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Nonequilibrium transport through molecular junctions in the quantum regime

T. Koch,1 J. Loos,2 A. Alvermann,3 and H. Fehske1

1Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, DE-17489 Greifswald, Germany
2Institute of Physics, Academy of Sciences of the Czech Republic, CZ-16200 Prague, Czech Republic

3Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom
(Received 3 May 2011; published 20 September 2011)

We consider a quantum dot, affected by a local vibrational mode and contacted to macroscopic leads, in
the nonequilibrium steady-state regime. We apply a variational Lang-Firsov transformation and solve the
equations of motion of the Green functions in the Kadanoff-Baym formalism up to a second order in the
interaction coefficients. The variational determination of the transformation parameter through minimization of
the thermodynamic potential allows us to calculate the electron/polaron spectral function and conductance for
adiabatic to antiadiabatic phonon frequencies and weak to strong electron-phonon couplings. We investigate the
qualitative impact of the quasiparticle renormalization on the inelastic electron tunneling spectroscopy signatures
and discuss the possibility of a polaron induced negative differential conductance. In the high-voltage regime,
we find that the polaron level follows the lead chemical potential to enhance resonant transport.
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I. INTRODUCTION

Recent advances in nanotechnology have made possible the
creation of electronic devices with the active element being a
single organic molecule. Such molecular junctions may be
an alternative to semiconductor technology in the search for
further miniaturization and novel transport properties. They
can be described as quantum dots, i.e., as systems of finite size
coupled to macroscopic leads acting as charge reservoirs. As
with metallic or semiconducting junctions, energy level quanti-
zation determines transport. In addition, when being occupied
by charge carriers, molecular quantum dots are susceptible
to structural changes that may be induced by the interaction
with optical phonons. As a consequence, vibrational signatures
show up in the current-voltage characteristics. Moreover, they
render inelastic tunneling spectroscopy (IETS), the primary
experimental tool for the identification and characterization of
molecular quantum dots.1,2

For a thorough understanding of the underlying transport
mechanisms suitable theoretical models have to be studied.
The simplest one is based on a modified Fano-Anderson
model where the static impurity is replaced by a single site
coupled to a local phonon mode. Then the current is given
by the interacting dot spectral function and the voltage bias
between the noninteracting macroscopic leads.3 The transport
properties of the system strongly depend on the relative time
scales of the electronic and phononic subsystems.4

In the regime of fast electron motion and weak electron-
phonon (EP) coupling, standard perturbation theory applies.5–7

Here, IETS signatures result from the interference of
(quasi)elastic and inelastic tunneling processes.8,9 The calcu-
lated line shapes in the total current are found to be especially
sensitive to changes in the dot-lead coupling parameter and the
dot-level energy.10,11 In general, both these quantities should
be affected by conformational changes of the molecule. In the
equilibrium situation, the question remains whether vibrational
coupling leads to a broadening6 or narrowing7 of the linear
conductance resonance as a function of the dot level.

On the other hand, in molecular quantum dots the vi-
brational frequency can be larger than the kinetic energy of

incident electrons. From the study of the Holstein molecular
crystal model,12 it is well known that in this regime, strong
EP interaction may heavily reduce the “mobility” of the
electrons through the formation of small polarons (electrons
dressed by phonon clouds).13,14 Consequently, for quantum
dots, the formation of a local polaron is considered a possible
mechanism for the observed nonlinear transport properties,
such as hysteresis, negative differential conductance (NDC)
and switching.15–18 Approaches based on the application of
a Lang-Firsov transformation19,20 to the Hamiltonian suggest
that the vibrational structure of the polaron state is revealed by
distinct steps in the current-voltage signal.6,21,22 Here, electron
transport takes place via resonant tunneling through phonon
sidebands.

In this paper, we investigate steady-state transport through
molecular quantum dots for small-to-large dot-lead coupling
and weak-to-strong EP interaction. Using the Meir-Wingreen
current formula,3 our main task is the determination of the
interacting electronic spectral function of the quantum dot. As
the background of our calculations we choose the formalism
of Kadanoff-Baym,23 which relies on the correspondence
of the nonequilibrium Green functions of complex times to
the real-time response functions. Starting from the Dyson
equation, the general steady-state equations for the response
functions will be deduced. The solution of the latter equations
will lead to a nonequilibrium spectral function, which has a
form analogous to the equilibrium one. The dot self-energy
determining the spectral function will be calculated from the
equations of motion of the Green functions up to a second
order in the interaction coefficients.

Our approach is based on a variational Lang-Firsov trans-
formation, which was developed for Holstein polarons at finite
densities24 and recently applied to the molecular quantum
dot in equilibrium.25 We extend these calculations to the
nonequilibrium situation and to finite temperatures, whereby
the dot self-energy will be calculated self-consistently to ac-
count for the density-dependent oscillator shift. The variational
parameter of the Lang-Firsov transformation is determined
numerically via the minimization of the thermodynamic
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potential. In this way, we are able to interpolate between the
self-consistent Born approximation (SCBA)11,26 and the small-
polaron approach22 previously used in the weak and strong EP
coupling limits. We note that already in the equilibrium case,
our variational calculation introduces important corrections
to the corresponding spectral functions that determine the
conductance in the linear response theory. We reexamine the
low-temperature equilibrium quantum dot system and analyze
the occurrence of high-temperature phonon sidebands in
the linear conductance.

In the nonequilibrium situation, we show the impact of
the optimal polaron state on the IETS signatures mentioned
above. For comparable electronic and phononic time scales,
we study the crossover from coherent tunneling to sequential
hopping via a transient polaron state, where the interplay
of both resonant and off-resonant multiphonon processes
leads to complicated electron tunneling spectra. Recently La
Magna and Deretzis17 applied a similar variational ansatz
to an effective electron Hamiltonian and found polaron-
formation-induced NDC. Considering the dependence of the
current-voltage characteristics on the full spectral function, we
critically discuss this effect.

The paper is organized as follows: Sec. II A introduces the
model Hamiltonian and describes the variational Lang-Firsov
transformation. In Secs. II B and II C, a formal steady-state
solution to the equations of motion is presented. In Sec. II D,
we derive an approximation to the polaronic self-energy that
is self-consistent and depends on the variational parameter.
The latter is determined from the numerical minimization
of the thermodynamic potential that is deduced in Sec. II E.
Section II F gives the relation between the electronic and
polaronic spectral functions. In Sec. II G, the general current
formula for arbitrary voltage is discussed and the special case
of linear conductance is mentioned. Section III presents our
numerical results and Sec. IV summarizes.

II. THEORY

A. General equations

Our considerations are based on the standard Hamiltonian
of the single-site quantum dot model:

H = (� − μ)d†d − gω0d
†d(b† + b) + ω0b

†b

+
∑
k,a

(εka − μ)c†kacka − 1√
N

∑
k,a

(tkad
†cka + t∗kac

†
kad).

(1)

Here, the quantum dot is represented by the energy level �,
with the fermionic creation (destruction) operator d† (d). The
dot is coupled to a local phonon mode b(†) of energy ω0,
with g being the dimensionless EP coupling strength. The εka

(for k = 1, . . . ,N ) are the energies of noninteracting electrons
in the left and right lead (a = L,R) with the equilibrium
chemical potential μ. The corresponding operators c

†
ka (cka)

create (annihilate) free fermions in the N lead states. The last
term in Eq. (1) allows for dot-lead particle transfer.

We apply to the model (1) a variational Lang-Firsov
transformation,17,19,25,27 introducing two parameters γ and γ̄ :

H̃ = S
†
2(γ̄ )S†

1(γ )HS1(γ )S2(γ̄ ), (2)

S1(γ ) = exp[γg(b† − b)d†d], (3)

S2(γ̄ ) = exp[γ̄ g(b† − b)]. (4)

S1(γ ) describes the antiadiabatic limit where the phononic
time scale is much faster than the electronic time scale and
the deformation of the dot adjusts instantaneously to the
presence of an electron. For γ = 1, it coincides with the
shift transformation of the Lang-Firsov small polaron theory,19

which eliminates the second term on the right-hand side of
Eq. (1) and lowers the dot level by the polaron binding energy:

εp = g2ω0. (5)

To account for the competition between polaron localization
and charge transport, an incomplete Lang-Firsov transfor-
mation with γ ∈ [0,1] is used where γ will be determined
variationally. The second shift transformation S2(γ̄ ) describes
the regime of fast electron motion, where the quasistatic
displacement of the equilibrium position of the oscillator
affects transport. According to similar considerations in
Ref. 27, the parameter γ̄ is fixed by the condition that the
oscillator shift is stationary in the equilibrium and steady state.
Then γ̄ = (1 − γ )nd , with the dot occupation

nd = 〈d†d〉, (6)

where 〈· · ·〉 denotes the steady state mean value.
After the transformation, the Hamiltonian reads

