysis around four dimensions, they are
expected to give rise to scaling corrections suppressed by
powers κl = 2 + O(ε), as also shown by the O(ε) calculation
of the difference of the RG dimensions of the anisotropy
operators Pl+2,l and Pl,l , which is (We note that within ε

expansion the operator Pl+2,l mixes with other spin-l operators
containing derivatives (two derivatives instead of �2), but this
mixing contributes to O(ε2).)

Yl+2,l − Yl,l = −2 − ε6(l − 1)/(N + 8) + O(ε2). (22)

In known cases for the spin-0,1,2 sectors, the difference be-
tween RG dimensions of the same sector remains close to their
four-dimensional values. Therefore, as a prudential procedure,
after curing the residual O(L−ω) scaling corrections, see also
below, we must consider possible O(L−κ ) scaling corrections
with κ � 1.6.

1. Residual leading scaling corrections in approximately
improved Hamiltonians

Residual leading scaling corrections are generally present
due to the fact that λ∗ is only known approximately, and
also because the MC simulations are usually performed close
but not exactly at the best estimate of λ∗, which is usually
determined at the end of the MC simulations. For example, in
the case N = 3 our best estimate is λ∗ = 5.2(4), while most
MC simulations were performed at λ = 4.5, and others at
λ = 4 and λ = 5 for smaller lattices to determine λ∗.

The residual O(L−ω) corrections, due to the fact that λ is
close but does not coincide with its optimal value λ∗, can be
further suppressed as follows. The basic idea is that leading
corrections to scaling can be best detected by analyzing the
Binder cumulant Ū4 at a fixed value of ξ/L. At a generic
λ = λ0 we have

Ū4(λ0; L) = Ū ∗
4 + aU (λ0)L−ω + · · · , (23)

where Ū ∗
4 is the universal large-volume limit on a periodic L3

box at fixed ξ/L, which of course depends on which value of
ξ/L is chosen. Then, we consider a pair λ1, λ2, where one of
the two values may be equal to λ0, and the differences

�U (λ1,λ2; L) = Ū4(λ2; L) − Ū4(λ1; L), (24)

where the leading large-volume contributions cancel, thus they
behave as

�U (λ1,λ2; L) = bU (λ1,λ2)L−ω + · · · . (25)

The amplitude bU (λ1,λ2) = aU (λ2) − aU (λ1) can be estimated
by fitting the data to (25). Finally, we take ratios

rA(λ1,λ2; L) = A(λ2; L)

A(λ1; L)
(26)

of the quantity A that we intend to correct to eliminate the
residual O(L−ω) corrections. Their data can be fitted to its
large-L behavior

rA(λ1,λ2; L) = c(λ2)

c(λ1)
[1 + b(λ1,λ2)L−ω], (27)

where b(λ1,λ2) = a(λ2) − a(λ1) and a(λ) is the amplitude
of the O(L−ω) corrections [cf. Eq. (21)]. Notice that it is
simpler to extract b(λ1,λ2) than a(λ) from the numerical data
because, beside the cancellation of the power divergence Ly ,
also subleading corrections cancel to a large extent. Now we
use the universality of ratios of correction amplitudes, which
implies

a(λ0)

aU (λ0)
= b(λ1,λ2)

bU (λ1,λ2)
. (28)

In order to eliminate the leading O(L−ω) corrections from A,
we construct

IA(λ0; L) = A(λ0; L)

[
1 − b(λ1,λ2)

bU (λ1,λ2)
aU (λ0)L−ω

]
. (29)

This procedure eliminates the leading O(L−ω) scaling cor-
rections, allowing us to neglect them in the fits of the
data of IA(λ0; L) to estimate the leading exponent y. (The
coefficient c ≡ aU (λ0)b(λ1,λ2)/bU (λ1,λ2) is numerically de-
termined with an error �c, which is usually dominated by the
uncertainty on aU (λ0). This error can be taken into account
by computing IA(λ0; L) using c and c ± �c. The difference
between the results of their fits is essentially related to the
error due to the uncertainty of our estimate for λ∗, since also
the uncertainty of the estimate of λ∗ is mainly caused by the
error of aU (λ0) (see also Appendix B 2).)

We also mention that alternative procedures, based on the
idea of defining improved observables with suppressed leading
scaling corrections, are outlined in Refs. 3 and 32.

2. Next-to-leading corrections

Next-to-leading corrections arise from the term associated
with ω2 ≈ 1.8, and the others with exponents close to two.
In the fits of the data, even with high statistics data as we
have here, only a very limited number of correction terms
can be taken into account. The truncation of Eq. (21) leads to
systematic errors in the results for the exponent y.
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One way to control these systematic errors is to study
several quantities A(n) that have the same critical behavior:

A(n)(L) = cnL
y

(
1 +

∑
i

aniL
−ωi

)
. (30)

In general one might expect that for different A(n) the
coefficients ani are different. Therefore the variation of the
estimate for y obtained by fitting several A(n) provides an
estimate of the systematic error. However, in our case we have
only the two quantities Cl and Dl , which are closely related.
Therefore we would like to estimate the systematic error by
fitting a single quantity. To this end we consider the ansatz

A(L) = cLy(1 + aL−ω + a2,effL
−ω2,eff ) (31)

(for improved models a = 0) with

ω2,eff � 1.6. (32)

Barring an unlike significant cancellation between different
correction terms, there must be a value of ω2,eff > 1.6 such
that y takes its correct value. Since we expect that as long as
correction are small the resulting y is a monotonic function of
ω2,eff , we use the results obtained for ω2,eff = 1.6 and ω2,eff =
∞ (i.e., without the term c2,effL

−ω2,eff ) as bounds for the correct
result for y.

B. Results for the spin-l RG dimensions

1. The O(3) model

To begin with we present the FSS analysis of the data for
the O(3) model. In order to give an idea of the quality of our
data, we show the data of Cl at βc and λ = 4.5 in Figs. 1
and 2. In all cases, including C4, the data clearly increase with
increasing L, indicating the relevance of the perturbation. Note
that the error of C4 is rapidly increasing with increasing L (see
Appendix A 3 for details).

