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Optical forces and optical torques on various materials arising from optical lattices
in the Lorentz-Mie regime
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By combining the Maxwell stress tensor with the finite-difference time-domain (FDTD) method, we calculate
the optical force and optical torque on particles from optical lattices. We compare our method to the two-
component method and the electrostatic approximation (ESA). We also discuss how particle’s refractive index,
shape, size, and the morphology of an optical lattice influence optical forces and the condition to form stable
optical trapping wells. In addition to optical forces, optical torque from one dimensional (1D) optical lattice is
discussed for particles having anisotropic shapes; metastable and stable equilibrium orientation states are found.
A detailed understanding of the optical force and torque from optical lattices has significant implications for
optical trapping, micromanipulation, and sorting of particles.
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I. INTRODUCTION

The interaction of electromagnetic (EM) waves and
materials leads to the reflection, refraction, and absorption of
EM waves. Since the momentum of the EM waves is changed
during the process, the EM waves exert forces on the materials
to keep the total momentum conserved, as was first pointed out
by Maxwell in 1873.1 The application of optical forces was first
explored by Ashkin using a highly focused laser beam to trap
micro-objects. This breakthrough was later termed “optical
tweezers” or “optical traps.”2–5 Since then, various forms of
optical fields have been developed to achieve optical micro-
manipulation and optical sorting, including optical vortex,6,7

holographic optical tweezers,8,9–14 interferometric optical
tweezers,15–20 standing wave,21–26 plasmonic resonances,27–32

and optical lattices.33–37 The rapid development of optical
micromanipulation provides many applications in various
fields, including sorting of cells, macromolecules, and
colloids,24,36,38–46 colloidal crystals evolution,33–35,47

nanofabrication,9 quantum simulation,8 micro- and
nanomotors,48,49 and the study of the physical properties of
biology systems including DNA at the molecular level.50–57

The numerical calculations of optical forces are clearly very
important to support, design, and nurture the continued fast
development of the experiments and the industrial applications
of optical micromanipulation, trapping, and sorting. This fact
has led to the development of multiple numerical techniques
including (1) generalized Lorenz-Mie theory,58 which is
suitable for calculating optical forces on objects of particular
shapes including spherical, spheroid, and cylinder shapes;58–60

(2) the gradient-force intuitive approach,61 which is suitable for
a strongly focused light source; (3) the T-matrix method,62,63

which is suitable for highly symmetric systems; (4) the
discrete dipole approximation,64 which needs to satisfy two
validation criteria and is computationally cumbersome;64 and
(5) the electrostatic approximation (ESA) method,23,65 which
calculates the optical forces on particles with refractive index
close to the background medium. Recently, finite-difference

time-domain (FDTD) was also used to calculate the optical
force and the acoustic force on micro- and nanoparticles,66–72

but this method has not been extended to optical-lattice
applications.

In this paper we combine a previously reported 3D-FDTD
simulation72,73 and the Maxwell stress tensor (T̃) to compute
both optical forces and optical torques from optical lattices on
particles in the Lorentz-Mie regime. The computation method
is versatile: It can be applied to calculate optical forces and
torques on objects of arbitrary shape and does not require
system symmetry. The calculation covers the Lorentz-Mie
regime (object size ≈ wavelength) where most applications of
optical trapping, micromanipulation, and sorting reside. The
method can be applied to both dielectric and absorbing objects.
The two-component method74 and the ESA method23,65 were
previously used to calculate optical forces from optical lattices.
In contrast the method employed here is still effective even
if the refractive-index contrast between the particle and the
background is high.