H̃ = η̃ d†d − Cd (d†d − nd ) + ω0b
†b + εp(1 − γ )2n2

d

+
∑
k,a

ξkac
†
kacka −

∑
k,a

(Ckad
†cka + C

†
kac

†
kad), (7)

with

η̃ = � − μ − εpγ (2 − γ ) − 2εp(1 − γ )2nd, (8)

g̃ = γg, ξka = εka − μ, (9)

Cka = tka√
N

e−g̃(b†−b), Cd = gω0(1 − γ )(b† + b). (10)

Here, η̃ is the renormalized energy of the single dot level.
Cka and Cd are the renormalized interaction coefficients of
the dot-lead transfer and the EP interaction, respectively. Note
that now the operators d and b represent dressed electrons
(in analogy to polarons) and the shifted local oscillator. The
original electron and oscillator operators, now denoted by d̃

and b̃, read

d̃ = e g̃(b†−b)d, b̃ = b + g̃d†d + (1 − γ )gnd. (11)

We describe the application of a potential difference between
the leads by adding to Eq. (7) the interaction with the external
fields {U} and define the voltage bias � accordingly:

Hint =
∑

a

Ua

∑
k

c
†
kacka, with Ua = −δμa, (12)

� = (UL − UR)/e, (13)
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where e is the (negative) elementary charge. The response
of the quantum dot is given by the polaronic nonequilibrium
real-time Green functions:

gdd (t1,t2; U ) = −i〈T dU (t1)d†
U (t2)〉, (14)

g<
dd (t1,t2; U ) = i〈d†

U (t2)dU (t1)〉, (15)

g>
dd (t1,t2; U ) = −i〈dU (t1)d†

U (t2)〉. (16)

Remember that 〈· · · 〉 denotes the equilibrium average with
respect to H̃ , while the time dependence of the operators d (†) is
now given by H̃ + Hint. The time ordering operator in Eq. (14)
is defined by

T dU (t1)d†
U (t2) = dU (t1)d†

U (t2), t1 − t2 > 0, (17)

= −d
†
U (t2)dU (t1), t1 − t2 < 0. (18)

According to Kadanoff-Baym,23 the real-time response func-
tions (14)–(16) may be deduced using the equations of motion
for the nonequilibrium Green functions of the complex time
variables t = t0 − iτ , τ ∈ [0,β], defined as

Gdd (t1,t2; U,t0) = − i

〈S〉 〈Tτ d(t1)d†(t2)S〉, (19)

G<
dd (t1,t2; U,t0) = i

〈S〉 〈Tτ d
†(t2)d(t1)S〉, (20)

G>
dd (t1,t2; U,t0) = − i

〈S〉 〈Tτ d(t1)d†(t2)S〉, (21)

where the order of t1 and t2 is fixed in G<
dd and G>

dd . The
time dependence of all operators is determined by H̃ and the
external disturbance is explicit in the time-ordered exponential
operator S:

S = Tt exp

{
− i

∫ t0−iβ

t0

dt Hint(t)

}
. (22)

In Eqs. (19)–(21) and (22), the operator Tτ orders times
according to

Tτ dU (t1)d†
U (t2) = d(t1)d†(t2), i(t1 − t2) > 0, (23)

= −d†(t2)d(t1), i(t1 − t2) < 0. (24)

In the following, the Green functions of “mixed” operators
Gcd (k,a; t1,t2; U,t0) and gcd (k,a; t1,t2; U ) will be used, which
are defined similar to Eqs. (14)–(21). The functions g

follow from the functions G through the limiting procedure
t0 → −∞.

B. Equations of motion

We consider the polaronic dot Green function (19), where
the index “dd” will be omitted for the moment, and start from
the Dyson equation in the matrix form:

[G(0)−1(t1,t̄ ; U,t0) − �(t1,t̄ ; U,t0)] • G(t̄ ,t2; U,t0)

= δ(t1 − t2) . (25)

In Eq. (25), the matrix multiplication “•” is defined by∫ t0−iβ

t0
dt̄ · · · and the δ function of complex arguments is

understood with respect to this integration. With the inverse

zeroth-order Green function

G(0)−1(t1,t2) =
(

i
∂

∂t1
− η̃

)
δ(t1 − t2), (26)

Eq. (25) gives for i(t1 − t0) < i(t2 − t0)(
i

∂

∂t1
− η̃

)
G<(t1,t2; U,t0)

=
∫ t1

t0

dt̄ �>(t1,t̄ ; U,t0)G<(t̄ ,t2; U,t0)

+
∫ t2

t1

dt̄ �<(t1,t̄ ; U,t0)G<(t̄ ,t2; U,t0)

+
∫ t0−iβ

t2

dt̄ �<(t1,t̄ ; U,t0)G>(t̄ ,t2; U,t0), (27)

where the self-energy functions �≷ are defined analogously
to G≷:

�>(t1,t2; U,t0) = �(t1,t2; U,t0), i(t1 − t2) > 0, (28)

�<(t1,t2; U,t0) = �(t1,t2; U,t0), i(t1 − t2) < 0. (29)

On the other hand, the matrix-transposed form of (25) yields(
− i

∂

∂t2
− η̃

)
G<(t1,t2; U,t0)

=
∫ t1

t0

dt̄ G>(t1,t̄ ; U,t0)�<(t̄ ,t2; U,t0)

+
∫ t2

t1

dt̄ G<(t1,t̄ ; U,t0)�<(t̄ ,t2; U,t0)

+
∫ t0−iβ

t2

dt̄ G<(t1,t̄ ; U,t0)�>(t̄ ,t2; U,t0). (30)

Similarly to Eqs. (27) and (30), equations having
G>(t1,t2; U,t0) on the left-hand side are obtained in the case
i(t1 − t0) > i(t2 − t0). After the limiting procedure t0 → −∞,
we arrive at the equations for the real-time response functions
of the dot operators:(

i
∂

∂t1
− η̃

)
g≶(t1,t2; U )

=
∫ t1

−∞
dt̄ [�>(t1,t̄ ; U ) − �<(t1; t̄ ; U )]g≶(t̄ ,t2; U )

−
∫ t2

−∞
dt̄ �≶(t1,t̄ ; U )[g>(t̄ ,t2; U ) − g<(t̄ ,t2; U )],

(31)(
− i

∂

∂t2
− η̃

)
g≶(t1,t2; U )

=
∫ t1

−∞
dt̄ [g>(t1,t̄ ; U ) − g<(t1; t̄ ; U )]�≶(t̄ ,t2; U )

−
∫ t2

−∞
dt̄ g≶(t1,t̄ ; U )[�>(t̄ ,t2; U ) − �<(t̄ ,t2; U )].

(32)

The latter equations are general; up to this point no special
assumptions or approximations were made.
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C. Steady-state solution

Limiting ourselves to the steady-state regime, all functions
of (t1,t2) will be supposed to depend only on t = t1 − t2.
Then, after suitable change of the integration variables, the
difference of the equations for g< in Eqs. (31) and (32)

gives∫ ∞

−∞
dt̄ [g<(t̄ ; U )�>(t − t̄ ; U )−g>(t̄ ; U )�<(t − t̄ ; U )] = 0,

(33)

while the differential equation for (g> − g<) following from
Eq. (31) reads

(
i

∂

∂t
− η̃

)
[g>(t ; U ) − g<(t ; U )] =

∫ ∞

0
dt̄[�>(t̄ ; U ) − �<(t̄ ; U )][g>(t − t̄ ; U ) − g<(t − t̄ ; U )] −

∫ 0

−∞
dt̄[�>(t − t̄ ; U )

−�<(t − t̄ ; U )][g>(t̄ ; U ) − g<(t̄ ; U )]. (34)

Using the Fourier transformations of g≶ and �≶ with factors according to Kadanoff-Baym,23 e.g.,

g≶(ω; U ) = ∓i

∫ ∞

−∞
dt g≶(t ; U )eiωt , (35)

g≶(t ; U ) = ∓
∫ ∞

−∞

dω

2πi
g≶(ω; U )e−iωt , (36)

the following exact equations for the steady-state are obtained

g<(ω; U )�>(ω; U ) − g>(ω; U )�<(ω; U ) = 0, (37)[
ω − η̃ − P

∫ ∞

−∞

dω′

2π

�>(ω′; U )+�<(ω′; U )

ω − ω′

]
[g>(ω; U ) + g<(ω; U )]

= [�>(ω; U )+�<(ω; U )]P
∫ ∞

−∞

dω′

2π

g>(ω′; U ) + g<(ω′; U )

ω − ω′ . (38)

If we define, in analogy to the equilibrium expressions,23

A(ω; U ) = g>(ω; U ) + g<(ω; U ), (39)

g(z; U ) =
∫

dω

2π

A(ω; U )

z − ω
, (40)

�(ω; U ) = �>(ω; U ) + �<(ω; U ), (41)

�(z; U ) =
∫

dω

2π

�(ω; U )

z − ω
, (42)

Eq. (38) takes the form

[ω − η̃ − Re �(ω; U )]A(ω; U ) = �(ω; U ) Re g(ω; U ).

