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Torque and temperature dependence of the hysteretic voltage-induced torsional
strain in tantalum trisulfide
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We have measured the dependence of the hysteretic voltage-induced torsional strain (VITS) in crystals of
orthorhombic tantalum trisulfide on temperature and applied torque. In particular, applying square-wave voltages
above the charge density wave (CDW) threshold, so as to abruptly switch the strain across its hysteresis loop,
we have found that the time constant for the VITS to switch (at different temperatures and voltages) varied as
the CDW current. Application of torque to the crystal could also change the VITS time constant, magnitude,
and sign, suggesting that, at least in part, the VITS is a consequence of residual torsional strain in the sample
which twists the CDW. Application of voltage changes the pitch of these CDW twists, which then act back on
the lattice. However, it remains difficult to understand the sluggishness of the response.
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I. INTRODUCTION

Quasi-one-dimensional conductors with sliding charge
density waves (CDWs) are best known for their many unusual
electronic properties, associated with polarization and motion
of the CDW for applied voltages V � VT , the CDW depinning
threshold voltage.1,2 CDW depinning can also affect the
crystal’s mechanical properties, e.g. lattice strains3,4 and
drops in some elastic moduli.5–9 For example, in orthorhombic
tantalum trisulfide (o-TaS3),10 the best studied material, the
Young’s modulus and shear modulus decrease by ∼2% and
∼25%, respectively,5,6 and there are hysteretic changes in
sample length (�L/L ∼ 10−6).3 The elastic anomalies have
been understood as resulting from changing strain in the crystal
causing relaxational changes of CDW phase domains,7,9 while
the length changes are associated with CDW polarization (i.e.
rarefaction and compression on the two sides of the crystal11)
coupling to and straining the lattice.3,12 For an o-TaS3

crystal a few mm long at temperature T ∼ 80 K, the elastic
relaxation time is ∼1 s near threshold,9 while the relaxation
time for longitudinal deformations of the CDW, measured
electro-optically, is at least two orders of magnitude shorter.13

In 2007, Pokrovskii et al. reported that crystals of o-TaS3

also exhibit small (�φ ∼ 1◦) hysteretic twists when the
CDW is depinned, with voltage dependences similar to that of
the length changes and the CDW compressions/rarefactions.4

(Examples of the hysteresis loops are shown in Fig. 4, below.)
While these hysteretic twists are very sluggish, as discussed
below, they also observed much smaller and faster, reversible
twists, which grew continuously with voltage with no change
at threshold.14 Similar effects were observed in other CDW
conductors.14 Since these materials and CDWs have no known
polar axes, there was no clear explanation for this unique
voltage-induced torsional strain (VITS). (We note that recently
chiral structure, associated with three equivalent CDW wave
vectors, has been observed in the CDW in TiSe2,15 but
the CDW remains pinned at high electric fields in TiSe2,
so the various anomalous electronic and electromechanical
properties associated with depinning have not been studied.
In contrast, o-TaS3 has a single CDW wave vector16 and no
known chirality.)

In our earlier work, we verified the hysteretic VITS effect in
o-TaS3 and studied its voltage, frequency, and time dependence

(at T = 78 K).17,18 We found that near threshold, the time
constant for the VITS to jump across the hysteresis loop (i.e.
when switching the applied voltage between +VT and −VT )
is ∼1 s, but it decreases rapidly with increasing voltage.18

Complete evolution of the hysteresis loops was even slower,
as would be expected for voltage-dependent relaxation times
and strengths. We suggested that the hysteretic VITS effect
was due to CDW fronts being twisted, even without applied
voltage, e.g. due to contacts or defects.18

To test this hypothesis, we sought to twist the sample with
an additional applied torque. Our measurements are done by
placing the sample in an RF cavity19 with a small magnetized
steel wire glued to its center. When the sample twists, it moves
the wire, modulating the resonant frequency of the cavity. By
applying a dc magnetic field, we could also add an external
torque to the sample. In addition, by simultaneously applying
a small ac magnetic field, we could use the cavity response
to (roughly) normalize our VITS signal. (In Refs. 17 and 18,
the VITS signals were all presented as relative values.) Our
techniques are discussed in detail in Sec. II.