We analyze various quantities to estimate the RG di-
mensions Yl : the original quantities Cl and Dl introduced
in Sec. II B, their counterpart C̄l and D̄l computed at the

1 2 3 4 5 6
ln L

0

2

4

6

8

10 lnC
2

lnC
3

FIG. 1. (Color online) Log-log plots of C2 and C3 vs L at βc

for the O(3) φ4 model at λ = 4.5. The errors of the data are hardly
visible.

2 3 4
ln L

−1.28

−1.26

−1.24

lnC
4

FIG. 2. (Color online) Log-log plots of C4 vs L at βc for the O(3)
φ4 model at λ = 4.5.

fixed value ξ/L = 0.5644 (which is a good estimate of the
large-volume limit of ξ/L at βc, see Appendix B), and also
the quantities Cl,imp = Ū x

4 C̄l and Dl,imp = Ū x
4 D̄l again taken

at ξ/L = 0.5644 where the exponent x is chosen to further
suppress the leading corrections (see Refs. 3 and 32 for details).
In principle, the latter quantities should be more suitable for the
numerical analysis. Indeed, by fixing ξ/L = 0.5644 we avoid
the error due to the uncertainty of βc, and by the construction
of the improved observables the effect of the uncertainty of
λ∗ is strongly reduced. However also subleading corrections
vary, and, unfortunately, they become numerically larger in
these cases. Nethertheless it is useful to study these quantities.
Since the amplitudes of corrections change, these modified
quantities give us additional control over the systematic error
that is caused by truncated ansaetze.

Let us now discuss the analysis of the quantities Dl in some
detail. In the case of the quantities Cl we proceed in a similar
way. Following the discussion of Sec. III A 1 we first analyze
the ratios

rDl
= Dl(λ = 5,β = 0.687564)

Dl(λ = 4,β = 0.68439)
, (33)

where β = 0.687564 and β = 0.68439 are the estimates for
βc given in Table V of Ref. 6 and

rD̄l
= D̄l(λ = 5)

D̄l(λ = 4)
. (34)

We fit these ratios to the ansatz

r = c(1 + bL−ω), (35)

where we set ω = 0.79. To give an idea how accurately the
coefficient b can be determined, let us discuss a few examples.
In the case of D2 a fit of all data with L � Lmin with Lmin = 6
gives the result b = −0.00841(38) and χ2/DOF = 3.80/9.
Increasing Lmin the estimate of b changes very little, for
example, for Lmin = 8 we obtain b = −0.00830(64) and
χ2/DOF = 3.58/7. In the following analysis we shall assume
b = −0.0083(7). In the case of D̄2 we obtain for Lmin = 7
the result b = 0.00348(24) and χ2/DOF = 8.48/8 and for
Lmin = 9 the results b = 0.00407(41) and χ2/DOF = 2.34/6.
In the following analysis we shall assume b = 0.004(1). It
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is interesting to observe that by taking D2 at ξ/L = 0.5644
instead of βc even the sign of the correction amplitude changes.
For D4 we obtain b = 0.0313(45) and χ2/DOF = 7.49/8
using Lmin = 7. The result changes little when we increase
Lmin. For example, we get b = 0.0303(93) and χ2/DOF =
7.42/6 for Lmin = 9. In the following we shall assume b =
0.03(1). For D̄4 we get instead b = 0.05(1). Note that also the
correction amplitudes of D4 and D̄4 are different.

In order to compute the quantities IDl
and ID̄l

, defined as in
Eq. (29) to suppress the residual leading scaling corrections,
we use bU (5,4) = −0.01126(4) and aU (4.5) = 0.007(4) as
obtained in Appendix B 2. In the product Ū x

4 D̄l the choice
x = −Ū ∗

4 b/bU eliminates leading corrections to scaling. The
advantage of this quantity is that it does not require aU , which
is affected by a relatively large error.

Next we have fitted the resulting quantities with the ansaetze

IDl
(λ0; L) ≡ Dl(λ0; L)

[
1 − bl(λ1,λ2)

bU (λ1,λ2)
aU (λ0)L−ω

]
= aLYl

(36)

and

IDl
= aLYl (1 + dL−1.6) (37)

and correspondingly for the quantities ID̄l
and Ū x

4 D̄l . The
effect of the uncertainties of βc, and the quantities aU , bU , bl

need to construct IDl
, ID̄l

, and Ū x
4 D̄l , are estimated by varying

these input parameters. For example, in order to estimate the
uncertainty of ID̄l

induced by the uncertainty of aU , we have
repeated the fits using data where we have used in Eq. (29) the
central value of aU plus its error instead of the central value.

In Table III we report results of fits for ID2 , ID̄2
, and Ū x

4 D̄2.
We note that the estimates of Y2 obtained by the two fits
and the three quantities differ by larger amounts than their
statistical errors. Hence systematic errors are more important
than the statistical one. Taking into account also the results
obtained for C4 and the quantities derived from it we arrive
at our final estimate Y2 = 1.7906(3) which covers most of the
acceptable fits and also takes into account the uncertainties
in the construction of ID2 , ID̄2

, and Ū x
4 D̄2. In a similar way

we arrive at the estimate Y3 = 0.9616(10) of the spin-3 RG
dimension.

Finally, let us discuss the analysis leading to our estimate
of Y4. In Table IV we give some results of the fits with
the ansaetze (36) and (37). As our final result we quote
Y4 = 0.013(4) which covers all estimates given in Table IV.
The uncertainties in the construction of ID4 , ID̄4

, and Ū x
4 D̄4

are taken into account. Furthermore, this estimate is fully
consistent with the results obtained from the analysis of IC4 ,
IC̄4

, and Ū x
4 C̄4.

TABLE III. Fits of ID2 (columns 2 and 3), ID̄2 (columns 4 and 5),
and Ū x

4 D̄2 (columns 6 and 7) with the ansaetze (36) and (37). We give
the Lmin of the fit, which is typically the smallest Lmin that produces
an acceptable fit and the result for Y2.