(43)

According to Eq. (39), we can write

g<(ω; U ) = A(ω; U )f̄ (ω; U ), (44)

g>(ω; U ) = A(ω; U )[1 − f̄ (ω; U )], (45)

introducing the nonequilibrium distribution f̄ , which follows
from the steady-state equation (37) and the definition (41) as

f̄ (ω; U ) = �<(ω; U )

�(ω; U )
. (46)

Looking for a solution A(ω; U ) of Eq. (43), which would be
equal to the equilibrium spectral function for {U} → 0, we

assume (according to similar considerations in Ref. 23) that
g(z; U ) has the form

g(z; U ) = 1

z − η̃ − �(z; U )
. (47)

Together with Eq. (40), Eq. (47) fulfils Eq. (43) identically,
and the polaronic nonequilibrium spectral function becomes

A(ω; U ) = �(ω; U )[
ω − η̃ − P

∫
dω′
2π

�(ω′;U )
ω−ω′

]2 + [
�(ω;U )

2

]2 . (48)

D. Self-energy

We determine the polaron self-energy �dd from the
equations of motion for the generalized Green functions of
complex time, which were considered for the equilibrium case
in Ref. 25. In particular, the coupled equations for Gdd and
Gcd read

G
(0)−1
dd (t1,t̄) • Gdd (t̄ ,t2; U,t0) = δ(t1 − t2)

+ i

〈S〉 〈TτCd (t1)d(t1)d†(t2)S〉

+
∑
k,a

i

〈S〉 〈TτCka(t1)cka(t1)d†(t2)S〉, (49)

G(0)−1
cc (k,a; t1,t̄ ; U ) • Gcd (k,a; t̄ ,t2; U,t0)

= i

〈S〉 〈TτC
†
ka(t1)d(t1)d†(t2)S〉, (50)
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where, in analogy to Eq. (26),

G(0)−1
cc (k,a; t1,t2; U ) =

(
i

∂

∂t1
− ξka − Ua

)
δ(t1 − t2). (51)

To deduce the functional differential equations for the self-
energy �dd = G

(0)−1
dd − G−1

dd , in addition to the physical fields
{U}, we introduce the fictitious fields {V } by adding to Hint

(cf. Refs. 23, 25, and 28 )∑
k,a

[Vka(t)Cka(t) + V̄ka(t)C†
ka(t)] + Vd (t)Cd (t). (52)

In the same way as in Ref. 25, the averages on the right-
hand side of Eqs. (49) and (50) are expressed by means of
the functional derivatives of Green functions with respect to
{V }. The resulting functional differential equation for �dd

is solved by iteration to the second order in the interaction
coefficients defined in Eq. (10). The correlation functions of the
interaction coefficients are evaluated supposing independent
Einstein oscillators. Letting then {V } → 0, the following self-
consistent result is obtained

�dd (t1,t2; U,t0) = �
(1)
dd (t1,t2; U,t0) + [gω0(1 − γ )]2

×Gdd (t1,t2; U,t0)F3(t1,t2). (53)

The result of the first iteration step,

�
(1)
dd (t1,t2; U,t0) =

∑
k,a

|〈Cka〉|2G(0)
cc (k,a; t1,t2; U )

+
∑
k,a

|〈Cka〉|2G(0)
cc (k,a; t1,t2; U )F1(t1,t2),

(54)

is independent of Gdd . The quasiequilibrium nonperturbed
Green functions of the leads read

G(0)<
cc (k,a; t1,t2; U ) = ie−iξka (t1−t2)f (ξka + Ua),

(55)
G(0)>

cc (k,a; t1,t2; U ) = −ie−iξka (t1−t2)[1 − f (ξka + Ua)],

with f (x) = (eβx + 1)−1. The functions F1 and F3 are given
by F<

1 and F<
3 for i(t1 − t2) < 0, and by F>

1 and F>
3 for

i(t1 − t2) > 0, respectively:

F
≷
1 (t1,t2) = exp{g̃2[(nB(ω0) + 1)e∓iω0(t1−t2)

+ nB (ω0)e±iω0(t1−t2)]} − 1, (56)

F
≷
3 (t1,t2) = (nB(ω0) + 1)e∓iω0(t1−t2)

+ nB (ω0)e±iω0(t1−t2), (57)

with nB(x) = (eβx − 1)−1. In Eq. (53), we perform the limit
t0 → −∞ and the continuation of the complex time variables
to real times, while keeping the condition i(t1 − t2) < 0 for
�<

dd and i(t1 − t2) > 0 for �>
dd . We arrive at

�
≶
dd (t1,t2; U )

= �
(1)≶
dd (t ; U ) + [(1 − γ )gω0]2 g

≶
dd (t1,t2; U )

×[(nB(ω0) + 1)e±iω0(t1−t2) + nB(ω0)e∓iω0(t1−t2)], (58)

�
(1)≶
dd (t1,t2; U )

=
∑
k,a

|〈Cka〉|2 g(0)≶
cc (k,a; t1,t2; U ){I0(κ)

+
∑
s�1

Is(κ)2 sinh(sθ )[(nB(sω0) + 1)e±isω0(t1−t2)

+ nB (sω0)e∓isω0(t1−t2)]}, (59)

where

θ = 1

2
βω0, κ = g̃2

sinh θ
, (60)

Is(κ) =
∞∑

m=0

1

m!(s + m)!

(κ

2

)s+2m

, (61)

and

g<
dd (t1,t2; U ) = −

∫
dω

2πi
A(ω; U )f̄ (ω; U ) e−iω(t1−t2), (62)

g>
dd (t1,t2; U ) =

∫
dω

2πi
A(ω; U )[1−f̄ (ω; U )]e−iω(t1−t2). (63)

Now we insert |〈Cka〉|2 = (|tka|2/N ) exp{−g̃2 coth θ} in
Eq. (59) and go from the k summation to the integration over
the lead states with the help of the density of states of lead a:

1

N

∑
k,a

|tka|2 · · · →
∑

a

∫ ∞

−∞
dω |ta(ω)|2�a(ω) · · · , (64)

�a(ω) = 1

N

∑
k

δ(ω − εka). (65)

We then Fourier transform Eq. (58) according to Eq. (35) and,
after evaluating the resulting delta functions, obtain

�<
dd (ω; U )

= �
(1)<
dd (ω; U ) + [(1 − γ )gω0]2[A(ω − ω0; U )

× f̄ (ω − ω0; U )nB(ω0) + A(ω + ω0; U )

× f̄ (ω + ω0; U )(nB(ω0) + 1)], (66)

�
(1)<
dd (ω; U )

= e−g̃2 coth θ
∑

a

{
I0(κ)�(0)

a (ω + μ)f (ω + Ua)

+
∑
s�1

Is(κ)2 sinh(sθ )
[
nB(ω0)�(0)

a (ω − sω0 + μ)

× f (ω − sω0 + Ua) + (nB(ω0) + 1)�(0)
a (ω + sω0 + μ)

× f (ω + sω0 + Ua)
]}

, (67)

�(0)
a (ω) = 2π |ta(ω)|2�a(ω). (68)

The function �<
dd (ω; U ) can be understood as a generalized

in-scattering function of polaron-like quasiparticles at the
dot.29 The second to fourth line in Eq. (67) accounts for
multiple-phonon emission and, if T > 0, absorption processes.
After some algebraic manipulations of the Bose- and Fermi-
functions, the first-order self-energy (67) may be written in the
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following form:

�
(1)<
dd (ω; U ) = �

(1)
L (ω; U )f (ω + UL) + �

(1)
R (ω; U )f (ω + UR), (69)

�(1)
a (ω; U ) = e−g̃2 coth θ

(
I0(κ)�(0)

a (ω + μ) +
∑
s�1

Is(κ)2 sinh(sθ )
{
�(0)

a (ω + μ − sω0)[nB(sω0) + 1 − f (ω + Ua − sω0)]

+�(0)
a (ω + μ + sω0)[nB(sω0) + f (ω + Ua + sω0)]

})
. (70)

Because �>
dd (ω; U ) results from interchanging nB ↔ (nB + 1), f ↔ (1 − f ) and f̄ ↔ (1 − f̄ ) in Eqs. (66)–(69), Eq. (41) gives

�(ω; U ) = �(1)(ω; U ) + [(1 − γ )gω0]2{A(ω − ω0; U )[nB(ω0) + 1 − f̄ (ω − ω0; U )]

+A(ω + ω0; U )[nB(ω0) + f̄ (ω + ω0; U )]}, (71)

�(1)(ω; U ) = �
(1)
L (ω; U ) + �

(1)
R (ω; U ). (72)

From Eq. (71), the spectral function follows using Eq. (48). For
any parameter γ < 1, the spectral function A and distribution
f̄ have to be determined self-consistently. Furthermore,
because the renormalized dot level defined in Eq. (8) depends
on the dot occupation nd , the latter has to fulfill the self-
consistency condition

nd =
∫ ∞

−∞

dω

2π
f̄ (ω; U )A(ω; U ). (73)

We note that for γ = 0, our results are equivalent to the
SCBA.26 For γ = 1, no self-consistency condition has to be
fulfilled, as �dd = �

(1)
dd and η̃ is independent of nd .

