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Measurements are presented of the complex dynamic Young’s modulus of NdNiO3 and Nd0.65Eu0.35NiO3

through the metal-insulator transition (MIT). Upon cooling, the modulus presents a narrow dip at the MIT followed
by an abrupt stiffening of ∼6%. The anomaly is reproducible between cooling and heating in Nd0.65Eu0.35NiO3

but appears only as a slow stiffening during cooling in undoped NdNiO3, in conformance with the fact that the
MIT in RNiO3 changes from strongly first order to second order when the mean R size is decreased. The elastic
anomaly seems not to be associated with the antiferromagnetic transition, which is distinct from the MIT in
Nd0.65Eu0.35NiO3 . It is concluded that the steplike stiffening is due to the disappearance or freezing of dynamic
Jahn-Teller (JT) distortions through the MIT, where the JT active Ni3+ is disproportionated into alternating Ni3+δ

and Ni3−δ . The fluctuating octahedral JT distortion necessary to justify the observed jump in the elastic modulus
is estimated as ∼3% but does not have a role in determining the MIT, since the otherwise-expected precursor
softening is not observed.
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I. INTRODUCTION

There is still uncertainty regarding the exact nature of the
metal-insulator transition (MIT) in the RNiO3 perovskites.1–3

Following a systematic study with several R ion sizes,4 the
MIT in these perovskites has been associated with the opening
of a gap between the O 2p band and the Ni 3d upper Hubbard
band when the R ion size and/or temperature are decreased.4,5

In fact, the R−O bond is too short with respect to the Ni−O
bond for the cubic perovskite structure, and the mismatch is
relieved by tilting of the NiO6 octahedra. Both a smaller R

size and cooling enhance the mismatch and hence tilting, for
steric reasons and because of the larger thermal expansion of
the R−O bond. This results in a further reduction of the angle
between Ni−O−Ni bonds with respect to 180o, reduces the
overlap and hence the width of the O 2p and Ni 3d bands, and
finally opens a gap between them, causing the MIT.5 Indeed,
with increasing the R ion size the temperature TIM at which
the MIT occurs decreases or the metallic phase becomes more
stable.4 In this manner it is possible to rationalize the phase
diagram of RNiO3 of T vs the R ion size, and a similar behavior
is found in cobaltites.6

On the other hand, Ni3+ has an electronic configuration
similar to that of Mn3+, with filled t2g triplet states (thanks
to Hund’s rule in the case of Mn) and one electron in the eg

doublet, whose degeneracy can be lifted by tetragonal and
orthorhombic distortions according to the Jahn-Teller (JT)
effect. The physics of Mn perovskites is dominated by the
Jahn-Teller coupling between these eg electronic states and
the distortions of the octahedra, which is a cause of orbital
ordering (OO), and the same might be expected for nickelates.
On the contrary, according to the early diffraction experiments
the octahedral distortions in nickelates are extremely small
or null.5,7 Later, starting with the nickelates with smaller R,
it has been found that the MIT is accompanied by a subtle
orthorhombic to monoclinic structural change, with charge

disproportionation (CD) 2Ni3+ → Ni3+δ+ Ni3−δ and charge
ordering (CO) into alternately expanded and contracted NiO6

octahedra along the three directions,8 and some octahedral
distortion of the larger Ni3−δO6 octahedra. A similar result
has been recently found also with the larger R ions Nd9 and
Dy.10 Such JT distortions are found only in the larger and more
ionic Ni3−δO6 octahedra and are at least 1 order of magnitude
smaller than those observed in manganites.

Notice that in a naive picture CO and OO should not occur
in the same set of Ni ions, since Ni3+ is JT active while Ni2+
and Ni4+ are not, but to what extent CO and OO occur in
nickelates is still subject of controversy. Just because of the
subtleness of the structural changes attributable to CO or OO,
recourse has been had to resonant X-ray scattering.11–14 These
experiments in NdNiO3 are interpreted as evidence of partial
CO rather than OO occurring at the MIT. According to this
view, the degeneracy of the eg orbitals would be lifted already
in the metallic state, where the OO would be reflected by
the tilts of the octahedra; the MIT would be due only to CD,
accompanied by a small change of tilt angle.13 It is debated to
what extent these experiments may provide information on the
contribution of CO and OO to MIT,15 but the view that MIT is
due to CO rather than OO received further support from theory
and experiments under hydrostatic pressure in LuNiO3,16 and
from the above mentioned diffraction studies on R = Nd and
Eu, where alternated small and large octahedra are found.9,10

Nonetheless, recent experiments under pressure17 suggest that
the previous ones16 were affected by an unwanted uniaxial
component of pressure, and exclude a role of CO in the MIT;17

rather, dynamic JT deformations would be responsible for large
isotope effects in TIM.18