The approach can calculate optical forces and optical
torques from various forms of optical fields; we specifically
focus on optical lattices in this paper. Compared to other
techniques, optical trapping and sorting using optical lattices
have two advantages. (1) The number of trapping sites is
high, up to hundreds; the trapping sites are periodic and
can exhibit various optical intensity morphologies.75 (2) The
optical sorting area is large, and control can be automated
to offer high throughput sorting. These advantages enable
interesting applications. For example, optical lattices can
assemble particles to make optical matter including photonic
and phononic crystals34 or potentially even dual-band gap
crystals.76,77 Recently optical lattices have been extended to a
quasicrystalline substrate potential, which assembles particles
to the Archimedean-like tiling.35 In addition to micromanip-
ulations optical lattices can also be used to achieve passive,
parallel, and high-throughput optical sorting.36,37 Furthermore
the optical-mechanical coupling is observed in optical lattices:
the optical-binding effect33,78 leads to collective oscillations79
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and spatially localized vibration with multiple modes in optical
matter.80

II. NUMERICAL APPROACH

According to the momentum conservation theorem, the
force on an object at a specific time can be calculated by

f =
∫

∂S0

T̃ · n dS − ∂

[∫
V

D(r,t) × B(r,t)dV

]/
∂t. (1)

Here ∂S0 is a closed surface over the object and n is
the surface-normal vector. T̃ is the Maxwell stress tensor
expressed as

Ti,j = DiEj + BiHj − (E · D + B · H)δi,j /2. (2)

Here we used Minkowski formulation, which has
been proved to be accurate by comparison with bound
charges/currents approach.81–83 Further, the Maxwell stress
tensor in Eq. (2) can be directly deduced by comparing Lorentz
force and the mechanical force expressed in Eq. (1).81–83 The
Maxwell stress tensor is calculated by a FDTD simulation.
Equation (1) is then used to calculate optical forces.72

We assume that EM waves are time-harmonic fields. The
time-averaged value of ∂[

∫
V

D(r,t) × B(r,t)dV ]/∂t is zero;
therefore, the time-averaged force is

F = 1

τ

∫ τ

0
dt

∫
∂S0

T̃ · n dS. (3)

Here τ is the period of the light source. In addition to the
net force the torque can be calculated by

� = − 1

τ

∫ τ

0
dt

∫
∂S0

n · T̃ × rdS. (4)

Here r is the vector from the center of mass of the object to
the surface element ∂S0.

III. RESULTS AND DISCUSSIONS

In our numerical calculation the wavelength of the light
source in vacuum (λ) is fixed at 1064 nm to relate to the
wavelength of the widely used solid-state lasers (Nd: YAG
and Nd: YLF). All calculation results are applicable to other
typical wavelengths via scaling along with incorporation of the
dispersion of the refractive index. We first consider the simplest
case of a one-dimensional (1D) periodic optical lattice arising
from the interference of two plane waves propagating along
opposite directions in a uniform lossless medium. We assume
that the medium is water and the refractive index nm is taken
as 1.3. The light intensity is calculated by

I = 1

τ

∫ τ

0

(
N∑

i=1

Ei

)
·
(

N∑
i=1

Ei

)
dt, (5)

where N is the number of plane waves. The electronic com-
ponent of the first plane wave is given by E1 = E0 exp(ik0y −
iωt)

�
z, and the electronic vector of the second plane wave

is E2 = E0 exp(−ik0y − iωt)
�
z; here k0 = 2πnm/λ and the

polarization of the two plane waves is along ẑ direction. From
Eq. (5) the light intensity is

I = E2
0 + E2

0 cos(2k0y). (6)

From Eq. (6) the period of the optical lattice (l) is
409 nm. We next introduce a dielectric sphere with diameter
d. The refractive index of the particle (ns) is taken as 1.58
(ns/nm = 1.2), which is typical for polystyrene spheres. We
are interested in particles that have size that is comparable to
the period of the optical lattice. Specifically, we focus on three
kinds of particles: 120-nm diameter (d/l = 0.293), 300-nm
diameter (d/l = 0.733), and 540-nm diameter (d/l = 1.32).
We change the positions of the centers of the particles (y)
in the optical lattices and calculate the optical forces. From
Eqs. (1)–(4) optical forces are directly proportional to the light
source power, thus we express the force in the form of F/E2

0 .
The results are shown as the solid lines in Figs. 1(a), 1(b), and
1(c), and the dashed lines are the light intensity distribution. In
Figs. 1(a) and 1(b) the optical forces push the sphere center to
the high light-intensity positions and trap it there. In Fig. 1(c),
however, optical forces push the center of the sphere to the
lowest light-intensity positions. From Figs. 1(a), 1(b), and 1(c),
we find that the optical force can be expressed as

F (x,y,z) = F0C(x,y,z), (7)

where C(x,y,z) is a function of the particle position in the
optical lattice and indicates how the optical force changes
with the particle position. In the 1D-optical lattices C(x,y,z)
is only related to y because of the system symmetry, thus it can
be expressed as C(y). Comparing C(y) in Figs. 1(a), 1(b), and
1(c) demonstrates a perfect match, which is shown in Fig. 1(d).