E. Variational procedure

To determine the variational parameter γ , we minimize the
thermodynamic potential �, which is given by the partition
function Q as

� = − 1

β
ln Q. (74)

We assume the leads to be macroscopic objects, which are
negligibly influenced by the states of the dot. Accordingly, the
contributions of the leads to � and to the mean energy 〈H̃ 〉
give only additive constants. Since the electronic degrees of
freedom of the dot are coupled to the oscillator ones by the
second term on the right-hand side of Eq. (7), a decoupling
approximation will be used to determine the electronic part of
the thermodynamic potential.

As a consequence of the equation of motion, the following
identity holds(

i
∂

∂t1
− i

∂

∂t2

)
d†(t2)d(t1)

∣∣∣
t2=t1

= η̃d†(t1)d(t1) − Cdd
†(t1)d(t1) + H ′(t1). (75)

Here, H ′ represents the part of the Hamiltonian (7) that
depends on the operators d† and d. As an approximation, we
neglect the second term on the right-hand side of Eq. (75) and
in H ′. Taking the statistical averages on both sides of Eq. (75),
remembering that

〈d†(t2)d(t1)〉 = −ig<
dd (t1,t2; U ) (76)

and using Eq. (62),

〈H ′〉 =
∫

dω

2π
(2ω − η̃) A(ω; U )f̄ (ω; U ) (77)

is obtained. To determine the corresponding electronic part of
the thermodynamic potential, �′, we consider the canonical
ensemble given by the Hamiltonian H ′

λ = H0 + Vλ, where
H0 = η̃d†d and Vλ represents the interaction part of the
Hamiltonian (7) with coefficients λCka and λCd , for λ ∈ [0,1].
Applying the result (77) gives

〈Vλ〉λ = 2
∫

dω

2π
(ω − η̃) Aλ(ω; U )f̄ (ω; U ). (78)

Here, 〈· · ·〉λ denotes the dependence of the statistical average
on λ and the indices λ on the right-hand side of Eq. (78) refer
to the interaction coefficients in H ′

λ. We use the well-known
general relations23,30 for the determination of �′, namely,

�′ = �′(λ = 1) = − 1

β
ln Q(λ = 1), (79)

ln Q(λ = 1) = ln Q(λ = 0) − β

∫ 1

0
dλ

1

λ
〈Vλ〉λ, (80)

where

ln Q(λ = 0) = ln(1 + e−η̃β). (81)

To make the integration in Eq. (80) feasible, the general
procedure leading to the thermodynamic potential outlined
above will be carried out using the solution for the dot response
in the first iteration step, described in the preceding section.
In particular, the spectral function Aλ(ω; U ) is determined
according to Eq. (48), using �

(1)
λ (ω; U ), which is proportional

to λ2: �
(1)
λ (ω; U ) = λ2�(1)(ω; U ). Similarly, f̄ (ω; U ) is deter-

mined by Eq. (46) using �
(1)<
dd and �(1) on the right-hand

side. Note, however, that η̃ will be determined from the
electron density nd corresponding to the complete self-energy
�

≶
dd (ω; U ).
To complete the function �, which is to be varied with

respect to γ , we have to take into account the renormalization
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of the oscillator energy given in the first line of Eq. (7). We
finally obtain that

� = − 1

β
ln(1 + e−η̃β) + εp(1 − γ )2n2

d +
∫ 1

0

dλ

λ

∫ +∞

−∞

dω

π

× (ω − η̃)f̄ (1)(ω; U ) λ2�(1)(ω; U )[
ω − η̃ − λ2P

∫
dω′
2π

�(1)(ω′;U )
ω−ω′

]2 + [
λ2 �(1)(ω;U )

2

]2

= − 1

β
ln(1 + e−η̃β) + εp(1 − γ )2n2

d −
∫

dω

π
f̄ (1)(ω)

×
{

η̃ − ω

|̃η − ω| + arctan

[
ω − η̃ − P

∫
dω′
2π

�(1)(ω′)
ω−ω′

�(1)(ω)/2

]}
.

(82)

The parameter γ resulting from the variation of Eq. (82) is
used to determine �

≶
dd (ω; U ) according to Eq. (66). The self-

energy functions obtained in this way give the distribution
function f̄ (ω; U ) and the spectral function A(ω; U ) according
to Eqs. (46) and (48), respectively.

F. Relation between electronic and polaronic functions

In the previous sections, the functions A(ω; U ) and
g<

dd (ω; U ) in polaron representation were deduced. Because
the current through the quantum dot will be given by the
corresponding electronic functions Ã(ω; U ) and g̃<

dd (ω; U ),
we have to find a relation between these quantities. We start
by decoupling the fermionic and bosonic degrees of freedom
in the electronic dot Green function of complex times:

G̃dd (t1,t2; U,t0) = − i

〈S〉 〈Tτ d̃(t1)d̃†(t2)S〉

≈ Gdd (t1,t2; U,t0)〈Tτ e
g̃(b†−b)(t1)e−g̃(b†−b)(t2)〉.

(83)

Assuming an independent Einstein oscillator, we find

〈Tτ e
g̃(b†−b)(t1)e−g̃(b†−b)(t2)〉

= e−g̃2 coth θ
{
I0(κ) +

∑
s�1

Is(κ)
[
esθ e±isω0(t1−t2)

+e−sθ e∓isω0(t1−t2)
]}

, (84)

where the upper signs correspond to i(t1 − t2) > 0 and the
lower ones to i(t1 − t2) < 0. Going from the complex time
variables to the real ones, the following relation between
g̃

≶
dd (ω; U ) and g

≶
dd (ω; U ) is obtained

g̃
≶
dd (ω; U ) = e−g̃2 coth θ

{
I0(κ)g≶

dd (ω; U )

+
∑
s�1

Is(κ)
[
esθg

≶
dd (ω ± sω0; U )

+e−sθ g
≶
dd (ω ∓ sω0; U )

]}
. (85)

With the identities

esθ = 2 sinh(sθ )[1 + nB(sω0)], (86)

e−sθ = 2 sinh(sθ )nB(sω0), (87)

the electronic function g̃
≶
dd (ω; U ) may be expanded as

g̃
≶
dd (ω; U )

= e−g̃2 coth θ
(
I0(κ)g≶

dd (ω; U )

+
∑
s�1

Is(κ)2 sinh(sθ ){[1 + nB(sω0)]g≶
dd (ω ± sω0; U )

+ nB (sω0)g≶
dd (ω ∓ sω0; U )}). (88)

Considering Eqs. (44) and (45), the electronic spectral function
is obtained in terms of the polaronic one as

Ã(ω; U ) = g̃<
dd (ω; U ) + g̃>

dd (ω; U )

= e−g̃2 coth θ
(
I0(κ)A(ω; U ) +

∑
s�1

Is(κ)2 sinh(sθ )

×{[nB(sω0) + f̄ (ω + sω0; U )]A(ω + sω0; U )

+ [nB(sω0)+1−f̄ (ω − sω0; U )]A(ω − sω0; U )}).
(89)

G. Current

The operator of the electron current from lead a to the dot
reads

Ĵa = ie√
N

∑
k

[tkad̃
†cka − t∗kac

†
kad̃]. (90)

To calculate the mean value Ja = 〈Ĵa〉, the following connec-
tion of the expectation values to the real-time Green functions
is used

i〈d̃†cka〉 = g̃<
cd (k,a; t1,t1; U )

=
∫ ∞

−∞

dω

2π
g̃<

cd (k,a; ω; U ), (91)

i〈c†kad̃〉 = g̃<
dc(k,a; t1,t1; U )

= −
∫ ∞

−∞

dω

2π
[̃g<

cd (k,a; ω; U )]∗. (92)

We start from the nonequilibrium Green function of the
complex time variables for the electron operators, namely,

G̃cd (k,a; t1,t2; U,t0) = − i

〈S〉 〈Tτ cka(t1)d̃†(t2)S〉, (93)

where S is given by Eq. (22). From the commutators with
the Hamiltonian in the electron representation, the equation of
motion is obtained