Additional experiments that have been performed in order
to probe CD with CO and OO at the MIT in nickelates include
Mössbauer19–22 and x-ray absorption spectroscopies.23 Again,
there is no clear picture, with possibility of OO19,20 or CO20–22

even in the metallic state.23
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A similarly confused situation exists for NaNiO2 and
LiNiO2, which are also composed of NiO6 octahedra but
sharing the edges instead of corners.24 While NaNiO2 un-
dergoes a phase transformation with clear cooperative JT
distortion, LiNiO2 has little or even reverse JT distortion,25

which is not yet explained. Some of the proposed explanations
involve the peculiar geometry of the LiNiO2 lattice, where
the triangular Ni sublattice frustrates AFM correlations, but
other possible causes may apply also to RNiO3, like the
fact that the JT distortion exists but is incoherent26 or with
very short coherence length,25 or is hindered by the electron
delocalisation.16

From the above summary and recent reviews1 it appears
that, in spite of the wealth of experimental data on the RNiO3

series, the presence and role of CD and CO and/or OO at
the MIT is not clear. In the Mn perovskites important and
quantitative information has been obtained on such issues
by studying the associated elastic anomalies;27,28 in Ni per-
ovskites no such type of investigation has ever been reported,
except for a preliminary report of the present results.29 Here
anelastic spectroscopy measurements on Nd1−xEuxNiO3 are
presented and discussed, which shed new light on these issues.

II. EXPERIMENTAL

Polycrystalline samples of Nd1−xEuxNiO3 (x = 0 and
0.35) were prepared from sol-gel precursors, sintered at T =
1000 ◦C, and under oxygen pressure of 80 bar. Details of the
synthesis process for preparing these samples are described in
details elsewhere.30 All samples were characterized by X-ray
powder diffraction in a Brucker D8 Advance diffractometer.
The x-ray diffraction patterns showed no extra reflections due
to impurity phases, and indicated that all samples have a high
degree of crystallinity. The samples were two bars with x = 0
(NEN0) and with x = 0.35 (NEN35), both with approximate
size 43 × 6 × 0.7 mm3 and a density ρ � 2.9(3.1) g/cm3 for
NEN0(35), about 40% of the theoretical density. Such a high
porosity makes the evaluation of the absolute value of the
complex Young’s modulus E = E′ + iE′′ problematic, but did
not affect the quality of the measurement of its temperature
dependence. This was measured by electrostatically exciting
the flexural vibrations of the bars, which were suspended on
thin thermocouple wires in vacuum, and with one face made
well conducting also below the MIT with Ag paint. It was
possible to excite various flexural modes, whose resonance
frequencies are ideally in the ratios f1F : f2F : f3F : f5F = 1 :
2.800 : 5.487 : 13.55. The fundamental frequency is given by31

f1F = 1.028
h

l2

√
E

ρ
(1)

where l is the length, h the thickness, ρ the density of the bar;
at room temperature it was f1F ∼ 0.6−1 kHz.

In the Discussion we will need an estimate of the absolute
value of the Young’s modulus, which is found with Eq. (1). The
effective Young’s moduli at room temperature, uncorrected
for porosity, were E = 4.5 GPa for NEN0 and 12.5 GPa for
NEN35, which are 5−10 times smaller than the typical values
E ∼ 100 GPa found in ceramics of similar type. Sources
of error are the sample porosity, deviations from the shape

of a rectangular parallelepiped, low homogeneity and the
presence of the Ag conductive layer, wrong identification of
the vibration modes and mixing of flexural with torsional
modes. The largest source of error in our case seems to
be the extremely high porosity, p � 0.60. The other causes
should be of minor importance; for example, the NEN0 sample
had the lowest value of E, but its ratios f3F/f1F = 5.60
and f5F/f1F = 13.66 were in excellent agreement with the
theoretical values given above. The correction for such high
porosities are very unreliable; to give an idea, the Young’s
modulus of porous ceramics are corrected with empirical
expressions like (1 − p)n with n � 1,32 or exp(−bp) with
2.1 < b < 2.8.33 These expressions would enhance E in our
case by a factor between 2.5 and 5.2. While this brings E of
NEN35 to reasonable values up to 66 GPa, the value of NEN0
would remain below 25 GPa. The large difference between
the two may in part be accounted for by different types of
porosities, in terms of shape and connectivity of the pores, and
in part due to the Eu substitution. In the discussion we will
assume E ∼ 65 GPa.

The anelastic spectra are displayed in terms of the real
part of the Young’s modulus or its reciprocal, the compliance
s = E−1 = s ′ − is ′′, and of the elastic energy loss coefficient
Q−1 = s ′′/s ′.