Ansatz Lmin Y2 Lmin Y2 Lmin Y2

(36) 24 1.79067(5) 28 1.79078(3) 32 1.79080(5)
(37) 12 1.79019(7) 8 1.79053(2) 8 1.79049(2)

TABLE IV. Fits of ID4 (columns 2 and 3), ID̄4 (columns 4 and 5),
and Ū x

4 D̄4 (columns 6 and 7) with the ansaetze (36) and (37). We give
the Lmin of the fit, which is typically the smallest Lmin that produces
an acceptable fit and the result for Y4.

Ansatz Lmin Y4 Lmin Y4 Lmin Y4

(36) 14 0.0143(8) 14 0.0142(8) 16 0.0160(10)
(37) 12 0.0122(26) 12 0.0127(25) 12 0.0122(26)

We conclude with a few remarks on the possibility of further
improving the estimate of Y4. Its accuracy is essentially limited
by the fact that the variances of the correlators C4 and D4

rapidly increase with increasing lattice size, not allowing us
to get accurate results for large lattices, indeed extremely high
statistics are necessary for L � 32 already. Thus, the reduction
of the systematic error due to the truncation of the Wegner
expansion appears quite problematic because it can only get
reduced by accurate results for larger lattice sizes. One purely
technical way in this direction could be the simulation with
local algorithms (Metropolis + many overrelaxation sweeps)
on GPUs (graphics cards).

2. The O(2) and O(4) models

In the cases of the XY and O(4) universality classes we
have determined the exponents along similar lines, obtaining
the results reported in Table II. We only mention that, since in
the case of the XY universality class, λ∗ and βc at λ = 2.1 are
accurately known,3 we abstained from analyzing the quantities
Ū x

4 C̄l and Ū x
4 D̄l . In the case of the O(4) universality class

the situation is different; here we do not have a very precise
estimate of λ∗ and also βc is only moderately well known
at λ = 12.5, where most of our simulations are performed.
Therefore we have based our analysis on C̄l and D̄l and the
improved quantities Ū x

4 C̄l and Ū x
4 D̄l , where the quantities are

taken at ξ/L = 0.547.

IV. CONCLUSIONS AND DISCUSSION OF SOME
APPLICATIONS

In this paper we study the effects of anisotropic pertur-
bations in three-dimensional O(N )-symmetric vector models,
which cannot be related to an external vector field coupled
to the order parameter, but are represented by composite
operators with more complex transformation properties under
the O(N ) group. For the models with N = 2, 3, 4, we deter-
mine the RG dimensions Yl of the anisotropic perturbations
associated with the first few spin values of the representations
of the O(N ) group because the lowest spin values give rise
to the most important effects. This is the first numerical
study based on MC simulations for the spin-2 and spin-3
perturbations, while MC results for spin-4 operators were
already reported in Ref. 24.

We present FSS analyses of MC simulations of improved
Hamiltonians with suppressed leading corrections to scaling,
which allows us to achieve a robust control of the systematic
errors arising from scaling corrections. Our results are reported
in Table II, together with earlier results by various approaches.
They are in good agreement with the estimates obtained by
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field-theoretical methods, by resumming high-order pertur-
bative series. Our results show that spin-4 perturbations in
three-dimensional Heisenberg systems are relevant, with a
quite small RG dimension Y4 = 0.013(4), which may give rise
to very slow crossover effects in systems with small spin-4
anisotropy.

In the following we discuss a number of physical systems
where the results of this paper for the anisotropic perturbations
can be used to infer the critical behavior of some physically
interesting quantities.

A. Critical exponents of secondary order parameters

Beside the standard critical exponents associated with the
order parameter, density wave XY systems allow to measure
the higher-harmonic critical exponents related to secondary
order parameters, which can be theoretically represented by
polynomials of the order parameter with spin representation
higher than one, such as the spin-l operators Ql(φx) [cf.
Eqs. (5)–(7)].

The behavior at zero-momentum of the correlation func-
tions involving the operators Ql(φx) can be described by
introducing an appropriate external field hl coupled with
Ql(φx), and writing the singular part of the free energy as
in Eq. (1). Then, differentiating with respect to hl , we obtain
the behavior of the secondary magnetizations in the broken
phase,

〈Ql(φx)〉 ∼ |t |βl , βl = ν(d − Yl). (38)

Our estimates of the RG dimensions Yl for the XY universality
class Y2 = 1.7639(11), Y3 = 0.8915(20), and Y4 = −0.108(6)
give

β2 = 0.8303(8), β3 = 1.4163(13), β4 = 2.09(4). (39)

Moreover, the nonanalytic scaling behaviors of spin-l suscep-
tibilities are

χl ≡
∑

x

〈Ql(φ0)Ql(φx)〉 ∼ |t |−γl , γl = ν(2Yl − d),

(40)

with

γ2 = 0.3545(15), γ3 = −0.817(3), γ4 = −2.160(8).

(41)

Note that the power law |t |−γl in the susceptibility χl

represents the leading term only if γl > 0, otherwise the
nonuniversal analytic contributions provide the dominant
behavior (see, e.g., Ref. 33). We also mention that the struc-
ture factor, obtained by Fourier transforming the correlation
function Gl(x − y) = 〈Ql(φx)Ql(φy)〉, is expected to behave
as G̃l(q) ∼ |t |−γl fl(qξ ), where fl is a universal function (see
Ref. 33 and references therein).

Discussions of the experimental systems and results for the
higher-harmonic exponents can be found in Refs. 2, 25, and 33.
The experimental estimates are in substantial agreement with
the theoretical results. Here we only mention a few of them.
Analyses15,16,34 of the experimental data near the smectic-C-
tilted-hexatic-I transition provided estimates of the crossover
exponent φl = Ylν. By replacing ν = 0.6717, they give

Y2 = 1.7(1) and Y3 = 0.6(3). In Ref. 20 the estimates β2 =
0.87(1) and β3 = 1.50(4) were obtained for Rb2ZnCl4.