In carrying out these measurements, we observed that
external torque could have a strong effect, not only on the
magnitude of the hysteretic VITS as anticipated, but also on its
time constant. Most surprisingly, the external torque was even
observed to reverse the sign of the voltage-induced torsional
strain. These results and their implications are discussed in
Sec. III. Finally, in Sec. IV, we discuss temperature-dependent
measurements carried out to try to determine the origin of the
very long hysteretic VITS time constants.

II. EXPERIMENTAL TECHNIQUES

The techniques we used to study the hysteretic VITS effect
were similar to those used in Ref. 18. Electrical contacts were
glued with silver paint to the ends of an o-TaS3 crystal, with
typical dimensions ∼4 mm × 10 μm × 2 μm. A thin gold film
was evaporated along half the length of the sample, electrically
shorting this half of the sample (see Fig. 1 in Ref. 20) and
keeping the CDW pinned there, while the CDW could be
depinned by applied voltage on the other half.1,10 A magnetized
steel wire (1–3 mm) was glued to the center of the sample (at
the edge of the gold film). The sample was placed in a helical
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FIG. 1. Resistance (R) and shear compliance (J) vs dc voltage
across sample E at T = 78 K at two different magnetic fields. The
compliance was measured with a 10-Hz oscillating torque. (Note
that the symbols completely overlap for the resistance.) Upper inset:
reciprocal of VJ0, the shear compliance signal at V = 0, vs magnet
current, used to find the resulting twist, ∂ϕ/∂IB ∼ 12◦/amp. Lower
inset: schematic of the sample configuration.

resonator RF cavity (with resonant frequency ∼430 MHz and
Q ∼ 300)19 with the end of the magnetic wire about ∼ 1

4 mm
from the tip of the helix, as shown in the lower inset to Fig. 1.
When the sample twisted, it changed the helix-wire separation
and hence the resonant frequency of the cavity. When driving
the cavity at or near resonance, the transmitted signal would be
modulated by the motion of the wire. The cavity was placed
in a Helmholtz coil so that a small magnetic field parallel
to the helix tip could be applied by coil current IB (B/IB =
80 Gauss/Amp).

Three different types of experiments were performed.
(i) An ac-magnetic field was applied so that the sample would
oscillate, with amplitude proportional to its shear compliance
(J), allowing the voltage dependence of the shear compliance
to be measured.8,9 The cavity was driven at resonance so
that the oscillating sample phase modulated the output of the
cavity at the magnetic field frequency, giving an ac signal
(VJ ), which was measured with a lock-in amplifier.19 As
mentioned above, the compliance increases (by over 20%
at low frequencies) for |V| > VT , so the threshold field was
determined by this experiment.8,9 (ii) A symmetric square
wave voltage at frequency ω was applied to the sample,
twisting the sample through the VITS effect, and the phase-
modulated response of the cavity at ω measured as a function
of square-wave voltage and frequency.17,18 As in Ref. 18, we
denote this complex, frequency-dependent torsional strain εω.
(iii) A symmetric-triangle wave voltage was applied to the
sample, sweeping the sample through a hysteresis loop. To
measure the time-dependent VITS signal, the cavity was driven

slightly off resonance with an FM signal8 and the response
at the FM frequency measured and averaged with a digital
oscilloscope.18 (Applying gold to half the sample effectively
puts a voltage-independent spring in parallel with the uncoated
half of the sample, roughly halving the measured elastic and
VITS anomalies.)