III. RESULTS

In Fig. 1 is reported the anelastic spectrum of NEN0
measured during cooling (empty symbols) and subsequent
heating (filled symbols) measured exciting the first odd flexural
modes at 0.63, 3.5 and 8.6 kHz during the same run. During
cooling, below 190 K there is a progressive stiffening of the
Young’s modulus in excess of the slight linear anharmonic
stiffening observed at higher temperature; such a stiffening
proceeds until the lowest temperature reached by us, although
in the end it starts levelling off. On heating, the modulus
resumes the almost linear and weak temperature dependence
except for a steplike softening followed by a dip at 191 K.
It is clear by comparison with resistivity, specific heat and
magnetization measurements that the steplike change of E(T )
with large temperature hysteresis is due to the MIT.29,34

The Q−1(T ) is perfectly reproducible on heating and
cooling, except for the sharp peak in correspondence with the
cusped softening, both of which appear only during heating.
In addition, there are other three peaks: P1 at 230−240 K,
P2 at 171 K and P3 at 100−110 K. While the temperature
of P2 is independent of frequency, the other two increase with
frequency, and therefore indicate thermally activated processes
whose maxima occur when the condition ωτ � 1 is met,31

where ω/2π is frequency and τ (T ) a relaxation time. We will
ignore these reproducible but small peaks.

The spectrum of NEN35 (Fig. 2) is similar to that of NEN0
during heating, but the MIT occurs at TIM = 288 K, if identified
with the cusp in the real part, and the hysteresis is completely
absent, the only difference between heating and cooling being
the intensity of the peak in real and imaginary parts at the
MIT. The curves measured at a frequency five times higher are
not shown for clarity, since they are identical except that the
peak in Q−1 is ∼15% higher, whereas in NEN0 it is nearly
identical.
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FIG. 1. (Color online) Young’s modulus E and elastic energy
loss coefficient Q−1 of NEN0 measured on cooling (empty symbols)
and heating (filled symbols) at 0.63 kHz (black), 3.5 kHz (red) and
8.6 kHz (green).

The other small peaks in the Q−1 are absent in NEN35. In
Fig. 2 are also reported the curves measured on NdNiO3 during
heating, rescaled in temperature by a factor 1.504. The rescaled
elastic anomaly of NdNiO3 is slightly sharper and narrower in
the real part, with a smaller dip, and almost coincident in the
absorption. In NEN35 the antiferromagnetic (AFM) transition
occurs at TN = 240 K < TIM,29 but there is no clear sign of it
in the anelastic spectra.

IV. DISCUSSION

The overall phenomenology of the anelastic anomalies
found in Nd1−xEuxNiO3 appears to be mainly related to
the MIT and in agreement with what is known from other
techniques. In NdNiO3 the MIT occurs at TIM = TN � 192 K
and has marked first order character, with a large hysteresis
between cooling and heating. When decreasing the mean R

ion size by Eu doping, the MIT shifts to higher temperature
and becomes second order, while TN shifts below TIM. The
anelastic anomalies also appear to be marginally affected by
the magnetic transition, since the heating curves are very
similar to each other regardless of the fact that TN coincides
with TIM or not. The present data can be compared with those
of resistivity, magnetization and specific heat taken on the
same materials.29,34 The hysteresis is due to the fraction of
material that remains metallic in the insulating phase, and the
fact that the step in ρ(T ) (see Fig. 7 in Ref. 34) is narrower
than that in E(T ) during cooling is explained by the fact that
the latter probes the bulk fraction of insulating and metallic

FIG. 2. (Color online) Young’s modulus E and elastic energy loss
coefficient Q−1 of NEN35 measured on cooling (empty symbols) and
heating (filled symbols). For comparison, the anelastic spectrum of
NEN0 on heating is reported (line) after scaling its tempearure to let
its TIM coincide with that of NEN35.

phases, while resistivity rather probes percolating conductive
paths.

A. Comparison with the specific heat anomaly

It seems that the dip in the modulus at TIM and the stiffening
below it have different origins, since with x = 0.35 the dip
and accompanying peak in Q−1 differ in amplitude between
heating and cooling, while the step in E is reproducible.
This observation allows us to separate the two anomalies
and compare the dip in the modulus, or peak in compliance
s = E−1, with the peak in specific heat. The curves 1 and 2 in
Fig. 3 are the normalized compliance on heating and cooling,
after subtracting a linear background sbg; the reference s0 is the
extrapolation of sbg to 0 K. Besides the peak at 290 K and the
step below that temperature, there is an additional shallow rise
of the compliance below 250 K. The shape of the latter is very
uncertain, due to the background subtraction. The anharmonic
phonon contribution to the temperature dependence of the
elastic constants is generally almost linear and levels off at low
temperature, but being unable to distinguish the anharmonic
contribution from the other anomalies in the temperature
dependence of s, we chose to use a simple linear interpolation
over the whole 60−350 K range. Curve 3 is the difference
between curves 1 and 2 and it has been subtracted from them
after multiplication by scale factors in order to remove the
peaked component. It turns out that the best values of the
factors are 2.00 and 1.00. The resulting curves 4 and 5 are
coincident and have only the step below 290 K plus the shallow
rise.
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(a)

(b)

FIG. 3. (Color online) (a) Curves 1 and 2: compliance s = E−1 of
NEN35 after subtraction of the anharmonic background sbg , measured
on heating and cooling. Curve 3 is the difference between them, speak.
Curve 4 and 5 are curves 1 and 2 after subtraction of the peaked
component 3. (b) Excess specific heat extracted from Ref. 29.