B. Magnets with cubic symmetry

The magnetic interactions in crystalline solids with cubic
symmetry, like iron or nickel, are usually modeled by using
the O(3)-symmetric Heisenberg Hamiltonian with short-range
spin interactions, such as

Hspin = −J
∑
〈ij〉

Si · Sj , (42)

where S2 = 1 and the sum is over nearest neighbors. However,
this is a simplified model, since other interactions are present.
Among them, the magnetic anisotropy that is induced by
the lattice structure (the so-called crystal field) is particularly
relevant experimentally (see, e.g., Ref. 35). In cubic-symmetric
lattices it gives rise to additional single-ion contributions, the
simplest one being ∑

i

∑
a

Sa 4
i . (43)

These terms are usually not considered when the critical
behavior of cubic magnets is discussed. However, this is
strictly justified only if these nonrotationally invariant in-
teractions, that have the reduced symmetry of the lattice,
are irrelevant in the RG sense. The corresponding cubic-
symmetric perturbation

∑
a �a 4 to the O(N ) theory is a

particular combination of spin-4 operators P abcd
4,4 and of the

spin-0 term P4,0,

∑
a

�a 4 =
N∑

a=1

P aaaa
4,4 (�) + 3

N + 2
P4,0(�). (44)

Since P4,0 is always irrelevant, the relevance of the cubic-
symmetric anisotropy is related to the value of the spin-4 RG
dimension Y4, and in particular to its sign. Our results, and
in particular Y4 = 0.013(4) for the O(3) universality class,
show that the cubic perturbation is relevant at the three-
dimensional O(N ) fixed point when N � 3, confirming earlier
FT results.26,36–38 This implies that for N � 3 the asymptotic
critical behavior is described by another cubic-symmetric
fixed point, see, for example, Ref. 2 for a general discussion
of the RG flow in the �4 theories with cubic-symmetric
anisotropy. However, differences between the Heisenberg and
cubic critical exponents are very small,11 for example ν

differs by less than 0.1%, which is much smaller than the
typical experimental error for Heisenberg systems.2 Therefore,
distinguishing the cubic and the Heisenberg universality class
is very hard in experiments.

C. Multicritical phenomena in O(n1)⊕O(n2)-symmetric systems

The competition of distinct types of ordering gives rise to
multicritical behaviors. The multicritical behavior arising from
the competition of two types of ordering characterized by O(n)
symmetries is determined by the RG flow of the most general
O(n1)⊕O(n2)-symmetric LGW Hamiltonian involving two
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fields φ1 and φ2 with n1 and n2 components respectively, that
is,13

Hmc =
∫

ddx

[
1

2
(∂μφ1)2 + 1

2
(∂μφ2)2 + 1

2
r1φ

2
1 + 1

2
r2φ

2
2

+u1
(
φ2

1

)2 + u2
(
φ2

2

)2 + wφ2
1φ

2
2

]
. (45)

A multicritical point (MCP) is achieved when r1 and r2 are
tuned to their critical value, and the corresponding multicritical
behavior is determined by the stable FP of the RG flow of the
quartic parameters. It may occur at the intersection of two
critical lines characterized by different O(n1) and O(n2) order
parameters.

An interesting possibility is that the stable FP has O(n1 +
n2) symmetry, so that the symmetry gets effectively en-
larged approaching the MCP. The stability properties of the
O(n1 + n2) symmetric FP can be inferred by noting11 that
the Hamiltonian (45) contains combinations of spin-2 and
spin-4 polynomial operators with respect to the O(n1 + n2)
group, which are invariant under the symmetry O(n1)⊕O(n2).
Defining � as the (n1 + n2)-component field (φ1,φ2), they are
given by the spin-0 operators �2 and (�2)2, by the spin-2
operators

O2,2 =
n1∑

a=1

P aa
2,2 = φ2

1 − n1

n1 + n2
�2, O4,2 = �2O2,2,

(46)

and by the spin-4 operator

O4,4 =
n1∑

a=1

n2∑
b=n1+1

P aabb
4,4 = φ2

1φ
2
2 − �2

(
n1φ

2
2 + n2φ

2
1

)
n1 + n2 + 4

+ n1n2(�2)2

(n1 + n2 + 2)(n1 + n2 + 4)
. (47)

The O(n1 + n2) FP controls the multicritical behavior if it is
stable against the fourth-order perturbations, and, in particular,
the dominating spin-4 perturbation O4,4 (the perturbation O4,2

is expected to be irrelevant after the subtraction of its lower-
dimension spin-2 content11).

Our FSS MC results for the spin-4 RG dimensions Y4 (see
Table II), and, in particular, that for the O(3) universality
class, provide a conclusive evidence that Y4 > 0 for n1 + n2 �
3, confirming earlier indications from FT computations.11

Therefore the enlargement of the symmetry O(n1)⊕O(n2) to
O(n1 + n2) does not occur unless an additional parameter is
tuned beside those associated with the quadratic perturbations.
We may only observe an enlargement of the symmetry to O(2)
when two Ising lines meet. In this case the RG dimension Y2

of the spin-2 operator O2,2 provides the crossover exponent
φ = νY2 = 1.1848(8) at the MCP.

These results can be applied to the study of the phase
diagram of anisotropic antiferromagnets in a uniform magnetic
field H‖ parallel to the anisotropy axis, which present a
MCP in the T − H‖ phase diagram, where two critical lines
belonging to the XY and Ising universality classes meet.13,14

Experimental realizations of these systems are reported in
Refs. 39–41, which typically show phase diagrams with a
bicritical MCP. The initial hypothesis of an enlarged O(3)

symmetry at the MCP, on the basis of low-order FT
calculations,14 was then questioned by high-order FT
computations11 (see also Ref. 42), indicating a very weak
instability of the O(3) FP. This instability was then questioned
by the numerical MC study of Ref. 43, where evidence of a
O(3)-symmetric bicritical point is claimed in the phase dia-
gram of the so-called XXZ model, which models anisotropic
antiferromagnets in an external field, showing a MCP where an
XY and an Ising transition line meet. Actually, this result was
one of the major motivations of this numerical work to further
check the relevance of the spin-4 perturbation at the O(3) FP,
because an asymptotic O(3) multicritical behavior requires
Y4 < 0. Our MC results fully confirm earlier high-order FT
results, that is, the relevance of the spin-4 O(3)-breaking term
which are generally present in these models. This implies that a
bicritical point in the Heisenberg universality class is excluded,
unless one achieves a complete cancellation of the spin-4 term
by an appropriate fine tuning.