For the experiments discussed in Sec. III, the steel wire was
∼3 mm long, a few times longer than that used in Refs. 17
and 18, decreasing the torsional resonant frequency of the
sample to ∼100 Hz but allowing us to twist the sample several
degrees by an applied dc magnetic field. Since the response
of the cavity to sample motion should be (approximately)
inversely proportional to the helix/wire separation, we expect
1/VJ0 to vary linearly with magnet current, where VJ0 is the
pinned (i.e. V = 0) compliance signal. (Because sample strains
can become frozen in the sample for |V| < VT , it is necessary
to first depin the sample, applying V > VT at each magnetic
field, before measuring VJ 0.8) Typical results are shown in the
upper inset to Fig. 1, where 1/VJ 0 is plotted as a function of
magnet current. The hysteresis shows that the sample tended
to stick slightly and undershoot its equilibrium position. Using
the measured length of the wire and (room temperature, IB =
0) helix/wire separation, the field dependence of the twist angle
could be determined: for sample E, ∂ϕ/∂IB ∼ 12◦/amp. Then,
comparing the square-wave signals [experiment (ii)] at each
magnetic field with VJ0, the voltage-induced twist angles (εω)
could be calculated. Finally, these magnetic field dependent
values of εω could be used to normalize the FM signals of
experiment (iii). Note that all these normalizations are only
approximate (∼factor of 2) in view of estimates in the sample
geometry and the assumption that the helix-wire separation
does not change significantly with temperature.

In Sec. III, we show the magnetic field dependence of the
compliance, square-wave response, and hysteresis loops for
two samples at T = 78 K. The general features discussed
for these samples were observed for a few other samples.
However, for most samples studied, the VITS responses were
more complicated functions of voltage and/or frequency than
for these, in some cases changing sign with increasing voltage.
Possible reasons for such complex behavior include (a) the
presence of more than one threshold voltage, e.g. due to
imperfect screening by the gold film, (b) complicated residual
twists in the sample, as discussed below, and (c) larger than
usual reversible, nonhysteretic voltage-induced twists.14 As
mentioned above, the latter grow continuously with voltage
with no threshold behavior and could overwhelm the hysteretic
VITS signal, especially for samples with large threshold
voltages. These samples were rejected, as the hysteretic VITS
effect is the subject of our study.

In Sec. IV, we discuss the temperature dependence of εω.
Since the hysteretic response gets faster at higher temperature,
a short (∼1 mm) wire was attached to the sample to keep its
resonant frequency high (730 Hz). Therefore, the magnetic
field response of this sample was weak and, although εω

could still be normalized to VJ 0 at each temperature, the
corresponding twist angles were not calculated.

To avoid confusion with the four samples discussed in
Refs. 17 and 18, the samples discussed in this paper are named
E, F, and G.
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III. APPLIED TORQUE DEPENDENCE

Figure 1 shows the dc voltage dependence of the resistance
and change in shear compliance with a 10-Hz oscillating
magnetic field for sample E at T = 78 K for two different dc
magnetic fields which twist the sample. Note the following.

(a) The resistance is independent of magnetic field.
(b) There is no clear sign of the threshold voltage in

the resistance data, as the resistance appears to change
continuously with voltage at all voltages. This is a common
problem for o-TaS3 at low temperatures, where CDW creep
commences at a second threshold below VT .2,10,21 Identifying
the threshold from the resistance curve is further complicated
in a two-probe measurement because CDW phase-slip affects
the I-V curve.2

(c) The threshold field is clearly observed in the shear
compliance data as the voltage at which J starts increasing.8,9

Here, VT ∼ 180 mV is independent of magnetic field within
our sensitivity.

(d) The change in compliance with voltage appears to be
slightly magnetic field dependent. It is not yet clear if this
is a real effect (for example, longitudinal strains are known
to affect the change in shear compliance22) or a consequence
of a nonlinear dependence of the measurement sensitivity on
changes in sample position. However, if the latter, the small
changes in sensitivity (∼1%) will not have a significant effect
on the square-wave results, as the relative scatter in εω is >1%.

Figure 2(a) shows the dependence of εω on square-wave
amplitude at two different magnetic fields (for ω/2π =
10 Hz); the response both in phase with the square wave (solid
symbols) and in quadrature (open symbols) is shown. The
magnitude of the VITS is much smaller for IB = −0.6 A
than for IB = +0.3 A, but the most striking feature is
that εω has opposite signs at the two magnetic fields. In
addition, the peak in the quadrature signal, for which the
average relaxation time (defined below) τ0 ∼ 1/ω, occurs
closer to threshold for IB = −0.6 A than for IB = +0.3 A,
implying that at each voltage the response is faster for IB =
−0.6 A.