Both the peak speak (curve 3) and the excess compliance
below 250 K can be put in relationship with the excess
specific heat Cex measured on a similar sample.29 In fact,
a softening proportional to the specific heat anomaly is
expected at a magnetic transition,35 and also at other types
of transitions under the rather general condition that their
critical temperature depends on pressure or more generally
on stress.36 A possible identification of the two anomalies in
Cex is the peak at ∼300 K with the CO and/or orbital transition
concomitant with the MIT, possibly with participation of spin
degrees of freedom,37 and the broad contribution below 250 K
with the onset of long range AFM order. The latter is expected
to produce a jump �S = R ln 2 in the entropy of the S = 1

2
spins,38,39 but the jumps of the entropy S = ∫

dT Cex/T are
only �S = 0.15R between 130 and 260 K and �S � 0.12R

between 260 and 320 K. The fact that the actual step is smaller
than expected from complete AFM ordering has already been
noted in other RNiO3 nickelates, and has been interpreted
as due to AFM correlations also above TN, so that only a
relatively small loss of entropy is involved in the long range
AFM ordering.38,39

B. Step-like stiffening below the MIT

The main feature of the elastic anomaly at both com-
positions is the stiffening below the MIT, whose step-like
nature is made evident after the subtraction of the peaked
component in curves 4 and 5 of Fig. 3. This is quite an unusual
observation, since phase transitions are generally accompanied

by softening rather than stiffening. As discussed below, if some
strain component is coupled linearly with the order parameter
of the transition, then its elastic constant presents a cusped
softening at the critical temperature and is therefore followed
by restiffening to the background elastic constant on further
cooling. This is not the case of curves 4 and 5, which lack any
sign of precursor softening divergent near TIM.

There are several elastic studies of the CO and OO
transitions in perovskite manganites and in other compounds,
but most of them concentrate on the precursor softening above
the transitions. In few cases the subsequent restiffening below
the transitions has been considered, especially if it appears
of excessive sharpness and amplitude with respect to the
precursor softening. In these cases recourse has been had to
different sets of fitting parameters above and below TCO,

40 or
to a Landau free energy expansion with coefficients unrelated
to CO or OO.41 In Nd0.5Sr0.5MnO3 a steplike stiffening at the
MIT has been interpreted as the effect of the renormalisation of
the elastic constant by the conduction electrons with a factor
(1 + g2χ (T ))−1/2, where g is the electron-phonon coupling
constant and χ (T ) is the electron susceptibility, identified
with the magnetic susceptibility χm.42 In that case, the MIT
coincides with a transition from FM to AFM and χm has a
negative step, which becomes positive in the renormalisation
factor of the elastic constant. This type of analysis is not
appropriate to Nd1−xEuxNiO3, whose magnetic susceptibility
has an almost imperceptible decrease below TN, superimposed
to a stronger rise with cooling, even after subtraction of the
contribution of the Nd and Eu ions.34,43

Lacking an adequate precedent for a satisfactory interpre-
tation of the step component of the elastic compliance of
Nd1−xEuxNiO3, we first review what kind of elastic response is
expected at a MIT or magnetic transition, and then propose an
interpretation based on the response of the JT distortions, from
a point of view different from that usually adopted. Detailed
discussions of the elastic anomalies expected at various types
of phase transitions can be found in many review articles
and books, usually based on the Landau theory with the
coupling between strain and order parameter included,44–48

and therefore we only quote what is strictly necessary to our
discussion.

C. Landau analysis

Near a phase transition the free energy can be expanded in
powers of the order parameter(s) Q. In the present case the
order parameter (OP) can be one or more of the symmetrized
charge fluctuation coordinates for describing charge ordering,
or the quadrupolar orbital operators of the Ni ions for
orbital ordering, or the staggered magnetization for the AFM
transition. By including powers of Q up to the 6th order, it is
possible to reproduce both first and second order transitions,
and including coupling terms containing both Q and strain ε,
it is possible to deduce the effect of the relaxation of the OP
under stress on the elastic constants. In the case that the OP
is strain itself or is linearly coupled to it with a term λεQ,
the elastic constant coupled to the OP ideally vanishes at the
transition temperature TC, or at least has a negative cusp. If
bilinear coupling is forbidden because no strain has the same
symmetry of the OP, the next coupling term, μεQ2, causes a
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negative step at TC in the the elastic constant coupled to the OP,
possibly including a weak restiffening below TC. A biquadratic
coupling νε2Q2 adds to the elastic constant a contribution
2ν〈Q2〉 below TC, which can be a linear or saturating rise or
decrease, depending on the temperature dependence of the OP
and on the sign of the coupling constant ν. Of all these terms,
the latter is the only one that might produce a stiffening below
TC without precursor softening; other terms are possible but
less important in the great majority of cases.