As inferred by FT calculations, the actual stable FP has a
biconical structure.11 A quantitative analysis of the biconical
FP shows that its critical exponents are very close to the
Heisenberg ones. For instance, the correlation-length exponent
ν differs by less than 0.001 in the two cases. Thus, it should
be very hard to distinguish the biconical from the O(3) critical
behavior in experiments or numerical works based on Monte
Carlo simulations.

The crossover exponent describing the crossover from
the unstable O(3) critical behavior is very small, that is,
φ4 = νY4 = 0.009(3), so that systems with a small effective
breaking of the O(3) symmetry show a very slow crossover
toward the biconical critical behavior or, if the system is
outside the attraction domain of the biconical FP, toward
a first-order transition. Thus, they may show the eventual
asymptotic behavior only for very small values of the reduced
temperature. Likely, the numerical analysis of Ref. 43 was just
observing crossover effects.
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APPENDIX A: MONTE CARLO SIMULATIONS

1. Monte Carlo algorithm

For our Monte Carlo simulations we have used a hybrid of
the local Metropolis, the local overrelaxation and the single
cluster44 algorithm. The proposals for the local Metropolis
update are given by

φ′
x = φx + srx, (A1)

where s controls the step size and the components of the
random vector rx are uniformly distributed in the interval
[−0.5,0.5]. This proposal is accepted with the standard
acceptance probability

Pacc = min[1, exp(−�H)]. (A2)
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The step size s is chosen such that the acceptance rate is
roughly 50%. In the case of the local overrelaxation update,
the new value of the field is given by

φ′
x = 2

φx · �x

(�x)2
�x − φx, (A3)

where �x = ∑
y.nn.x φy is the sum over all fields that live

on sites y that are nearest neighbors of x. In the case of
the local updates we run through the lattice in typewriter
fashion. Going through the lattice once is called one sweep.
We use the following cycle of updates: One Metropolis sweep,
one overrelaxation sweep, L/2 single cluster updates, two
overrelaxation sweeps, and finally L/2 single cluster updates.
In this cycle we compute the observables after L/2 single
cluster updates, that is, twice.

The average size of a cluster is proportional to the magnetic
susceptibility that grows like L2−η. Therefore, with our choice
of L/2 single cluster updates per cycle, the fraction of sites
that is updated by the cluster algorithm in one cycle of
the algorithm stays roughly constant. We also note that the
overrelaxation update takes very little CPU time compared
with the Metropolis update. For L = 32 and N = 3 the CPU
time needed for one overrelaxation sweep, one Metropolis
sweep, and L/2 single cluster updates roughly behave as
1 : 4 : 3.

In all our simulations we have used the SIMD-oriented
fast Mersenne twister algorithm45 as pseudo-random number
generator.

2. Statistics of the simulation

In the case of the XY universality class, we performed
most of our simulations at λ = 2.1 and β = 0.5091503.
We simulated the lattice sizes L = 6, 7, 8, . . . ,18 and
20, 22, 24, 26, 28. Throughout we performed 109 measure-
ments. In total these simulations took about 7 months of
CPU time on a single core of a Quad-Core AMD Opteron
Processor 2378 running at 2.4 GHz. In addition we performed
simulations at λ = 2.2 and β = 0.508336 where we simulated
the lattice sizes L = 6, 7, 8, . . . ,12. The results for λ = 2.2
are used to estimate the effect of the uncertainty of λ∗. Note
that λ∗ = 2.15(5).3 The values of β chosen for the simulations
at λ = 2.1 and 2.2 are the estimates of βc given in Table II of
Ref. 3.

In the O(3) case we performed most simulations for
λ = 4.5 which is close to our old estimate λ∗ = 4.6(4).6 We
simulated at β = 0.686238 which is close to the estimate βc =
0.6862385(20).6 For the lattice sizes L = 6, 7, 8, 9, . . . ,16
we performed 109 measurements, for L = 17, 18, . . . ,32
between 1.1 × 109 and 1.2 × 109 measurements and 5 × 108,
2.5 × 108, and 106 measurements for L = 48, 64, and 256,
respectively. In total these simulations took about 4 years of
CPU time on a single core of a Quad-Core AMD Opteron
Processor 2378 running at 2.4 GHz. In addition, we per-
formed MC simulations at λ = 4.0, β = 0.68439 and λ = 5.0,
β = 0.687564 on lattices of the size L = 6, 7, 8, . . . ,16.
Throughout we performed 109 measurements. These results
are used to determine our new estimate of λ∗ and the effect of
the uncertainty of λ∗ on our estimates of the RG exponents.

In the O(4) case most of our simulations were done for
λ = 12.5 and β = 0.9095167. For L = 6, 7, 8, . . . ,18 and
20, 22, 24, 26, 28 we performed 109 measurements and for
L = 40 we performed 6.5 × 108 measurements. For L =
256 we performed 106 measurements and simulated at β =
0.909513, which was our preliminary value of βc. This simu-
lation was done to get a better estimate of βc. In this simulation
we did not measure the quantities Cl and Dl . The estimate β =
0.9095167 used above was obtained by requiring that ξ/L =
0.547 which is the result for the large volume limit (ξ/L)∗ of
Ref. 8. In addition, in order to determine λ∗ and the effect of the
uncertainty of λ∗ on the accuracy of our estimates of the RG
exponents, we have simulated at λ = 14 the lattice sizes L =
6, 7, 8, . . . ,12; λ = 18 the lattice sizes L = 6, 7, 8, . . . ,12;
λ = 22 the lattice sizes L = 6, 7, 8, . . . ,16, 18, 20; λ = 30
and 32 the lattice size L = 6; and for λ = ∞ the lattice sizes
L = 6, 7, 8, . . . ,12, 16, 24, 32. Throughout the statistics is
109 measurements.