Figure 2(b) shows the frequency dependence of εω for
two square wave voltages and magnet currents (for which εω

is positive). The curves show fits to the modified relaxation

expression23

εω = εω0/[1 + (−iωτ0)γ ], (1)

where τ0 is the average relaxation time, and a value of the
exponent γ < 1 allows for a distribution in relaxation times;
the distribution of relaxation times is given by18,23

a(τ ) = (εω0/π )(τ/τ0)γ sin(γπ )/[1 + 2(τ/τ0)γ

× cos(γπ ) + (τ/τ0)2γ ]. (2)

The magnetic field dependence of the fitting parameters
for these two square-wave voltages is shown in Fig. 3. For
both square-wave voltages, the relaxation strength and average
relaxation time have strong dependences on magnetic field,
but whereas the relaxation strength falls monotonically with
IB , the dependence of τ0 differs at the two voltages. We
will discuss a consequence of these dependences later. (In
these fits, the exponent γ varies from 1 to 0.65, which
corresponds to a distribution of relaxation times over a decade
wide.)

Figure 4 shows the magnetic field dependence of hysteresis
loops for sample F, for which ∂ϕ/∂IB ∼ 5◦/amp. All these
loops were measured with 0.3 Hz, 0.75 V triangle waves, slow
enough that the shapes/sizes of the loops are close to their
static limits.18 Note that, as discussed in Ref. 18, the loops are
not symmetric functions of voltage; for this sample, the loop
closes more gradually at positive voltages than at negative.
The magnitude of the VITS, i.e. the height of the hysteresis
loop, is again a strong function of torque on the sample. As
IB increases toward 0.8 A, the main loop closes, leaving a
subsidiary loop at negative voltage. For IB > 0.8 A, the main
loop starts opening again but has now reversed direction; this
corresponds to the change in sign of εω for sample E shown in
Fig. 2(a).

Note that one expects these hysteresis loops to change
shape with changing applied torque due to the (∼symmetric in
voltage) increases in shear compliance for |V| > VT .6,8,9 Since
the changes in J are not hysteretic, they would simply add
a ∩ shape to the hysteresis loops with amplitude increasing
with increasing IB . For sample F, J changed by ∼3% at V =
0.75 V, so a ∩ with amplitude comparable to the width of the
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ω/2π  = 10 Hz FIG. 2. (a) Dependence of the VITS, εω, on
square-wave amplitude at two magnet currents
for sample E at T = 78 K (with twist angle
∂ϕ/∂IB ∼ 12◦/amp). Solid symbols: response
in phase with the 10-Hz square-waves; open
symbols: response in quadrature with the square-
waves. (b) Square-wave frequency dependence
of εω as a function of frequency for two different
square-wave amplitudes and magnet currents.
Solid symbols: in-phase response; open sym-
bols: quadrature response. The curves are fits
to Eq. (1).
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largest hysteresis loop is expected at IB = 1 A. Comparison
of the shapes of the loops show that this is generally seen,
although the curvature does not vary regularly with IB (e.g.
the ∩ curvature is a maximum at IB ∼ 0.7 A), perhaps because
of IB-dependent values of �J(V).