D. Magnetic transition

Magnetic transitions cause elastic anomalies through essen-
tially two mechanisms: exchange striction and magnetostric-
tion. The first mechanism causes cusp-like softening in the
elastic constants involving the strains that change the atomic
distances and hence the exchange constant. The magnitude of
such anomalies is of the order of 1%.48 Even smaller step-like
softening can be caused by magnetostrictive coupling with
the lattice, namely by a term −BεijSiSj linear in strain and
quadratic in spin variable or magnetization, which, according
to Landau’s theory,44 produces below the magnetic transition a
negative step in the modulus M of magnitude −2B2/M . Such
a softening is usually observed at magnetic transitions.35,49,50

On the other hand, in the FM transition of YTiO3, a
stiffening is found,51 whose origin has not been explained, but
also involves OO. In the hexagonal quasi-1D AFM multiferroic
YMnO3, there is 1% stiffening below TN in C11 and 3% in C66

due to biquadratic coupling52 (see previous paragraph). In fact,
below TN = 75 K the temperature dependence of �Cii(T )/Cii

follows the squared OP, S2 ∝ (1 − T/TN)2β , down to 2 K,
which appears different from the abrupt rise in Nd1−xEuxNiO3.
In the present case, the involvement of magnetic effects in the
steplike stiffening is made even more unlikely by the fact that in
Nd0.65Eu0.35NiO3 the magnetic transition occurs at TN < TIM.

E. Cooperative Jahn-Teller phase transition and
orbital ordering

Following the notation of Hazama and coworkers,27,28 the
quadrupolar moments of the eg orbitals of Ni3+ can couple
with tetragonal εu = (2εzz − εxx − εyy)/

√
3 and orthorhom-

bic εv = εxx − εyy strains (both with the same Eg elastic
constant C ′ = (C11 − C12)/2), and interact with each other
causing the cooperative JT transition.53 The relevant part of
the Hamiltonian of N Ni3+ ions per unit volume, referred to
the unit cell volume v0, is

H = −v0N
∑

γ=u,v

gγ Oγ εγ − v0N
∑

γ=u,v

g′〈Oγ 〉Oγ (2)

where the quadrupolar operators O0
2 = (2l2

z − l2
x − l2

y)/
√

3
and O2

2 = l2
x − l2

y correspond, apart from a geometrical factor

a = 〈φeg|Oeg|φeg〉 = 2
√

3, to the occupation numbers of
octahedra with tetragonal and orthorhombic JT distortions
reflecting the symmetry of their 3d orbitals. The first term
is the linear coupling to the external strain, with a coupling
strength g, and causes softening of the C ′ elastic constant,
while the second term is the elastic interaction among the
orbitals in the mean field approximation with strength g′, and

determines the type of OO. The resulting softening of the C ′
elastic constant is

C ′ = C ′
0 − Ng2 χ (T )

1 − g′χ (T )
(3)

where C ′
0 is the background elastic constant and the suscepti-

bility

χ (T ) = a2

kBT
(4)

is proportional to the contribution to the compliance s =
C−1 from noninteracting orbitals, �s(T ) = ( g

C ′ )2χ (T ). Equa-
tion (3) can be rewritten as

C ′ = C ′
0

(
T − TOO

T − �

)
, (5)

where � = a2g′/kB, TOO = � + TJT and TJT = Na2g2/

(kBC ′
0). In this form it is clear that the elastic constant

vanishes at TOO, which is the onset of the OO or cooperative
JT transition, and that stiffens again on further cooling. At
higher temperatures, when T � � and hence g′χ (T ) � 1,
Eq. (3) shows that the softening induced by the orbitals freely
responding to the applied stress is simply given by Eq. (4) and
is ∝1/T .

F. Charge ordering

The charge fluctuations can be expanded into fluctuation
modes Qγ acting as OP of the CO transition, one or some
of which may be linearly coupled to the strain εγ having
the same symmetry with terms −gγ Qγ εγ . As also shown
in Appendix B, if such terms are included in the expansion
of the free energy in powers of Qγ up to the fourth order, a
second order transition at a temperature TCO results, and the
renormalized elastic constant can be written exactly as in the
case of the OO transition, Eq. ( (5)), where � is the temperature
at which the term α0

2 (T − �)Q2
γ of the Landau expansion

vanishes and TCO = � + �T , �T = g2/(α0Cγ ), with Cγ the
elastic constant appropriate to εγ , is the temperature at which
the CO transition occurs with onset of spontaneous strain of
type εγ . Therefore, OO between two orbitals and CO from
condensation of a single charge fluctuation mode produce the
same precursor softening on the appropriate elastic constant
Cγ (= C ′ for OO within the eg doublet). The restiffening
below the transition is discussed in Appendix B. Examples of
materials similar to RNiO3 where both transitions have been
recognized in ultrasonic experiments are La1−xSrxMnO3 with
TCO < TOO

27 and Pr1−xCaxMnO3 with TCO > TOO.28

G. Softening in terms of octahedral JT distortion and its
disappearance below the MIT

From the above discussion it appears that a transition whose
driving force is the interaction between JT active orbitals or
between ionic charges would appear in the coupled elastic
constant as a clear precursor softening that diverges at the
transition, followed by restiffening on further cooling. This
is clearly not the case of Nd1−xEuxNiO3, since the Young’s
modulus presents a weak and almost linear stiffening down
to a temperature very close to the MIT, which excludes any
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mechanism coupled to strain. This is also shown quantitatively
in Sec. I.