The maximum force the particle experiences is F0, and it
is a function of the particle size and permittivity. We assume
that F0 is negative when optical forces push the particle center
to the low light-intensity positions. Figure 2 shows how F0

changes with the diameter of the particle d. F0 increases with
particle diameter until the diameter is around the period of
the optical lattice, and then F0 drops quickly with increasing
diameter and becomes negative in some range.

We can understand how the optical forces on particles arise
from optical lattices from examining the energy aspect. We
first assume that the dielectric particle can be modeled as a set
of multiple dipoles. The interaction energy between a single
dipole p and the electric field E is −p · E. If the refractive
index of the particle is near to the background material, p
and E are generally in phase, so the particles are pushed into
high light-intensity positions to achieve minimum interaction
energy. When the diameter of the particle is smaller than the
period of the optical lattice, the optical forces push the particle
center to the high light-intensity positions and the particle
stabilizes at the light-intensity peaks. However, if the diameter
of the particle is bigger than the period, the particle can
span two light-intensity peaks within the particle when its
center lies in the low light-intensity positions. As the diameter
increases continually, the particle center may return to high
light-intensity positions to hold three peaks in the material, so
F0 oscillates as d increases. Figure 2 shows the oscillation of
F0 in the range of 6 nm <d <540 nm (0.015 < d/l < 1.320).
To quantitatively explain Fig. 2, we define the following
parameter to represent how much of the EM field is inside
the particle:

σ = −
∫∫

V0

∫
I (x,y,z)dxdydz. (8)
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FIG. 1. Optical forces for particles with (a) 120-nm diameter, (b) 300-nm diameter, (c) 540-nm diameter. (d) The trends for optical forces
acting on particles of different sizes agree with the theoretical predictions.

Here V0 is the region occupied by the particle and I (x,y,z)
is the light intensity of the optical lattice. The parameter σ

represents the interaction energy between the particle and
the optical lattice, thus the optical force should be directly
proportional to the spatial derivative of the parameter σ :

F ∝ −∇σ =
∫∫

V0

∫
∇I (x,y,z)dV. (9)

FIG. 2. F0 in the range of 0 < d < 1.5l. The broken line is
∇σ0/E

2
0 .

For the 1D-optical lattice, the maximum optical force is

F0 = −∇σ0 ≈ 2E2
0k0

∫∫
V0

∫
sin

[
2k0(y + 0.25l)

]
dV . (10)

In Eq. (10) the particle center is at the origin of the
coordinates. We plot ∇σ0/E

2
0 as the dotted line in Fig. 2.

The reason for the shape differences between ∇σ0/E
2
0 and

F0/E
2
0 is that the light intensity in Eq. (8) is calculated from

light intensity of the optical lattice; the actual field inside the
particle is different from the field of the optical lattice. Despite
this, ∇σ0/E

2
0 gives a very good approximation to F0 in the

range of 0 < d < l.
Except for the energy aspect, optical forces from optical

lattices can also be calculated by the two-component method.74

The trapping abilities of optical lattices mainly come from
gradient force. The particle can be assumed as a set of dipoles.
For a single dipole its polarization is proportional to the electric
field applied on it and can be expressed by Clausius-Mossotti
relation:

P(r,t) = 3εmε0(εs − εm)/(εs + 2εm)Eapplied(r,t). (11)

By employing (11), the gradient force on the dipole can be
expressed as

fgrad(r,t) = 3ε0εm(εs − εm)/(2εs + 4εm)∇E2
applied(r,t)dV.