That the sign of the hysteretic voltage-induced torsional
strain, as well as its magnitude, depends on the magnetic
field, and therefore applied torque and twisting of the sample,
suggests that residual twisting of the sample, even with no
applied torque, is responsible for the hysteretic VITS. This
residual twisting may be a consequence of how the sample is
mounted on the contacts and how the magnetic wire is attached
to the sample, but it may also be built in to the crystal; in
particular the thin o-TaS3 crystals are notorious for their large
number of defects which have prevented determination of the
crystal structure.16 If a crystal has a local twist β = ∂ϕ/∂z,
then to first order, the local CDW wave vector will have an
azimuthal component:

q = q0(ẑ + βrϕ̂), (3)

where q0 is the local wave vector in the absence of twisting,
ẑ and ϕ̂ are unit vectors in the longitudinal and azimuthal
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FIG. 4. VITS hysteresis loops measured for sample F with 0.75
V, 0.3-Hz triangle waves at several magnet currents (with twist angle
∂ϕ/∂IB ∼ 5◦/amp) at T = 78 K. Curves for successive values of IB

are offset for clarity. Arrows show the directions of the loops. (Three
loops are overlaid for each value of IB .)

directions, r is the radial distance from the center of the sample,
and we have assumed a circular cross-section for simplicity.
With application of voltage, the CDW will become polarized,
becoming compressed and rarefied on the two ends of the
sample,11 changing the helical pitch:

q0(z) = q00 + �q0(z). (4)

�q0(z) consists of both reversible, small changes close to the
contacts and a long-range hysteretic component.24,25 The latter
is frozen in the sample if the voltage is removed and reverses
sign when a voltage near threshold of opposite polarity is
applied; i.e. it exhibits hysteresis similar to that of the voltage-
induced torsional strain. As mentioned above, this component
of �q0(z) can cause local, hysteretic longitudinal stresses in
the crystal. We similarly assume that the hysteretic changes
in the azimuthal component can put torsional stress on the
sample and cause the VITS.

However, the net changes in length caused by �q0(z)
are very small (�L/L ∼ 10−6)3 because, while the CDW
deformations in o-TaS3 have been observed to be slightly
larger on the negative side of the crystal than the positive,26 the
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asymmetry is small [i.e. �q0(z) ∼ −�q0(L − z), where L is the
length between contacts of the crystal], so the compressions
and stretches on the two sides of the sample almost cancel.3,12

If the torsional stress was simply proportional to β�q0(z), then
(for constant β) the VITS would change sign in the center of
the sample, with a net �φ(L) ∼ 0 at the free end. On the
other hand, if the torsional stress was proportional to ∂q/∂z,
the VITS would grow continuously with the distance from the
clamped end, as observed.4

One way to accomplish this dependence on ∂q/∂z is to
assume that the torsional stress that results from β�q0(z) acts
as a local external torque, η, which is opposed by the torsional
rigidity κ ∼ GR4/z, where G = 1/J is the shear modulus,6 R
is the effective radius of the sample, and we explicitly assume
that the sample is clamped at z = 0. From Eqs. (3) and (4),

η(z) ∼ (μ/q00)
∫

dAr(βr�q0) ∼ (μR4β/q00)�q0, (5)

where A is the cross-sectional area and μ is the torsional
transmodulus relating crystal stress to CDW strain. The change
in twist angle along the length of the sample will be:

∂�ϕ/∂z ∼ ∂(η/κ)/∂z ∼ μβ(z∂q/∂z + �q0)/Gq00. (6)

Consider the case of a sample with a uniform residual twist,
β = constant, and taking �q0(z) ∼ −�q0(L − z), the integral
of the second term in Eq. (6) will approximately vanish and

the twist angle of the wire at the free end of the sample will be
given by:

�ϕ(L) ∼ μβL�q0(L)/Gq00. (7)

For example, the hysteresis loop of sample F closes at IB =
0.8 A, so we take βL ∼ 4◦. Taking G ∼ 5 GPa,6 �φ(L) ∼ 0.1◦,
and μ ∼ 40 GPa, the value of the longitudinal transmodulus
found in Ref. 12 (where it is called gYc), we find �q0(L)/q00 ∼
3 × 10−3. This is the same relative shift in q found from
transport measurements in NbSe3.11