(
i

∂

∂t1
− ξka − Ua

)
G̃cd (k,a; t1,t2; U,t0)

= − t∗ka√
N

G̃dd (t1,t2; U,t0). (94)
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Equation (94) can be rewritten as

G̃cd (k,a; t1,t2; U,t0)

− t∗ka√
N

∫ t0−iβ

t0

dt̄ G(0)
cc (k,a; t1,t̄ ; U )G̃dd (t̄ ,t2; U,t0). (95)

Performing the limit t0 → −∞ while keeping i(t1 − t2) < 0,
the following equation for the real-time response functions is
obtained

−
√

N

t∗ka

g̃<
cd (k,a; t1,t2; U )

=
∫ t1

−∞
dt̄ g(0)>

cc (k,a; t1,t̄ ; U )̃g<
dd (t̄ ,t2; U )

+
∫ ∞

t1

dt̄ g(0)<
cc (k,a; t1,t̄ ; U )̃g<

dd (t̄ ,t2; U )

−
∫ ∞

t2

dt̄ g(0)<
cc (k,a; t1,t̄ ; U )̃g<

dd (t̄ ,t2; U )

−
∫ t2

−∞
dt̄ g(0)<

cc (k,a; t1,t̄ ; U )̃g>
dd (t̄ ,t2; U ), (96)

where the quasiequilibrium functions of the noninteracting
leads, g

(0)≶
cc , coincide with the expressions (55), with (t1 − t2)

real. Based on Eq. (96), the formal manipulations presented in
the Appendix, which are analogous to the considerations made
in Ref. 3, finally lead to the following formula for the electron
current from the lead a to the dot:

Ja = e

N

∑
k

|tka|2
∫ ∞

−∞
dω δ(ω − ξka)

× [f (ξka + Ua)Ã(ω; U ) − g̃<
dd (ω; U )]

= e

∫ ∞

−∞

dω

2π
�(0)

a (ω + μ)

× [f (ω + Ua)Ã(ω; U ) − g̃<
dd (ω; U )], (97)

where the electronic functions g̃<
dd (ω; U ), Ã(ω; U ) are given

by Eqs. (88) and (89), respectively. Since JL = −JR in steady
state, the current formula acquires the well-known form3

J = 1

2
(JL − JR)

= e

2

∫ ∞

−∞

dω

2π
�(0)(ω + μ) [fL(ω) − fR(ω)] Ã(ω; U ), (98)

with fa(ω) = f (ω + Ua). In Eq. (98), identical leads are
assumed, so that �(0)(ω) ≡ �

(0)
L (ω) = �

(0)
R (ω). As a check of

our numerics, we find indeed that the condition JL = −JR

holds, as expected for the SCBA. For vanishing voltage bias
� → 0, we can express the current as J = −L�, where the
linear conductance

L = lim
�→0

{−J/�} (99)

results from Eq. (98) as

L = e2

2

∫ ∞

−∞

dω

2π
�(0)(ω + μ) [−f ′(ω)] Ã(ω)

= e2

2
β

∫ ∞

−∞

dω

2π
�(0)(ω + μ)f (ω)[1 − f (ω)]Ã(ω), (100)

and the electronic spectral function is now calculated in
equilibrium.

III. NUMERICAL RESULTS

As stated above, the spectral function, dot occupation,
and γ have to be evaluated self-consistently. We do this in
a two-step manner: (i) for fixed γ and a starting value nd

in Eq. (8) we calculate �
(1)
dd (ω), �(1)(ω). The corresponding

A(1)(ω) and f̄ (1)(ω) are inserted for A and f̄ in the right-hand
side of Eqs. (66) and (71). All functions are then iterated until
convergence, which is signalled by

max
ω

{|Ai+1(ω; U ) − Ai(ω; U )|} < δ, (101)

with δ being a predefined tolerance. In analogy to the
occurrence of multiple stable solutions in the mean-field ansatz
of Galperin et al.,15 for strong EP coupling or high voltages,
several roots of Eq. (73) may exist. We choose the root that
minimizes the thermodynamic potential. (ii) We do this for all
parameters γ to find the global minimum of �[γ,nd (γ )]. The
corresponding parameter will be referred to as γmin.

In the following numerical calculations, we suppose iden-
tical leads and work in the wide-band limit, so that �(0)(ω) =
�(0) is energy independent.

The equilibrium state, as well as the transport proper-
ties of molecular junctions crucially depend on the time
scales of the electronic and phononic subsystem. While the
lifetime of an electron on the dot is given by the dot-lead
coupling parameter, τel ∝ 1/�(0),29 the phononic time scale
is given by the phonon energy τph ∝ 1/ω0. The ratio �(0)/ω0

determines which subsystem is the faster one. Moreover, one
should compare the polaron formation time τpol ∝ 1/εp to
the electron lifetime. If the latter is long enough, i.e., if the
ratio εp/�(0) is large, a transient polaron can form at the dot.
The parameter g2 will yield the mean number of phonons it
contains.

A. Equilibrium situation, low temperature

We first consider the equilibrium low-temperature limit
with μL = μR = μeq = 0 and T = 0.01. Before we study
the physically more interesting regime of equal electronic
and phononic time scales, we analyze the two limiting cases
�(0) � ω0 and �(0) � ω0. In the following, ω0 = 1 fixes the
energy unit.

1. Limiting cases

In the adiabatic case �(0) � ω0, the dot deformation adjusts
quasistatically to the average electronic occupation. For small
EP coupling, standard perturbation approaches are applicable
and the expansion of the self-energy to second order leads to
the Born-approximation (BA). On a higher level, the SCBA26

provides a partial resummation of the perturbation series by
replacing the zero-order Green function in the BA self-energy
with the full Green function in a self-consistent way. As was
mentioned above, our result (53) reduces to the SCBA for
γ → 0.

Figure 1(a) shows the electronic spectral function of the
adiabatic quantum dot system with � = 0 and εp = 5. We
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FIG. 1. (Color online) For model parameters T = 0.01, μ = 0,
and � = 0. (a) Electronic spectral functions for �(0) = 10, εp = 5,
and � = 0 with γ = 0 and γmin = 0.28, respectively. Arrows mark
the phononic features for γ = 0. (b) Electronic spectral functions for
�(0) = 0.1, εp = 1, and � = 1 with γ = 1 and γmin = 0.81, respec-
tively. (c) Dot occupation and variational parameter as functions of
the bare dot level � for �(0) = 0.1 and εp = 0.3.

compare the SCBA result (γ = 0) to the result of the varia-
tional calculation, yielding γmin = 0.28. The SCBA spectrum
consists of a single band, whose width is given by �(0). Due
to the mean-field shift ∝ nd = 0.7, the renormalized dot level
lies beneath the Fermi level of the leads (at ω = 0) and the dot
acts as a tunneling well. Because of the short residence time
of electrons, the effects of inelastic scattering at the dot are
small. At ω = −ω0 (ω = +ω0), we find a small peak (dip) in
Ã (see arrows) due to narrow logarithmic singularities in the
denominator of Eq. (48).7

The variational calculation introduces several corrections to
the spectrum. The finite γmin reduces the effective mean-field
coupling, i.e., the last term in the polaron shift (8). Because it
is not fully compensated by the nd -independent contribution

to Eq. (8), the overall band shifts upward. In addition, situated
at integer multiples of ω0 from the lead chemical potential,
several inelastic resonances form overlapping phononic side-
bands. Because Ã(ω = 0) is lowered, transport through the
dot remains coherent, but with a slightly reduced tunneling
amplitude.

In the strong coupling, antiadiabatic case �(0) � ω0, the
electron occupies the dot long enough to loose coherence and
interact with the phonons. Several approaches20–22 handle this
regime by applying a complete Lang-Firsov transformation
(γ = 1)19 to the Hamiltonian, which gives the exact solution
for the isolated molecule or when the finite occupation of the
leads is neglected.31 Consequently, γmin can be considered a
measure of the small polaron character of the dot state.

Again we compare the corresponding limit γ = 1 to
the result of the variational calculation while setting � =
εp = 1 [see Fig. 1(b)]. In the former case, the dot level is
renormalized by the polaron binding energy and represented
by the zero-phonon peak at �̃ = � − εp = 0. In addition, we
find pronounced peaks separated by ω0, signaling the emission
of phonons by incident electrons and holes. The spectrum
documents the formation of a long-living polaron state at the
dot, with a mean number of phonons given by g2 = 1.

For the same parameters, the variational calculation yields
γmin = 0.81 < 1 and we find a somewhat broader main peak
and less spectral weight in the phonon sidebands (̃g2 = 0.66).
Consequently, incoherent hopping transport through the dot
takes place via an intermediate polaron state, whose spectral
weight and lifetime are smaller than predicted by the complete
(γ = 1) Lang-Firsov calculation.