The picture we propose is the following. The MIT is an
electronic transition, presumably occurring at the opening of
the charge transfer gap during cooling,4,5 when the R−O
bonds, having larger thermal expansion of the shortest Ni−O
bonds, shorten faster than the latter and enhance the buckling of
the Ni−O−Ni bonds beyond a critical threshold. The driving
mechanism for this is the thermal contraction due to lattice
anharmonicity, and there is no effect on the elastic constants
other than the usual anharmonic stiffening. In the metallic
phase the octahedra would be JT distorted with a fluctuation
rate much faster than our measuring frequency, so that their
contribution to the lattice softening would be noncritical,
namely Eq. (3) with g′ = 0, and the OO transition would
occur well below TIM. The MIT would inhibit such a softening,
possibly due to the concomitant CO that transforms JT active
Ni3+ into (partially) inactive Ni3±δ , or making the distortions
static, or both. This would make the insulating phase stiffer
than the metallic one, so that the disappearance of the metallic
phase would be accompanied by elastic stiffening.

In what follows we will evaluate the JT distortion necessary
to explain the steplike stiffening in Figs. 1 and 2 with the above
mechanism and test the consistency of this explanation with
the available data. In order to relate the amount of elastic
softening to the JT distortion of the octahedra, rather than to
the coupling coefficient g, it is convenient to recast the above
results in the usual formalism of anelastic relaxation from
point defects.31,54 It may seem unrealistic to describe distorted
octahedra sharing the O atoms, and hence strongly interacting,
as almost independent defects carrying a distortion, but this
is equivalent to the formulation of Sec. IV E, namely the
OO approach to the cooperative JT effect.55 In the case of
nickelates it is certainly justified by the smallness of the
JT distortions, which make uncorrelated fluctuations less
energetically unfavorable. If we neglect the interaction term
∝g′, the hamiltonian ((2) ) is equivalent to that of a system of
independent defects of type γ = u, v with double-force tensor
pγ , whose interaction energy with an external strain ε is56

E = −v0

∑
γ

∑
ij

cγ p
γ

ij εji

where cγ with
∑

γ cγ = v0N are the molar concentrations of
defects, and the summation over the cartesian components
i,j selects the strain component of the same symmetry of
the defect, εγ . It appears therefore that Ngγ Oγ in Eq. (2)
is equivalent to cγ pγ , although the separate correspondences
NOγ → cγ and gγ → pγ do not necessarily hold. In turn,
the double force tensor can be expressed in terms of the
elastic quadrupole λ

γ

ij (usually called elastic dipole31) as
p

γ

ij = ∑
kl Cijklλ

γ

kl , where C is the fourth-rank elastic stiffness
tensor. The tensor λγ is adimensional and is the strain of a
unity concentration of defects of type γ , in the present case
the tetragonal or orthorhombic strain of the octahedra, so that
the anelastic strain due to defects is

εan =
∑

γ

cγ λγ ,

where the cγ obey Boltzmann’s statistics and depend on the
applied stress σ through the defect energies Eγ = −v0p

γ εγ =
−v0λ

γ σγ . For only two types of defects with the same
symmetry and coupled to strain through the same symmetrized
elastic constant C ′ the relationship between λ and p is simply
λ = p/C ′, and the contribution to the compliance, s ′ = 1/C ′,
is31,54

δs ′ = dεan

dσ
∝ c

(�λ)2

kBT
(6)

where �λ = |λu − λv| and the numerical factor differs from
those usually reported for reorientation of defects with the
same symmetry, since we are dealing with the relaxation
between a tetragonal and an orthorhombic state rather the
reorientation of the principal axes of λ among equivalent
crystallographic directions.

We can carry the analogy with point defects further into
the dynamic response. If τ is the relaxation time for an
electron to change orbital, the softening Eq. (6) acquires
a frequency dependent factor (1 + iωτ )−1 noticeable when
temperature is lowered enough to slow τ−1 and make it
comparable to the measuring angular frequency ω;31 this has
also been discussed in connection with JT effect in UO2.57 The
concentration c of eg electrons would be 1 for RNiO3 if there
were no disproportionation of Ni3+. The MIT may reduce the
magnitude of δs ′ both reducing c through the concomitant
disproportionation of Ni3+ and/or making null the frequency
factor if the distortions become quasistatic with ωτ � 1.