Of course, all these values should only be considered
order of magnitude estimates. Most samples presumably have
nonuniform residual twists (i.e. spatially dependent values of
β), which can give rise to the complicated voltage dependences
of the VITS as �q0(z) varies with voltage, observed for
some samples. It should also be noted that our result, in
which residual twist replaces the need for a fixed polar axis
in the crystal, seems to contradict one experiment done in
Ref. 4, in which when a sample was cut and flipped over,
its VITS direction also reversed. (Note that if β is caused
by growth defects rather than sample mounting, it does not
change sign when the sample is flipped over.) However, given
the flexibility of the crystals, one cannot rule out that cutting
and remounting the sample in these experiments may have
changed the sign of β and the resulting VITS. Alternatively,
it is also possible that the β-dependent VITS only represents
one possible mechanism, and that o-TaS3 crystals do contain a
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polar axis (e.g. because of an undetected chirality15 or surface
pinning of the CDW4,18) that also contribute.

Our model has interesting implications if a sample were
mounted so that it was free to turn at both ends. For an applied
voltage above threshold, the two ends would turn in opposite
directions, until stopped by its torsional rigidity, but for a
uniform change in q caused by a change in temperature, both
ends would turn in the same direction with no internal restoring
force. Of course, the long time constants associated with the
VITS indicate that there are large internal frictional forces not
addressed by our model which will damp the motion.

Indeed, it is difficult to understand the long time constants
associated with the VITS. Near threshold, the time constant for
longitudinal changes in q (i.e. CDW polarization) is governed
by diffusion with a diffusion constant inversely proportional
to the square of the phason velocity;27 at higher voltages,
CDW phase slip allows the local wave vector to change more
quickly.11,28 A sample a few times shorter than those studied
here was observed to have a polarization time constant ∼1 ms
near threshold.13 Even correcting for the L2 dependence of
the diffusion time, we expect the CDW polarization in our
samples to change two orders of magnitude faster than does
the observed VITS.

IV. TEMPERATURE DEPENDENCE

To try to shed light on the slow torsional response,
we studied the temperature dependence of the square-wave
response of sample G. As mentioned above, this sample had
a shorter magnetic wire to give it a higher resonant frequency
(730 Hz) so that its dynamics could be studied over a wider
range (0.1 Hz � ω/2π � 200 Hz). Therefore, measurements
of its dc magnetic field dependence were not done, although
ac magnetic fields could still be used to study the voltage
dependence of its shear compliance.

Figure 5(a) shows the dc voltage dependence of its resis-
tance and shear compliance (with 10-Hz oscillating magnetic
field) at temperatures between 90 and 120 K. At T = 78 K
(not shown), the voltage dependence of its resistance shows
no threshold dependence, as discussed above for sample E.
However, at higher temperature, the voltage at which the
resistance falls due to CDW current is clearer, although the
resistance threshold typically seems slightly greater than VT ,
the threshold observed for the compliance, as discussed in
Ref. 9.

Figure 5(b) shows the 10-Hz square-wave response at the
same temperatures. Note that, at each temperature, the onset
voltage for the square-wave response (Von) is slightly below
VT , as discussed in Ref. 17. The temperature dependences of
VT and Von are plotted below in Fig. 7(b); VT and Von are
weakly temperature dependent between 90 and 120 K, and
their difference is small (25 ± 5 mV), but VT grows rapidly at
lower temperatures.

To compare the dynamic response at each temperature, one
should choose appropriate voltage criteria, e.g. so that there
would be a fixed driving potential on the CDW. In particular,
it wasn’t clear whether we should use VT or Von as the relevant
threshold (although since VT -Von is approximately constant
for T � 90 K, the distinction is not very important here). We
therefore took measurements at the following square-wave
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voltages: VT , Von + 50 mV, VT + 50 mV, Von + 100 mV,
and VT + 100 mV at several temperatures between 78 and
120 K; at higher temperatures, the response moves out of
our frequency window. Two examples, at Vsquare = Von +
100 mV = 170 mV, are shown in Fig. 6 with fits to Eq. (1)
(Von = 70 mV at both 90 K and 110 K). The increase in the
speed of the VITS with increasing temperature is evident, as
the peak in the quadrature response of εω increases from ∼1 Hz
at 90 K to ∼50 Hz at 110 K.