Figure 1(c) finally shows the dot occupation and variational
parameter as functions of the dot level � in the antiadiabatic
case �(0) = 0.1, but for small EP coupling εp = 0.3. In this
regime, we find γmin ≈ 0.7. This is in good quantitative
agreement with the result of La Magna and Deretzis,17

who applied a variational Lang-Firsov transformation to an
effective electron model [cf. Fig. 2(b) in Ref. 17]. The above
calculations show that, although the Lang-Firsov approach
provides the correct physical mechanism, away from the
very strong coupling limit, adiabatic corrections may not be
neglected.

2. Intermediate dot-lead coupling regime

We now investigate the regime of comparable electronic and
phononic time scales by setting �(0) = 1. Figure 2 presents
the results of the equilibrium calculation for zero to large
EP coupling strengths. Shown here are, as functions of the
bare dot level �: the dot occupation nd (a), the variational
parameter γmin and the renormalized dot level η̃ (b), and the
linear conductance L (d). For fixed εp and �, Fig. 2(c) gives
the thermodynamic potential as a function of γ while Figs. 2(e)
and 2(f) display the electronic spectral functions at � = εp.

For εp = 0, the self-energy (53) is exact (black curves
in Fig. 2) and the rigid dot acts as a tunneling barrier. As
� is lowered and the dot charges continuously, the linear
conductance increases, reaching a maximum at � = 0, where
the dot level aligns with the lead chemical potentials and
resonant tunneling is possible. The width of the conductance
resonance is determined by the electron lifetime �(0).
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FIG. 2. (Color online) For model parameters �(0) = 1, T = 0.01, μ = 0, and � = 0. (a) Dot occupation as a function of the bare dot level
for several εp . (b) Variationally determined γmin and renormalized dot level as functions of the bare dot level �. (c) Thermodynamic potential as
a function of γ for εp = 6 and � in the vicinity of the discontinuous transition. Here, we consider the lower (black solid line) or upper (dashed
red line) root of the self-consistency equation for nd . (d) Linear conductance as a function of the bare dot level. (e) Electronic spectral function
for εp = 2 at resonance. (f) Electronic spectral functions for εp = 6 and � slightly above (� = 6+) and below (� = 6−) the discontinuous
transition.

For finite εp, the variational parameter γmin ≈ 0.5 and
grows only slightly at � = εp. As expected, for equal
electronic and phononic time scales we are far from the
weak coupling (γ = 0) and strong coupling (γ = 1) limits.
As a consequence of the EP coupling, the charging transition
from nd ≈ 0 to nd ≈ 1 shifts to higher � because of an
overall lowering of the effective tunneling barrier. Due to the
self-consistent mean-field coupling in Eq. (8), the transition
becomes more rapid and even discontinuous for εp > 5
(signalled by the dotted green lines). Here, the system switches
between two stable solutions of Eq. (73) in analogy to the
strong-coupling results of Refs. 15 and 17. Figure 2(c) shows
the thermodynamic potential as a function of γ for εp = 6
with � slightly below and above resonance. For γ < 0.55,
the effective mean-field coupling in Eq. (8) is so strong, that
Eq. (73) has two roots. For � < εp, the global minimum of
the thermodynamic potential, situated at γ = 0.5, corresponds
to high nd . As � crosses the resonance, the roots change
roles and the relevant nd jumps. An adiabatic phase transition
from nd = 0 to nd = 1 was also found for a single electron
at a vibrating quantum dot.14,32 Rapid polaron formation and
multistability are considered possible mechanisms for strongly
nonlinear transport properties of molecular junctions such as
NDC.15–17

From Fig. 2(a) we see that, in case of a continuous transition,
nd = 0.5 whenever � = εp. As can be easily checked from
Eq. (8), at this point the renormalized dot level resonates
with the lead chemical potentials, i.e., η̃ = 0 irrespective
of γmin. Figure 2(e) shows the corresponding electronic
spectral function for moderate coupling εp = � = 2. Few
(̃g2 = 0.5) broad sidebands signal phonon emission by either

particles (ω > 0) or holes (ω < 0). The spectrum suggests that
transmission remains coherent, but is governed by the slightly
increased lifetime of the transient polaron state ∝ 1/�̃(0),
with �̃(0) = 0.6. In case of a discontinuous charging, the
dot level is shifted instantly across the resonance and there
is no particle-hole symmetric situation, as is demonstrated
by the spectral functions near the transition for εp = 6 [see
Fig. 2(f)]. Because g̃2 = 1.5 > 1, spectral weight is shifted
from the narrow main peak to multiphonon states, reducing
the tunneling rate in the off-resonant situation considerably
(Franck-Condon blockade).

The effects of the EP coupling on the linear response of
the quantum dot can be seen in Fig. 2(d). Due to the rapid
charging and the growing lifetime of the transient polaron,
the symmetrical conductance resonance shifts and narrows.
This result coincides with the findings of Entin-Wohlmann
et al.7 and contradicts the εp-dependent broadening shown in
the work of Mitra et al.6 Note that in case of a continuous
transition, the maximum value of L is independent of the
EP coupling strength because the dependence of L on �̃(0)

cancels in the low-temperature limit.7,33 In the strong-coupling
limit, the resonance is skipped and the linear-response signal
lowers. In accordance with Refs. 7 and 6, we find no side
peaks in the linear conductance at low temperatures. This
is due to “floating” side bands6 in the electronic spectral
functions: for all � the phonon signatures are offset by
ω0 below and above the lead Fermi level, as can be seen
from Fig. 2(f). Consequently, they are not resolved in the
low-temperature linear response. This fact is missed by single-
particle approaches.21

125131-10



NONEQUILIBRIUM TRANSPORT THROUGH MOLECULAR . . . PHYSICAL REVIEW B 84, 125131 (2011)

2 3 4 5 6 7
Δ

0

0.2

0.4

0.6

0.8

1

n d

T=0.01
T=0.3

(a)

2 3 4 5 6 7
Δ

-2

0

2

4

η~

0.4

0.6

0.8

1

γ m
in

(b)

-0.4

-0.2

0

Ω

low nd(γ)
high nd(γ)

0 0.2 0.4 0.6 0.8 1
γ

-0.4

-0.2Ω

Δ=3.9

(c) T=0.3

Δ=4.1

2 3 4 5 6 7 8
Δ

0

0.01

0.02

L

2 4 60

0.05

0.1

Γ~
(0

)

(d)

-8 -4 0 4 8
ω

0

2

4

6

8

10

A~

0

0.2

0.4

0.6

0.8

1

S

(e)

Δ=5
γmin=0.6

-8 -4 0 4 8
ω

0

2

4

6

8

10

A~

0

0.2

0.4

0.6

0.8

1

S

(f)

Δ=4.5
γmin=0.9

FIG. 3. (Color online) For model parameters �(0) = 0.3, μ = 0, � = 0, εp = 4, and several temperatures. (a) Dot occupation as a function
of the bare dot level. (b) Variationally determined γmin and renormalized dot level as functions of the bare dot level. (c) Thermodynamic potential
as a function of γ for T = 0.3 and � in the vicinity of the resonance. Here, we consider the lower (black solid line) or upper (dashed red line) root
of the self-consistency equation for nd . (d) Linear conductance as a function of the bare dot level. Inset: renormalized dot-lead coupling. (e) and
(f) Electronic spectral function Ã and integrated spectral weight S for T = 0.3 and � = 5 and � = 4.5, respectively.

B. Equilibrium, high temperature

In the following, we consider the effect of finite tempera-
tures on the equilibrium properties of the quantum dot. We set
�(0) = 0.3 and εp = 4, thereby entering the strong-coupling,
nonadiabatic regime. Figure 3 shows the same quantities as
Fig. 2, but compares the low-temperature result (T = 0.01,
black curves) to our findings for T = 0.3, which, considering
phonon energies in the order of 100 meV,2,34 corresponds to
room temperature.

Comparing the low-temperature result in Fig. 3(a) to the
one for εp = 4 in Fig. 2(a), we see that the reduction of the
bare-electron tunneling rate increases the effective EP coupling
strength in such a way that the charging transition becomes
discontinuous. If we increase the temperature, the transition
becomes continuous again. As Fig. 3(c) shows, for T = 0.3
the optimal γ is situated in a region where only a single root
of Eq. (73) exists [cf. Fig. 2(c)].