Our MC simulations were essentially designed to achieve
accurate results for the spin-4 RG dimension Y4, whose
estimate is much harder than Y2 and Y3, and it is essentially

obtained from the high-statistics data for L<≈ 30 (see the
discussion of Appendix A 3). In the case of the O(3) and O(4)
models the simulations for larger lattices, beside contributing
to make the estimates of Y2 and Y3 more accurate, allows
us to improve the estimates of the critical parameters βc and
λ∗ (as explained in Appendix B). We did not perform MC
simulations for L > 28 in the case of the O(2) φ4 model
because the estimates of βc and λ∗ reported in Ref. 3 were
already satisfactory.

The CPU time used for the whole study amounts to roughly
7 years on a single core of a Quad-Core AMD Opteron
Processor 2378 running at 2.4 GHz.

3. Variance of the observables

The behavior of the variance of the quantities considered in
our MC simulations strongly affects the design of our study.
The main problem, as already observed in Ref. 24 is that the
relative statistical error, at a fixed number of updates, of C4

and D4 rapidly increases with the lattice size. Therefore we
have to focus on smaller lattice sizes than one would do in a
study mainly aiming at the exponents ν and η.

Let us discuss this problem in a bit more detail at the exam-
ple of the simulations for N = 3, λ = 4.5, and the quantities
Dl . Since we average over 10 000 measurements at simulation
time, we cannot disentangle integrated autocorrelation time
and variance of the quantities. Therefore in the following
we discuss the relative statistical error, normalized to 109

measurements. In the case of D4 this relative statistical error is
increasing from 0.000175 for L = 6 up to 0.051 for L = 256.
This increase is well described by a power law e ∝ Lx ,
with x ≈ 1.45. Also in the case of D3 the relative error is
increasing; 0.000064 for L = 6 up to 0.00022 for L = 256.
However here the increase is smaller; it is characterized by the
exponent x ≈ 0.3. Interestingly, for D2 we find that the relative
statistical error is even decreasing a bit; 0.000037 for L = 6
down to 0.00003 for L = 256. The corresponding exponent
is x ≈ −0.05. This behavior can be compared with that of
the relative error of the slope of the Binder cumulant or the
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second moment correlation length. These quantities are used
to determine the critical exponent ν. In both cases we find a
mild increase of the relative error, which is characterized by
the exponents x ≈ 0.06 and x ≈ 0.14, respectively.

As shown in Ref. 24, the problem of the large variance
of C4 can be reduced by performing a larger number of
overrelaxation updates which are relatively cheap in terms
of CPU time and measure C4 after each such update. This
way one could improve the efficiency in terms of 1/[(CPU
time)×error2] of C4 or D4 by about a factor of 2 compared
with the update cycle used in our simulations. However, since
this would have an adverse effect with respect to all other
quantities that we have measured we abstained from this.

For several observables, such as the susceptibility and the
quartic Binder cumulant, the statistical errors at fixed ξ/L are
smaller than those at fixed β close to βc. Some comparisons
are reported in Refs. 3 and 46. This is due to cross correlations
and to a reduction of the effective autocorrelation times. Taking
Cl or Dl at ξ/L fixed reduces the variance in a l-dependent
way. For the C4 and D4 cases there is virtually no reduction
of the error. For L = 6 there is still an improvement by a few
percent, however with increasing L the ratio of errors goes
rapidly to 1. In the l = 3 case we observe a mild improvement
by fixing ξ/L. For C3 the ratio of statistical errors is 1.9 for
L = 6, 1.10 for L = 64, and 1.017 for L = 256. In the case
of D3, the ratio of statistical errors is 1.33 for L = 6, 1.06 for
L = 64, and 1.014 for L = 256. The reduction of the statistical
error is most significant in the l = 2 case. For C2 the ratio of
the statistical errors is 3.49 for L = 6, it decreases to 2.65 at
L = 27, and then increases again; 2.69 at L = 64 and 2.88 for
L = 256. For D2 the ratio of the statistical errors is 2.21 for
L = 6, has its minimum 1.91 at L = 23, takes 2.02 for L = 64
and 2.20 for L = 256.

APPENDIX B: SOME FURTHER RESULTS FOR THE O(N)
VECTOR MODELS, N = 3 AND 4

1. New estimate for βc

In order to determine βc of the O(3) φ4 model at λ = 4.5,
we fit the data for ξ/L and U4 to the ansaetze

R(L,βc) = R∗, (B1)

R(L,βc) = R∗ + aL−0.79, (B2)

and

R(L,βc) = R∗ + aL−0.79 + bL−ε, (B3)

where either ε = 1.6 or ε = 2. Here we take 0.79 as value of
the correction exponent ω. By replacing it with 0.77 say, our
results for βc and R∗ change only very little. In this study, we
only calculate first derivatives of the quantities; therefore in
the fits we use the approximation

R(L,β) ≈ R(L,βs) + a(β − βs), (B4)

where βs is the value of the inverse temperature used for the
simulation. Since βs is very close to our final result for βc, the
error due to the truncation of the Taylor-series can be ignored.

Let us first discuss the analysis of ξ/L. Taking no
corrections into account, that is, fitting with the ansatz (B1),
χ2/DOF remains unacceptably large until most of our lattice

sizes are discarded. Including L = 48, 64, and 256, we
obtain (ξ/L)∗ = 0.56421(5), βc − βs = −0.0000006(5), and
χ2/DOF = 1.72/1. Using the ansatz (B2), that is, adding a
correction term aL−0.79, we get a χ2/DOF smaller than 1
starting from Lmin = 12, where all lattice sizes L � Lmin are
taken into account. Discarding further data points χ2/DOF
is further decreasing and (ξ/L)∗ and βc − βs move mono-
tonically. For Lmin = 18 we find (ξ/L)∗ = 0.56405(5) and
βc − βs = −0.00000067(38). Adding a further correction,
we get acceptable values of χ2/DOF already for Lmin = 7.
But also here χ2/DOF still further decreases and (ξ2nd/L)∗
and βc − βs move monotonically with increasing Lmin. For
ε = 1.6 we obtain the results (ξ2nd/L)∗ = 0.56386(10) and
βc − βs = −0.00000119(48) for Lmin = 12. For ε = 2 and
Lmin = 12, we get the results (ξ2nd/L)∗ = 0.56391(8) and
βc − βs = −0.0000011(46). For the Binder cumulant similar
results can be found. We arrive at the final results βc(λ =
4.5) = 0.6862368(10) and

(ξ/L)∗ = 0.5639(2), U ∗
4 = 1.1394(3). (B5)

The error bars are chosen such that the results of the different
fits are covered.