(12)
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Here dV is the volume of the dipole. The total force on the par-
ticle is the integral of Eq. (12) over the volume of particle, thus

Fgrad(r) = 3εmε0(εs − εm)/(2εs + 4εm)

×
∫∫

V0

∫
∇〈

E2
applied(r,t)

〉
τ
dV . (13)

In Eqs. (11)–(13) the applied field Eapplied(r,t) on the dipole
contains both the electric field from other dipoles and the
electric field of the light source. If the particle is small and the
refractive index of the particle is near to the background, the
impact from other dipoles can be omitted, thus

Fgrad(x,y,z) ≈ 3εmε0(εs − εm)/(2εs + 4εm)

×
∫∫

V0

∫
∇I (x,y,z)dV . (14)

The ESA method is also used to calculate optical forces
from optical lattices.23,65 The energy difference caused by
introducing particles into optical lattices can be expressed by

�W =
∫∫

V

∫
(ED − EiDi + HB − HiBi)/2dV . (15)

Here V is the volume of the whole system; E,D,B,H are
the fields after the particle is introduced into the optical lattice;
and Ei ,Di ,Bi ,Hi are the fields before the particle is introduced.
Equation (15) can be transformed into

�W = −ε0εm(εs/εm − 1)/2
∫∫

V0

∫
EEidV . (16)

Here V0 is the volume of the particle. From Eq. (16),

Fgrad(r) = −〈∇(�W )〉τ = ε0εm(εs/εm − 1)/2

×
∫∫

V0

∫
∇(〈EEi〉τ )dV . (17)

The expression in Eq. (17) is not explicit because it needs
information of the optical field inside the particle. E should
be the sum of Ei and the electric field from the material
polarization. If the refractive index of the particle is near to
the background and the particle size is small, the material
polarization is omitted and Ei is used to replace E, which
leads to

Fgrad(x,y,z) = ε0εm(εs/εm − 1)/2
∫∫

V0

∫
∇I (x,y,z)dV . (18)

The two-component method is a higher order approxima-
tion for calculating optical forces compared to the ESA method
because the Clausius-Mossotti relation in the two-component
method gives an approximation to the electric field from the
material polarization. Equation (14) can be deduced from
Eq. (17): if the particle size is small compared to wavelength,
the following equation is effective:

E = 3Eiεm/(εs + 2εm). (19)

Inserting Eq. (19) into Eq. (17) leads to Eq. (14).

FIG. 3. Optical forces for titanium particle of 300-nm diameter.

No matter what method is used to understand the optical
forces from optical lattices, the forms of optical forces in
Eqs. (9), (14), and (18) are similar. Thus Eq. (7) can be
expressed as

F = ε0η(nm,ns)
∫∫

V0

∫
∇I (x,y,z)dV . (20)

In Eq. (20) the impact of the optical-lattice morphology,
the particle shape, and size on optical forces is represented
in the volume integral

∫∫
V0

∫ ∇I (x,y,z)dV . We calculate the

volume integral to determine how the optical force changes
for particles at different positions and plot it as a solid line
in Fig. 1(d). Comparison of the FDTD simulation results with
the predictions from physical theory shows an excellent match.
Optical force is also impacted by refractive index of the parti-
cle. We next calculate the optical force on a titanium particle
of 300-nm diameter (dielectric, ns = 2.7 and ns/nm = 2.08),
which is shown in Fig. 3. The shape of optical force line in
Fig. 3 is very similar to Fig. 1, and the amplitude of the optical
force increases. The impact of refractive index is represented
in the parameter η(nm,ns) in Eq. (20). From the two-
component method η(nm,ns) = 3n2

m(n2
s − n2

m)/(2n2
s + 4n2

m);
from the ESA method η(nm,ns) = 0.5(n2

s − n2
m).

We next compare parameter η(nm,ns) from our FDTD
simulation, the two-component method,74 and the ESA
method;23,65 the results are shown in Fig. 4. Results from the
two-component method and the ESA method match the FDTD
calculation very well in the low refractive-index range. They
are suitable for low relative refractive-index situations; thus,
they deviate from FDTD calculation at high index contrast
(ns/nm > 1.7).