Moreover, at high temperatures the Fermi edges of the leads
soften. Thermally excited lead electrons see a considerably
reduced injection gap so that the charging transition becomes
wide spread. We know from Sec. III A 1 that in the strong-
coupling antiadiabatic regime at resonance, when phonon
emission by electrons and holes is possible, the variational
parameter γmin comes close to unity. At finite temperatures
T ≈ ω0 absorption of free phonons by incident electrons
opens additional inelastic transmission channels. Our ansatz
accounts for this with γmin approaching one at � ≈ 4.5
well above resonance. The polaron formation is signalled
by two wiggles in the renormalized dot level. The impact
on the linear conductance can be seen in Fig. 3(d): in

contrast to the low-temperature result, we now find three peaks
in L.

Figures 3(e) and 3(f) compare the electronic spectral
functions before and after the polaron formation. For � = 5
and γmin ≈ 0.6, nearly all spectral weight lies in a few
overlapping emission signals situated above the chemical
potential. Because at T ≈ ω0 the floating condition mentioned
in Sec. III A 2 is relaxed, we find a small phonon peak at the
chemical potential. That is why the conductance resonance
broadens with respect to the low-temperature result. For � →
4.5, the phonon peaks are shifted away from the chemical
potential. As γ approaches one, the polaron lifetime ∝ 1/�̃(0)

is increased by one order of magnitude [see inset Fig. 3(d)].
Consequently, the peaks in the spectral function narrow and
spectral weight is transferred to higher-order phonon signals.
The net linear response, being an average over transmission
channels near the chemical potential, decreases and shapes
the outer conductance peaks. At � = εp = 4 the narrow
zero-phonon peak crosses the usual resonance. We note that
the maximum value of L is smaller than in the low-temperature
calculation.

C. Nonequilibrium situation

The most important experimental technique for the charac-
terization of molecular junctions is IETS. Experiments can be
subdivided into nonresonant and resonant tunneling scenarios
(RIETS). In the former, the energy of the molecular ion (i.e.,
η̃) lies far above the lead chemical potentials. Consequently,
electron residence times are short and inelastic effects are
small. In the latter, resonance is achieved via the application
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FIG. 4. (Color online) For model parameters T = 0.01, �(0) =
10, εp = 2, and � = 8. (a) Second derivative of the electron current
as a function of the voltage bias for fixed γ = 0 (scaled by a factor of
20) and variationally determined parameter γmin, respectively. (b) and
(c) Electronic spectral functions and their first derivatives at � = ω0,
respectively.

of a gate voltage and strong EP interaction is expected. In
both cases the current-voltage characteristics exhibit distinct
features attributed to vibrational coupling at the junction.
In analogy to the preceding sections, we will analyze the
adiabatic and antiadiabatic limiting cases before considering
equal phononic and electronic time scales.

1. Limiting cases

Figure 4(a) shows the second derivative of the total electron
current as a function of the voltage in the nonresonant (� = 8)
adiabatic regime (�(0) = 10) for intermediate EP coupling
strength (εp = 2). For fixed γ = 0 we find a single dip at
� = ω0, where η̃ = 6.8. Here, phonon-emission by incident
electrons causes an additional inelastic tunneling current.
Moreover, quasielastic processes involving the emission and
subsequent absorption of a single phonon are no longer
virtual, because the intermediate polaron state is only partially
occupied. The tunneling current (98) is an integral over the
energies of all incident and outgoing electrons and does not
resolve the various tunneling processes. Therefore polaronic
features are observed in the second derivative of J . As
Persson showed,8 the destructive interference of the elastic
and quasielastic processes may overcompensate the positive
inelastic contribution, leading to the dip in the IETS signal. In
their SCBA analysis, Galperin et al.11 demonstrated the strong

qualitative dependence of this signature on the dot level � and
the bare molecule-lead coupling �(0). Our ansatz allows for the
polaronic renormalization of both these parameters; at � = ω0

the variational calculation gives an optimal γmin = 0.3 and the
effective dot level is further lowered (̃η = 6.4 at � = ω0). As
can be seen from the electronic spectral function in Fig. 4(b),
the spectral weight of inelastic electron tunneling processes at
ω � �/2 = 0.5 grows at the cost of the elastic transmission at
ω = 0. As a consequence, the overall IETS signal now shows
a pronounced peak at � = ω0 [note the scaling of the curves
in Fig. 4(a)] and additional phonon features whenever the
voltage crosses integer multiples of ω0. With the current being
an integral over the quantum dot spectrum, the qualitative
change in the one-phonon IETS signal can be traced back to
the first derivative of Ã(ω),10 which can be seen in Fig. 4(c).
When going from γ = 1 to γmin = 0.3, the sum of the peak
derivatives of Ã at ω = μL,R = ±�/2 changes sign, showing
that the inelastic tunneling current outweighs the destructive
interference of the elastic channels.

Figures 5(a) and 5(b) present the total current and differen-
tial conductance as functions of the voltage in the resonant
(� = 2) antiadiabatic regime (�(0) = 0.1) for intermediate
EP coupling strength (εp = 2). Because the voltage is raised
symmetrically around the equilibrium chemical potential, the
dot occupation as well as the renormalized dot level η̃ = 0
remain constant. Both the variational calculation and the
γ = 1 case exhibit steps in the total current and pronounced
peaks in the differential conductance whenever the voltage
equals multiple integers of 2ω0. Here, resonant tunneling
through phononic sidebands becomes possible. At � ≈ 12, the
current saturates because now the so-called “Fermi window”
ω ∈ [−�/2, + �/2] encompasses all phonon side bands [see
Fig. 5(c)]. In the low-voltage region � < 4, the optimal
variational parameter differs considerably from one (γmin ≈
0.9), thereby increasing the overall weight of the relevant
few-phonon inelastic tunneling channels. As a consequence,
the low-voltage current is larger than in the γ = 1 case.
Nevertheless, the growth of γmin along a current plateau
dynamically shifts spectral weight from the corresponding
resonant inelastic channel to higher lying bands outside the
Fermi window. As can be seen from the inset of Fig. 5(b), the
differential conductance is negative, which is in accordance
with the polaron-induced NDC found by La Magna and
Deretzis.17 Only when an upward step (peak in d2J/d�2)
signals the opening of a nonresonant inelastic channel, the
differential conductance becomes positive again.

2. Intermediate dot-lead coupling regime

We now turn to the regime of equal electronic and phononic
time scales, setting �(0) = 1 and keeping T = 0.01 and εp =
2 fixed. First, we hold � = 2 at resonance, starting with
γmin = 0.5 and nd = 0.5 in equilibrium (cf. Fig. 2). Figure 6(a)
presents the corresponding current-voltage characteristics. We
compare the result of the variational calculation (black solid
lines) to the case with fixed γ = 1 (blue dashed lines) and to
an effective electron model (red dash-dotted lines). The latter
is obtained by setting g = 0 in Eqs. (66) and (71) and inserting
for �(0)

a the renormalized dot-lead coupling �̃(0) resulting from
the variational calculation. It is comparable to earlier works
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FIG. 5. (Color online) For model parameters T = 0.01, �(0) =
0.1, εp = 2, and � = 2. (a) Electron current as a function of
the voltage bias, compared to the result with fixed γ = 1. Inset:
renormalized dot-lead coupling. (b) Differential conductance as a
function of the voltage bias. Inset: zoom on the low-voltage region.
(c) Electronic spectral functions Ã and nonequilibrium electron
distribution functions f̃ for several voltages.

where the averaging over the phonon state leads to an effective
electron Hamiltonian.17,35

With growing voltage, the variational parameter steadily
increases and approaches one in the high-voltage limit � > 6.
The elastic transmission rate �̃(0) shown in the inset of Fig. 6(a)
decreases accordingly. It exhibits steps at integer multiples of
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FIG. 6. (Color online) �(0) = 1, � = 2, and εp = 2. (a) Electron
current as a function of the voltage for the variational calculation
(γmin), compared to the result with fixed γ = 1 as well as an effective
electron model using renormalized parameters �̃(0) and η̃ determined
by the variational calculation. (b) Differential conductance as a
function of the voltage bias. Inset: zoom on the low-voltage region.
(c) Electronic spectral functions Ã and nonequilibrium electron
distribution functions f̃ for several voltages.

2ω0, suggesting that the polaron formation is especially rapid
whenever a new resonant inelastic channel is accessible. The
electronic spectral functions in Fig. 6(c) show that spectral
weight is shifted from the zero-phonon peak to the overlapping
phonon side bands.
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The current-voltage characteristics of the interacting results
(γmin and γ = 1) contain signatures of both limiting cases
discussed in Sec. III C 1, as can be seen from the differential
conductance in Fig. 6(b). As before, at voltages corresponding

to integer multiples of 2ω0, steps in the current (peaks in the
conductance) signal the onset of resonant inelastic tunneling.
These steps are considerably broadened and overlap with the
onset of nonresonant inelastic tunneling. As a consequence,
the polaron-induced renormalization of the resonant channel
is compensated and, in contrast to the low-voltage antiadiabatic
regime, dJ/d� remains strictly positive.