A similar analysis for the O(4) symmetric φ4 model at λ =
12.5 leads to estimates U ∗

4 = 1.0942(3), ξ/L = 0.5471(3),
and βc = 0.909517(2).

2. Determination of λ∗

Next we determine the value of λ∗ where leading correc-
tions to scaling vanish. To this end we study

Ū4(L) = U4(L,βf ), (B6)

where βf is determined by the equation

ξ (L,βf )

L
= 0.5644, (B7)

where 0.5644 is the result for (ξ/L)∗ of Ref. 6. In order to
compute Ū4 we use the first order Taylor expansion (B4) of ξ/L

and U4 around the simulation point βs . For L = 12, λ = 4.5
we simulate at a number of different βs , to check whether this
approximation is sufficient for our purpose. In particular we
find that for λ = 4.5 the difference between βs = 0.686238
and βf is sufficiently small that contributions ∝(β − βs)2 can
be ignored. Due to scaling, we expect that this also holds for
all of the lattice sizes that we have simulated.

First we fit our data obtained at λ = 4.5 with a number of
different ansaetze

Ū4 = Ū ∗
4 + aL−0.79, (B8)

Ū4 = Ū ∗
4 + aL−0.79 + bL−ε1 , (B9)

and

Ū4 = Ū ∗
4 + aL−0.79 + bL−ε1 + cL−ε2 . (B10)

Also here we fix ω = 0.79; the final results change only little
when we replace it with ω = 0.77. In the case of the ansatz (B9)
we set ε1 = 1.6 or 2. Finally in ansatz (B10) we add two
terms with subleading corrections. We have fitted using various
choices for ε1 and ε2.

In our fits we take into account all lattices sizes L � Lmin.
In the case of the ansatz (B8) we get an acceptable χ2/DOF
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starting from Lmin = 22. From this fit we get a = 0.00254(31).
Further increasing Lmin, a is monotonically increasing; for
Lmin = 30 we obtain a = 0.0037(6).

Fitting with the ansatz (B9) and ε1 = 1.6 we obtain an
acceptable χ2/DOF already starting from Lmin = 6. We get
a = 0.01038(27) for the correction amplitude. Increasing
Lmin the correction amplitude remains stable. Using instead
ε1 = 2 we get an acceptable χ2/DOF starting from Lmin = 7.
The corresponding result for the correction amplitude is
a = 0.00586(20). Increasing Lmin, the value of a increases up
to a = 0.00676(33) for Lmin = 10. For Lmin = 11 and 12 we
get a very similar result. For Lmin = 12, χ2/DOF = 14.50/21
and 15.78/21 for ε = 2 and 1.6, respectively.

Finally we fit with the ansatz (B9) using (ε1,ε2) = (1.6,2),
(1.6,1.96), or (1.8,2). The results of such fits are all in
the interval 0.005 < a < 0.011. We conclude a = 0.007(4),
where the central value and the error bar are chosen such that
the results of the different fits are covered. Next we convert
this estimate of the correction amplitude at λ = 4.5 into a new
estimate of λ∗. In order to compute the derivative of a with
respect to λ, we study the differences

�Ū4(L) = Ū4(L,λ = 5) − Ū4(L,λ = 4). (B11)

In this difference Ū ∗
4 exactly cancels. Furthermore, subleading

corrections should cancel to a large extent. Therefore we fit
our data with the ansatz

�Ū4(L) = cL−ω. (B12)

Results of such fits with c and ω as free parameters are given in
Table V. Already starting from Lmin = 6 we get an acceptable
χ2/DOF. Furthermore, the value obtained for ω is fully
consistent with the field theoretic estimates ω = 0.782(13) and
ω = 0.794(18) obtained by the perturbative expansion in three
dimensions fixed and the ε expansion, respectively.4 The facts
that χ2/DOF is small and the result for ω is consistent with
the field-theoretical ones already confirms our assumption that
for the lattice sizes that we consider, �Ū4(L) is dominated by
the leading correction.

Fitting with ω = 0.79 fixed, to be consistent with the
analysis of Ū4 at λ = 4.5 above, we find c = −0.01126(4) and
χ2/DOF = 6.0/8 for Lmin = 8. The result for c changes little,
when Lmin is varied. In order to check how well the derivative
of a with respect to λ is approximated by the finite difference,
we also have fitted Ū4(L,λ = 5) − Ū4(L,λ = 4.5). Here we
find c = −0.00506(4) and χ2/DOF = 5.4/8 for Lmin = 8.
Also here, the result for c changes little, when Lmin is varied.

TABLE V. Fits with the ansatz (B12), O(3) universality class.

Lmin c ω χ 2/DOF

6 −0.0109(2) 0.775(9) 6.44/9
7 −0.0109(3) 0.777(12) 6.38/8
8 −0.0111(4) 0.784(16) 5.86/7

TABLE VI. Fits of �Ū4(L,22,12.5) with the ansatz (B12), O(4)
universality class.

Lmin c ω χ 2/DOF

6 −0.00776(14) 0.777(8) 6.77/11
7 −0.00764(18) 0.771(10) 5.81/10
8 −0.00753(22) 0.765(11) 5.15/9
9 −0.00741(28) 0.759(15) 4.64/8

Using these results we arrive at

λ∗ ≈ 4.5 − a(λ = 4.5)

(
∂a

∂λ

)−1

= 4.5 − 0.007(4)/[−2 × 0.00506(4)] ≈ 5.2(4). (B13)

We perform a similar analysis in the case of the O(4)
universality class. Here βf is given by

ξ (L,βf )

L
= 0.547, (B14)

where 0.547 is the result for (ξ/L)∗ of Ref. 8. First we have
analyzed the data for Ū4 at λ = 12.5. The analysis is done in
much the same way as discussed above in detail for the O(3)
universality class. Fixing ω = 0.79 we find a = 0.007(5) as
amplitude of the leading correction.