In Appendix A we define the octahedral distortions in terms
of the symmetrized tetragonal and orthorhombic strains T u and
T v with magnitude λ, and evaluate the resulting polycrystalline
average of the relaxation strength of the Young’s modulus, � =
δE−1/E−1, as

〈�〉 � cv0λ
2

15kBT
E. (7)

H. Estimate of the Jahn-Teller distortion necessary to explain
the stiffening below the MIT

As a first check that this mechanism can explain the
stiffening at the MIT, let us suppose that on passing across
the MIT the JT distortion totally disappears together with the
Ni3+ ions; therefore we equate the above 〈�〉 with c = 1 to the
overall jump of δs/s0 � δE/E0. The largest source of error
in evaluating λ is the absolute value of the Young’s modulus,
which we assume to be E ∼ 65 GPa (see Sec. II), and together
with � = 0.056 for NEN35 yields δE−1 � 10−13 cm3/erg; the
cell volume is34 v0 = 55 × 10−24cm3 and Eq. (7) with T =
TIM gives λ � 0.031, namely 3% octahedral and tetragonal
distortions.

In order for this interpretation to be selfconsistent, it
should turn out that the temperature TOO = � + TJT for OO
is smaller than TIM. There is no constraint to the smallness
of the intersite contribution �, which can also be negative
for antiferroquadrupolar coupling. Instead, the JT energy is
determined by the coupling with uniform strain, λ, with
TJT = Na2g2/kBC ′

0, where g is determined by the equivalence
Nga ≡ cp = cC ′λ. The C ′

0 elastic constant is unknown and
we set it equal to E, finding g/kB � 2300 K and TJT = 240 K,
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therefore smaller than TIM. The same estimate for NdNiO3 with
� = 0.062 and T = 190 K yields λ = 0.026, g/kB � 1900 K
and TJT = 177 K, again smaller than TIM.

Up to now it is shown that a CD with complete suppression
of the JT effect can explain the stiffening below the MIT, but
it is also necessary to determine the effect of an incomplete
charge disproportionation 2Ni3+ → Ni3+δ+ Ni3−δ with δ < 1.
The above treatment suggests a naive analogy of JT active
octahedra with point defects, whose concentration is c = 1 in
the conductive phase and becomes c = 1 − δ in the insulating
one, with unchanged distortion λ. However, this is not the
picture proposed after the diffraction experiments, where δ is
deduced from the change of valence of Ni3+, and this is in
turn extracted from the average Ni−O bond lengths together
with the bond valence model.9 In this picture, all the octahedra
undergo disproportionation, and are alternated along the three
principal directions as small Ni3+δ and large Ni3−δ octahedra,
only the latter supporting some residual JT distortion.9,10 From
this point of view, a more sensible hypothesis is that, when
entering the insulating phase, in Eq. (7) c passes from 1 to 1/2
and the JT distortion λ is reduced by an amount depending
on δ. If we suppose a linear relationship between λ and δ,
then we should set λ → λ(1 − δ) into Eq. (7), and repeating
the above analysis with the estimate δ � 0.28 for NdNiO3,9,11

and c = 1/2 we would find λ = 0.036 and TJT = 330 K. The
latter value, being slightly larger than TIM, seems at first
inconsistent with the present analysis, but there are several
arguments that this is not necessarily the case. A first point is
that we ignored the correlations between octahedra, which in
the perovskite structure with octahedra sharing the vertices is
expected to be antiferroelastic58 and corresponds to a negative
� compensating TJT, as in Pr1−xCaxMnO3.28 Another point is
that the JT distortion may not fall linearly with δ but faster.
Finally, if the JT distortions remained frozen below the MIT,
then the kinetic factor 1/[1 + (ωτ )2] would pass from 1 to 0
on crossing the MIT and the initial safe estimate of λ of Eq.(7)
with c = 1 would again be correct.

Once established that the stiffening below the MIT can be
consistently explained by vanishing or blocking of dynamic
JT distortions λ, it is necessary to check the compatibility
of such disordered distortions above TIM with the structural
studies on NdNiO3. We refer to the most recent experiment
with synchrotron powder-diffraction,9 where the Ni−O bond
lengths are reported to be l � 1.9 Å, and the B-factors of
the apical and equatorial O atoms are 0.72 and 1.13 Å2

at room temperature, resulting in thermal plus disordered
displacements of 0.1 and 0.12 Å respectively. The JT distor-
tions estimated here of λ ∼ 0.03 require changes of the bond
lengths of δl = λ × l ∼ 0.06 Å, which, being dynamically
disordered, would appear only in the Debye-Waller factors,
and are about half of the B-factor displacements at room
temperature in NdNiO3. The JT distortions required to explain
the stiffening at the MIT are therefore compatible with the
diffraction experiments: above the MIT they are disordered and
account for half of the thermal/disordered displacements of the
O atoms; below the MIT they are totally or partially absent due
to the disproportionation of the JT Ni3+ into Ni3±δ , or simply
frozen. This may also explain EXAFS experiments indicating
that the splitting of the Ni−O bond lengths persist also above
the MIT in RNiO3 with R = Pr, Nd, Eu.23 This fact has been