From Fig. 4 optical forces increase as the refractive-index
contrast increases, and then they decrease. If we assume the
particle as a set of dipoles, the electric field experienced by
dipole N consists of electric fields of the light source and all
the other dipoles:

Eapplied,N = Eol,N +
∑
M

ENM. (21)

Here Eol,N is the electric field of the optical lattice at the
position of dipole N . ENM is the electric field of dipole M at
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FIG. 4. Parameter η(nm,ns) calculated by FDTD simulation, the
two-component method, and the ESA method.

the position of dipole N , and it is given by

ENM = exp(ikrNM )
[(
k2/rNM + ik/r2

NM − 1/r3
NM

)
pM

+( − k2/rNM−3ik/r2
NM+3/r3

NM

)
r̂NM (r̂NM · pM )

]
,

(22)

where rNM is the distance between dipole M and dipole N .
The dipole moment of dipole N is

pN = α

(
Eol,N +

∑
M

ENM

)
. (23)

Here α = 3εmε0(εs − εm)/(εs + 2εm)Vd and Vd is the
volume of the dipole.

From Eqs. (22) and (23) we have∑
M

ANMpM = αEol,N . (24)

Every dipole generates an equation such as Eq. (24). In the
matrix A every component is a polynomial function of α. If
we solve the set of equations, the final solution has the form

pM = ZM,1(α). (25)

Here ZM,1(α) is a polynomial function of α. Inserting
Eq. (25) into Eq. (22), we have

ENM = ZNM (α), (26)

thus,

Eapplied,N = Eol,N +
∑
M

ZNM (α) = Eol,N +
∑
M

ZNM

×[3ε0εmVd (εs − εm)/(εs + 2εm)]. (27)

Inserting Eq. (27) into Eq. (13), we find that optical force is
a complex polynomial function of the refractive index of the
particle. Optical forces initially increase as the refractive index
of the particle increases; after refractive-index contrast exceeds
some value (for 300-nm-spherical particles this value is 1.8),
the optical forces fluctuate as the refractive index increases.

From Fig. 1 the optical force from the optical lattice is a
restoring force, and trapping-potential wells form at the stable
equilibrium positions. The shape of optical force lines in Fig. 1

is very near to a sinusoidal shape, thus the depth of the potential
well is

U =
∫ 0.5l

0
F0C(x,y,z)dy ≈

∫ 0.5l

0
F0 sin(2πy/l)dy = F0l/π.

(28)

In real particle systems at finite temperatures Brownian
movement causes positional fluctuation. The effect of Brown-
ian movement on optical trapping can be calibrated by a factor
m that depends on the relative strength of the potential versus
the thermal energy,

m = U/kT . (29)

It is assumed that the trapping force can overcome the
effect of Brownian movement when m > 10.2 From Eqs. (28)
and (29):

m = U/kT ≈ F0l/πkT = F0lQ/πkT cε0nmE2
0 . (30)

Here Q represents the power of the optical lattice (Q =
cε0nmE2

0). If we assume that the power is 5mW/μm2 and
T = 300K , inserting these values into Eq. (30) gives

m ≈ F0/E
2
0 × 4.56 × 1025. (31)

From Fig. 2 F0/E
2
0 varies as d increases, therefore the

trapping ability changes for particles of different sizes. For
example, when the diameter is around the period of optical
lattices, m ≈ 20, the trapping force is sufficient to overcome
the Brownian movement so particles mainly reside in the
high light-intensity positions. For other particle sizes such as
d ≈ 1.3l, however, F0/E

2
0 is nearly zero. The particles will

wander among the optical lattice because of their dominant
Brownian movement, and the trapping effect can be ignored.
Our calculation method matches with the experimental result
observed in Ref. 26.