Next we study the difference

�Ū4(L,λ1,λ2) = Ū4(L,λ1) − Ū4(L,λ2). (B15)

We perform fits for λ1 = 22, λ2 = 12.5 and λ1 = ∞, λ2 =
12.5 using the ansatz (B12) with c and ω as free parameters.
The results for λ1 = 22 and λ1 = ∞ are given in Tables VI
and VII, respectively.

These results can be compared with ω = 0.774(20) and ω =
0.795(30) from the perturbative expansion at three dimensions
fixed and the ε expansion, respectively.4

Fixing ω = 0.79 we obtain c = −0.00800(2) (with
χ2/DOF = 9.77/12) as amplitude for the differences
λ1 = 22 and λ2 = 12.5 with Lmin = 6. Taking data only
for L = 6 we get c(λ1 = 14,12.5) = −0.00193(5) c(λ1 =
20,12.5) = −0.00696(5), c(λ1 = 30,12.5) = −0.01084(5)
c(λ1 = 32,12.5) = −0.01132(5). It is quite clear from these
numbers that a linearization of the correction amplitude as a
function of λ is not sufficient to compute the estimate of λ∗.
For the same reason, we give an asymmetric estimate of the
error

λ∗ = 20+15
−6 . (B16)

TABLE VII. Fits of �Ū4(L,∞,12.5) with the ansatz (B12), O(4)
universality class.

Lmin c ω χ 2/DOF

6 −0.01870(16) 0.787(4) 11.64/7
7 −0.01849(21) 0.783(5) 9.39/6
8 −0.01841(26) 0.781(6) 9.05/5
9 −0.01844(32) 0.782(7) 9.02/4

10 −0.01846(38) 0.782(8) 9.00/3
11 −0.01777(45) 0.769(10) 2.03/2
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This value is larger than λ∗ = 12.5(4.0) that we quote in Ref. 8.
However we are quite confident that indeed a λ∗ exists for the
O(4) case. Note that in the limit N → ∞ for the simple cubic
lattice and the given lattice action, no λ∗ exists and that leading
corrections are minimal in the limit λ → ∞.1

3. The magnetic susceptibility and the exponent η

In order to obtain the critical exponent η, we analyze the
behavior of

χ̄ = χ (βf ), (B17)

where in the O(3) case βf is defined by ξ (βf )/L = 0.5644. In
the first step of the analysis we eliminate leading corrections
to scaling. To this end we analyze the ratios

χ̄ (λ = 5)

χ̄ (λ = 4)
= a(1 + cL−0.79). (B18)

We obtain a good fit starting from Lmin = 11. For Lmin = 11
we obtain a = 0.99172(8), c = −0.0046(6), and χ2/DOF =
3.11/4. Therefore in order to eliminate corrections at λ =
4.5 we follow the strategy discussed in Sec. III A 1. Using
Ū4 = U ∗

4 + 0.007(4)L−0.79 + · · · and Ū4(λ = 5) − Ū4(λ =
4) = −0.01126(4)L−0.79 · · ·) Eq. (29) reads

χ̃ ≡ χ̄ (λ = 4.5)

[
1 − −0.0046(6)

−0.01126(4)
0.007(4)L−0.79

]
.

(B19)

We fit χ̃ with the ansaetze

χ̃ = aL2−η, (B20)

χ̃ = aL2−η + c, (B21)

χ̃ = aL2−η(1 + bL−ε) + c (B22)

with ε = 1.6 or ε = 1.8. In the case of the ansatz (B20)
we obtain very large χ2/DOF up to Lmin = 32. For Lmin =
48 we get η = 0.0375(1) and χ2/DOF = 0.46/1. Using
the ansatz (B21) we get χ2/DOF ≈ 1 already for Lmin =
16; for example, for Lmin = 18 we obtain η = 0.03767(4)
and χ2/DOF = 10.11/15. Using the ansatz (B22) with ε =
1.6 we get for Lmin = 10 the results η = 0.03791(7) and
χ2/DOF = 14.55/22. and for ε = 1.8 and Lmin = 8 we get
η = 0.03780(3) and χ2/DOF = 18.74/24. We redo these fits
for χ̄ without correction to check the effect of the uncertainty

of λ∗. We find that the estimates of η change by about 0.0001.
Taking into account only fits with ansaetze that include the
analytic background, we arrive at

η = 0.0378(3). (B23)

In the case of the O(4) universality class, performing a
similar analysis we obtain

η = 0.0360(3). (B24)

4. The exponent ν

We estimate the exponent ν from the behavior of the slope
of U4 and ξ/L at βc:

SR = ∂R

∂β

∣∣∣∣
β=βc

= aL1/ν(1 + cL−ω + · · ·). (B25)

Since we did not plan to compute the exponent ν from the
beginning, we did not compute the second derivatives of
U4 and ξ/L with respect to β. Hence we cannot compute
the slope at fixed values of U4 or ξ/L. At λ = 4.5 we
performed MC simulation very close to our final value of
βc. Therefore it is sufficient to have a rather rough estimate
of the second derivatives of U4 and ξ/L in order to compute
the first derivatives of U4 and ξ/L at βc starting from the first
derivatives of U4 and ξ/L at βs that we have computed in
our simulations. To this end, we simulated for L = 12 at a
number of different β values. Using these data we compute
the second derivatives of U4 and ξ/L with respect to β by
finite differences. The second derivatives are then estimated
by R′′(L) = R′′(12)(L/12)2/ν . Notice that our estimate of
βc = 0.6862368(10) is very close to the simulation point
βs = 0.686238. We analyze the resulting data by fitting with
various ansaetze that are derived from Eq. (B25). We arrive at
ν = 0.7118(7) from the analysis of the slope of of ξ/L and
ν = 0.7114(11) from that of U4. The error bars take also into
account the uncertainty of λ∗. As our final estimate we quote

ν = 0.7116(10). (B26)

By a similar analysis for the O(4) universality class, we
obtain

ν = 0.750(2). (B27)
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