The effective electron model overestimates the current in
the region ω0 < � < 2ω0. Since the spectrum contains no
phonon side bands, for � > 2ω0 the decrease of the elastic
tunneling rate ∝ �̃(0) is not compensated by resonant or
nonresonant inelastic transmission processes. Consequently,
we find a considerably lower maximum current and, in
accordance with the results of La Magna and Deretzis,17 NDC
in the intermediate-to-high-voltage region. We conclude that
the polaron-induced renormalization of the dot-lead coupling
is indeed a possible mechanism for NDC. Yet, the effective
electron calculation misses the spectral features that are
essential for electron transport at voltages exceeding ω0.
The interplay of several inelastic transmission channels may
heavily reduce or, for �(0) � ω0, even prevent the occurrence
of NDC.

Another interesting consequence of the dynamic polaron
formation can be observed in the high-voltage regime, where
a crossover from nonresonant to resonant transport takes place.
We keep the above system parameters, but start from the
nonresonant equilibrium situation with � = 8. The result is
presented in Fig. 7. As the voltage is raised, the variational
parameter as well as the effective dot level remain nearly
constant and transport takes place via nonresonant inelastic
tunneling. At � = 12.4, the chemical potential of one lead
resonates with η̃ = 6.2, causing a broad step in the total
current. When the voltage is raised further, the system
maximizes its kinetic energy by decreasing the polaronic shift
in such a way, that η̃ stays locked to the lead chemical potential
[see Fig. 7(b)]. As the spectral functions in Fig. 7(c) suggest,
this happens at the cost of the inelastic transmission channels.
As soon as γmin = 0 and resonance of the zero-phonon level
can no longer be maintained, the system reduces its potential
energy by forming a transient polaron. Here, γmin jumps to
one and the effective dot level is lowered by the full polaron
binding energy εp. The spectral functions in the vicinity of
this transition show that the spectral weight is redistributed to
inelastic channels within the Fermi window. Consequently, the
current shows no discontinuity or NDC at this point.

IV. SUMMARY

In this work, we investigate the steady-state transport
through a vibrating molecular quantum dot. Within the
Kadanoff-Baym formalism, the nonequilibrium dot self-
energy is calculated to second order in the interaction coef-
ficients. To describe the polaronic character of the quantum
dot state, we apply a variational Lang-Firsov transformation
and determine the degree of transformation self-consistently
by minimizing the thermodynamic potential.

In this framework, we are able to study the molecular
junction for all ratios of the dot-lead coupling to the energy
of the local phonon mode, i.e., from the adiabatic to the
antiadiabatic regime. Moreover, the EP interaction can be
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varied from weak to strong coupling. Tuning the electronic
dot level and the external voltage bias, we can finally consider
resonant and off-resonant transport in the equilibrium and
nonequilibrium situation.

In the adiabatic regime, we find important corrections to
the result of the SCBA when the EP coupling grows: in the
equilibrium off-resonant situation, the mean-field oscillator
shift is reduced and spectral weight is transferred from
elastic to inelastic channels. For finite voltages, we observe
a pronounced peak in the electron tunneling signal, followed
by several pronounced multiphonon features.

In the antiadiabatic regime, away from the very strong
coupling limit, the weight of the transient polaron state is
smaller than predicted by the complete Lang-Firsov trans-
formation. Accordingly, the equilibrium linear conductance
as well as the low-voltage resonant tunneling current in-
crease, because few-phonon emission processes are amplified.
As the voltage bias grows, the full Lang-Firsov polaron
forms. Here, due to a dynamical renormalization of the
dot-lead coupling, we find NDC along the resonant current
plateaus.

Most notably, our variational approach also allows the
investigation of the intermediate regime where the dot-lead
coupling and the phonon energy are of the same order. For
weak EP coupling, the linear conductance shows a single
resonance peak as a function of the electronic dot level. When
the coupling strength is increased, this peak narrows and shifts,
signaling the crossover from coherent tunneling to sequential
hopping via a long-living, transient polaron at the dot. For very
strong coupling, the polaron formation takes place discontin-
uously, as the system switches between various metastable
states. At finite temperatures, this transition becomes contin-
uous again. At the same time, the equilibrium linear conduc-
tance signal broadens and shows distinct phonon side peaks.
Thermally activated transport via phonon absorption induces
polaron formation far from resonance. In the low-temperature
nonequilibrium situation, the differential conductance remains
positive for all voltages: the polaron-induced renormalization
of the dot-lead coupling is compensated by the onset of off-
resonant inelastic transport. In the off-resonant high-voltage
regime, the polaron level follows the lead chemical potential
to enhance resonant transport and maximize the kinetic
energy.

Let us emphasize that we determine the current through the
dot by means of an approximation to the electronic spectral
function that contains inelastic features to all orders in the
EP coupling. We compare our results to an effective electron
model, which accounts for the electron-phonon interaction
only via a renormalized dot-lead coupling parameter (e.g.,
in analogy to Ref. 17). For this model negative differential
conductance is observed. This is because the effective elec-
tronic spectral function does not include inelastic features
that affect transport for voltages exceeding the phonon
frequency.

The present study may be extended in several directions:
(i) description of hysteretic behavior in the strong-coupling,
high-voltage regime, (ii) inclusion of the dynamics of the
phonon subsystem by means of nonequilibrium phonon Green
functions, and (iii) incorporation of Coulomb interaction at
the dot to produce even stronger nonlinear effects through the

competition of a population-dependent repulsive dot potential
with the polaronic level shift.
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APPENDIX: DERIVATION OF THE
CURRENT FORMULA

Deducing the current response in Sec. II G, the following
real-time Green functions (defined according to Mahan31) are
used

gt (t1,t2) = �(t1 − t2)g>(t1,t2) + �(t2 − t1)g<(t1,t2), (A1)

gt̄ (t1,t2) = �(t2 − t1)g>(t1,t2) + �(t1 − t2)g<(t1,t2), (A2)

where � is the Heaviside function. The relations of gt and gt̄

to the retarded and advanced Green functions read

gret = gt − g< = g> − gt̄ , (A3)

gadv = gt − g> = g< − gt̄ , (A4)

and Eq. (96) may be written as

−
√

N

t∗ka

g̃<
cd (k,a; t1,t2; U )

=
∫ ∞

−∞
dt̄1 g(0)t

cc (k,a; t1,t̄1; U )̃g<
dd (t̄1,t2; U )

−
∫ ∞

−∞
dt̄1 g(0)<

cc (k,a; t1,t̄1; U )̃gt̄
dd (t̄1,t2; U ). (A5)

As far as the steady-state is concerned, all averages in the
definitions of the Green functions above dependent only on
the differences of time variables. Consequently, the integrals
on the right-hand side of Eq. (A5) may be rewritten in the form
of a convolution and the Fourier transformation of Eq. (A5) is

g̃<
cd (k,a; ω; U ) = − t∗ka√

N

[
g(0)t

cc (k,a; ω; U )̃g<
dd (ω; U )

−g(0)<
cc (k,a; ω; U )̃gt̄

dd (ω; U )
]
. (A6)

Here, the Fourier transforms of the response functions are
defined in the usual convention, i.e., without the factors
±i introduced by Eqs. (35) and (36). In particular, the
conventional Fourier transforms fulfill

[g≶(ω)]∗ = −g≶(ω), (A7)

because the left-hand side of Eq. (35) is a real function. Taking
into account the general property that [gret(ω)]∗ = gadv(ω), the
relations (A3), (A4) and (A7) give

[gt (ω)]∗ = −gt̄ (ω). (A8)
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With the help of Eqs. (A7) and (A8), the complex conjugate
of g̃

≶
cd (k,a; ω; U ) in Eq. (92) is determined and the following

formula for the current Ja results:

Ja = − e

N

∑
k

|tka|2
∫ ∞

−∞

dω

2π

{[
g(0)t

cc (k,a; ω; U )

+g(0)t̄
cc (k,a; ω; U )

]
g̃<

dd (ω; U ) − g(0)<
cc (k,a; ω; U )

× [
g̃t

dd (ω; U ) + g̃t̄
dd (ω; U )

]}
. (A9)

Substituting the explicit forms of the free electron functions

g
(0)≶
cc and using the relation gt + gt̄ = g> + g< following

from Eqs. (A3) and (A4), we obtain

Ja = − e

N

∑
k

|tka|2
∫ ∞

−∞

dω

2π
2πδ(ω − ξka){−ig̃<

dd (ω; U )

+f (ξka + Ua)i [̃g<
dd (ω; U ) − g̃>

dd (ω; U )]}. (A10)

Going back to the definitions of the Fourier transforms
according to Eqs. (35) and (36), we arrive at Eq. (97) of
Sec. II G.
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