Next, we consider a three-dimensional (3D) periodic optical
lattice arising from the interference of six plane waves. Their
electric fields are depicted by:

E1 = E0 exp(ik0y − iωt)
�
z (32)

E2 = E0 exp(−ik0y − iωt)
�
z (33)

E3 = E0 exp(ik0z − iωt)
�
x (34)

E4 = E0 exp(−ik0z − iωt)
�
x (35)

E5 = E0 exp(ik0x − iωt)
�
y (36)

E6 = E0 exp(−ik0x − iωt)
�
y (37)

Here k0 = 2πnm/λ, and the light intensity is

I (x,y,z) = 3E2
0 + E2

0 cos(2k0x) + E2
0 cos(2k0y)

+E2
0 cos(2k0z). (38)

The highest light-intensity positions are simple cubic
lattice, and the period of the optical lattice (l) is 409 nm.
Equation (38) is a simple approximation to the P-minimal
surface having Pm3̄m symmetry.84,85 From Eq. (38) the origin
of the coordinate system is a high light-intensity position. We
calculate the optical force on two kinds of spherical particles:
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FIG. 5. (a) Optical forces on polystyrene particles arising from the 3D-optical lattice. The shapes of the optical-force lines along different
directions are similar. The amplitudes of the optical forces fulfill Fmax[1,0,0] = Fmax[1,1,0]/

√
2 = Fmax[1,1,1]/

√
3. (b) Optical forces on absorbing

particles arising from the 3D-optical lattice.

polystyrene particle with permittivity 2.56 and absorbing parti-
cles with permittivity 2.56 + i. The diameter of the particles is
300 nm. We change the positions of the centers of the particles
r = (x2 + y2 + z2)0.5 along [100], [110], and [111] directions
and calculate the optical forces. The results are shown in
Fig. 5. In Fig. 5(a) optical forces along different directions
fulfill Fmax[100] = Fmax[110]/

√
2 = Fmax[111]/

√
3. This can be

understood from Eq. (9): F ∝ ∇I (x,y,z). Inserting Eq. (38)
into the Eq. (9) leads to

F ∝ sin(2k0x)x̂ + sin(2k0y)ŷ + sin(2k0z)ẑ. (39)

From Eq. (39) the restoring force pushes the particle to high
light-intensity positions, where optical potential wells form.
The depth of the potential well is different along different
directions and the shallowest potential is along the [100]
direction. Compared to the 1D-optical lattice, the 3D-optical
lattice offers 3D trapping; the depth of the potential well in
3D-optical lattice is similar to the 1D-optical lattice.

In addition to dielectric particles, optical trapping has
been extended to absorbing particles.86–89 The permittivity
of absorbing particles has imaginary part ε = ε1 + iε2. For
Rayleigh particles the gradient optical force is

F = |α| ∇E2/2. (40)

In Eq. (40) α is the polarizability and can be expressed as

|α| = 3Veff|(ε1 + iε2 − εm)/(ε1 + iε2 + 2εm)|. (41)

In Eq. (41) the effective volume (Veff) is smaller than the
space volume of the particle because of the absorption:88

Veff = 4π

∫ 0.5d

0
r2 exp[−(0.5d − r)/δ]dr, (42)

where δ is the skin depth and can be calculated from the
permittivity of the particle,

δ = λ/2π

√(√
ε2

1 + ε2
2 − ε1)

/
2. (43)

From Eqs. (40) and (41) the effect of absorption on
optical force is determined by the effect of absorption on
polarizability:

Fε=ε1/Fε=ε1+iε2 = |α|ε=ε1
/|α|ε=ε1+iε2

= [V |(ε1 − εm)/(ε1 + 2εm)|]
/[Veff|(ε1 + iε2 − εm)/(ε1 + iε2 + 2εm)|].

(44)

The permittivity absorption part ε2 increases
|(ε1 + iε2 − εm)/(ε1 + iε2 + 2εm)| and decreases Veff =
4π

∫ 0.5d

0 r2 exp[−(d/2 − r)/δ]dr . For absorbing particles in
Lorenz-Mie range, however, the size of particles is usually
higher than the skin depth, and the electric field inside the
particle gets smaller because of the absorption. According
to Eq. (17) absorption generally leads to smaller optical
force. This is confirmed by comparing Figs. 5(a) and 5(b):
absorption causes optical forces to decrease by 25%.