The parameters of the fits for all five voltages and
temperatures 90 K < T < 120 K are plotted in Fig. 7(a).
(At T = 78 K, the average relaxation times, even for VT +
100 mV, were so slow that we could not do meaningful fits for
data in our frequency window.) For each voltage criterion, the
magnitude of the VITS does not vary much with temperature
in this range, consistent with the results of Pokrovskii et al..14

The quadrature peaks broaden considerably at the lowest
voltages, so the values of the exponents decrease from ∼0.7
(corresponding to a one-decade width in the time constant
distribution), to 0.3 (corresponding to almost a five-decade
width).

For each voltage criterion, the average relaxation time falls
by two decades between 90 and 120 K. In contrast, the low-
field (i.e. pinned CDW) resistance, R0 only falls by a factor of
∼3. The current carried by the CDW (ICDW = Itotal − V/R0),
however, increases by two decades for each voltage above VT ,
as shown in Fig. 7(c), where we also plot the temperature
dependence of ICDW τ0. Within the ranges measured, ICDW

τ0 is roughly independent of both temperature and voltage,
suggesting that the time constant of the VITS is determined
primarily by the CDW current. (The temperature dependence
of the relaxation time for longitudinal CDW deformations has
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FIG. 7. (a) Fitting parameters to Eq. (1) for sample G vs temperature for several voltages. (b) Threshold and onset voltages vs temperature
for sample G; curves are guides to the eye. (c) CDW current and ICDW τ0 vs temperature at a few voltages. (When not shown, the error bars in
ICDW are smaller than the symbols.)

not been measured for o-TaS3, but for quasi-one-dimensional
K0.3MoO3, blue bronze, it has been observed to have a much
weaker dependence on both temperature and CDW current25

than that we are observing for the VITS in o-TaS3.)
As mentioned, at T = 78 K, the VITS time constants18

are much longer than the time constants associated with
longitudinal CDW deformations near threshold;13 comparison
of the results in Refs. 13 and 18 shows that this remains true
for voltages at least up to 3VT . Our present results therefore
suggest that, as the CDW deforms under applied voltage,
sample strain is held back until released by the flow of CDW
current. This in turn suggests that it is not crystalline defects
(e.g. dislocation lines) that are hindering the motion, as they are
not expected to interact directly with CDW current, but CDW
defects, e.g. local phase deformations,24 which are responsible.

Note that for a twisted sample, there will presumably be
azimuthal CDW current, parallel to the local CDW wave vector
given by Eq. (1). If it was this azimuthal CDW current that
released the strain, then one would expect that, as the sample
was twisted by the applied magnetic field, the VITS relaxation
time would vary inversely with its magnitude. However, as
shown in Fig. 3, this is not so; e.g. at Vsquare = 400 mV, both
τ0 and εω0 decrease with increasing IB . (Supporting the fact
that azimuthal currents are not relevant is also the fact that
longitudinal sample strains, as measured by the length of the
crystal, also responded very sluggishly, with time constants
>1 s, to changes in the polarity of applied voltage.3) Additional
experiments on the temperature and current dependence of
both the VITS and CDW deformations, especially transverse
deformations, would be desirable to clarify their relationship,
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including measurements that compared their onset voltages,
e.g. what limits the VITS dynamic response at voltages
below the CDW current threshold. Unfortunately, such detailed
measurements of local CDW deformations (e.g. using electro-
optic techniques13) would require samples a few times wider
than those that have been grown to date.

In conclusion, we have found that twisting the sample by
an applied torque can affect both the magnitude and sign
of the voltage-induced torsional strain and have suggested a
model in which the hysteretic VITS is due to twists in the
sample causing azimuthal deformations of the CDW, which
in turn change under applied voltage and then feed back
on the crystal, changing its torsional strain. It is difficult,

however, to account for the sluggishness of the VITS signal
(e.g. at least two orders of magnitude slower than changes in
CDW deformations at T = 78 K). While our measurements
on the temperature dependence of the VITS suggest that it
is controlled by CDW current, the mechanism for this is
unclear.
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