FIG. 6. Optical torques on three kinds of cylinders. For the
140-nm-length cylinder, we have not observed stable equilibrium
orientations. For the 400-nm-length cylinder, θ = 0 is the stable
equilibrium orientation. For the 800-nm-length cylinder, in addition
to the stable equilibrium orientation at θ = 0, metastable orientation
is observed at θ = ±0.5π .
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Our previous discussions concern spherical particles; to
date, nonspherical micro- and nanostructures have been
fabricated in experiments through multiple methods such
as holographic interference lithography,90 stop-flow interfer-
ence lithography,91 and the modification and aggregation of
spherical particles.92,93 In addition to optical forces optical
lattices also apply optical torques on these nonspherical
structures, offering the possibility to simultaneously control
the position and orientation of particles. We now calculate the
optical torque on particles in the 1D-optical lattices discussed
previously. Three forms of particles are examined: a cylinder
with 140-nm length and 140-nm diameter (aspect ratio 1), a
cylinder with 400-nm length and 80-nm diameter (aspect ratio
5), and a cylinder with 800-nm length and 60-nm diameter
(aspect ratio 13.3); the particles have near-identical volumes.
We fix their centers at the highest light-intensity positions, and
the particles rotate in XY plane. As shown in Fig. 6, the angle
between the long axis of the particle and X axis is defined as
θ . The optical torques on the cylinders as a function of angle
of the cylinder axis (θ ) are shown in Fig. 6, which shows that
optical torques on particles of various shapes are very different.
Optical torques on particles can also be understood from the
aspect of energy. The interaction energy between a dielectric
particle and optical lattice is expressed in Eq. (16), thus

� = −∂(�W )/∂θ = ε0εm(εs/εm − 1)/2

×∂

(∫∫
V0

∫
EEidV

)/
∂θ. (45)

From (45) the physical origin of optical torque is that
the particle adopts particular orientations to minimize the
interaction energy. If the refractive index of particles is
near to the background (e.g., polystyrene, silica particles in
distilled water), we can assume E = 6εmEi/(2εs + 4εm); this
leads to

� = 3ε0εm(εs − εm)/(2εs + 4εm)∂

(∫∫
V0

∫
I (x,y,z)dV

)
/∂θ.

(46)

For particles with near spherical shape or with a size much
smaller than the period of optical lattices, optical torques on

them are small because the total light intensity inside does not
change much as the particles rotate with respect to the optical
lattice ∂(

∫∫
V0

∫
I (x,y,z)dV )/∂θ ≈ 0. Figure 6 confirms that the

140-nm length cylinder has a size much smaller than the period
of the optical lattice (409 nm), and its shape is near-to-spherical
compared to other cylinders calculated; thus, the optical torque
on it is nearly zero compared to other cylinders. For particles
with large aspect ratio and sizes comparable to the period of
optical lattices, θ = 0 is the stable equilibrium state. For the
cylinder with aspect ratio 13.3, however, the two ends of the
cylinder are both in at high intensity regimes at θ = 0.5π , so in
addition to the stable equilibrium state of θ = 0, a metastable
state of θ = 0.5π exists.

IV. CONCLUSION

In summary the optical force and optical torque from optical
lattices are important for a wide variety of physical phenom-
ena, ranging from optical trapping, optical micromanipulation,
and optical sorting. The optical force is a function of optical
lattice morphology and the refractive index, size, shape, and
orientation of the particle. Optical force can be expressed
as F = ε0η(nm,ns)

∫∫
V0

∫ ∇I (x,y,z)dV : the parameter η(nm,ns)

increases with the particle-refractive index up to nm/ns = 1.8,
then it fluctuates as nm increases. Absorption generally leads
to smaller optical forces in the Lorentz-Mie regime. In the
range of 0 < d < 1.5l the optical force reaches the maximum
when the size of particle is around the period of the optical
lattice. For particles near to spherical shape or with a size much
smaller than the period of the optical lattice, optical torque is
small compared to particles with size comparable to the period
of the optical lattice and large aspect ratio. Both metastable and
stable equilibrium orientation states exist for cylinder particles
in the 1D-optical lattice.
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