FIG. 4. Peaked component of s ′ (curve 3 of Fig. 3) fitted assuming
CO or OO at 289 K.

explained in terms of localized CO phase also in the metallic
state, but might be due to the disordered JT distortions. Another
case where the anomalously large mean-square displacements
suggest JT distortions is a recent neutron diffraction study on
PrNiO3.59

I. The peaked softening at TIM

Up to now we dealt with the steplike stiffening below the
MIT, which however is accompanied by a peaked softening and
absorption. The narrow shape of such an anomaly suggests
that it is due to fluctuations associated with the MIT, but
the absorption is almost independent of frequency, while the
critical absorption is expected to be proportional to it.48

The real part of the peak, corresponding to curve 3 in
Fig. 3, is plotted in Fig. 4 as speak + s0, cleared of the step
and temperature dependent part of the background. We tried
to fit with the expressions appropriate for CO and OO, namely
s = 1/(CCO/OO + Cbg) where CCO/OO(T ) is given by Eq. (5)
above TCO/TOO and in Appendix B in the low temperature
phase. The parameters were TCO = TOO = 289 K, �T =
TJT = 14.4 K and C0 � 0.02, Cbg = s−1

0 = 0.98 for both
cases. The resulting curves, very close to each other, fit very
poorly the experimental data. In particular, the observed peak
is steeper in the high temperature side, while the fitting curves
are steeper in the low temperature phase, as expected. This
discrepancy cannot be accounted for by relaxation of domain
walls in the low temperature phase, since relaxations depend on
the measuring frequency and the anomaly we observe does not.
The failure of reproducing the peaked component as softening
from OO or CO should be considered as an indication that
the origin of the peak is different and we leave it as an open
question.

V. CONCLUSIONS

We measured the complex dynamic Young’s modulus of
NdNiO3 and Nd0.65Eu0.35NiO3, in order to study the elastic
anomalies associated with the MIT and magnetic transition.
The main features are a sharp stiffening of ∼ 6% below the
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MIT, perfectly reproducible during cooling and heating in
Nd0.65Eu0.35NiO3 and with a broad hysteresis in NdNiO3,
accompanied by a narrow dip at the MIT. The change of
the MIT between first- and second-order character at the two
compositions agrees with the known phase diagram of RNiO3

as a function of the R size. The differences with respect to
elasticity measurements on Mn perovskites are the absence of
precursor softening associated with the MIT, the sharpness of
the transition during heating or when it is second order, and
the broadness of the hysteresis when it is first order. Both the
narrow softening at the MIT and the stiffening below it seem
not to be associated with spin ordering, which in the Eu-doped
sample occurs at a temperature lower than the MIT.

By comparing cooling and heating runs, it was possible
to separate the steplike stiffening from the other anomalies,
which present similarities with the excess specific heat, and
whose relationship with spin and charge order have been
briefly considered. A fit of the dip at the MIT in terms of CO
has been made, but its quality is too poor to draw a conclusion.

In order to explain the rather unusual steplike stiffening,
possible mechanisms producing elastic anomalies at mag-
netic, charge order and orbital order transitions have been
considered, and it is concluded that the stiffening is due to
the disappearance or to freezing in the insulating phase of
dynamic JT distortions, due to the charge disproportionation
and ordering that accompanies the MIT and transforms JT
active Ni3+ into Ni3±δ . The driving force for the MIT is
not orbital ordering or any mechanism linearly coupled to
strain, in view of the absence of precursor softening. This is
in agreement with the idea that the MIT is caused by the
opening of a gap when the orbital overlap drops below a
threshold during cooling. In fact, such a mechanism depends
only on the different thermal expansivities of the R−O and
Ni−O bonds, and does not produce softening. The fluctuating
tetragonal/orthorhombic Jahn-Teller distortion of the NiO6

octahedra necessary to justify the observed jump in the elastic
modulus is estimated as ∼ 3% and the compatibility of such a
requirement with other structural studies is discussed.
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APPENDIX A

We determine the factor that connects the amplitude of
softening in Eq. (6) to the anisotropy of the elastic quadrupole
tensor of the octahedral distortions �λ. This can be done by
evaluating the relaxation of the reciprocal of the Young’s mod-
ulus, δE−1(n̂), along a generic direction n̂ after application of
a uniaxial stress σ = σ0|n̂〉〈n̂| and then performing the angular
average of the relaxation strength, δE−1(n̂)/E−1(n̂), over n̂,
in order to obtain an approximation of the polycrystalline

average. It is convenient to decompose stress and strain into
an orthonormal basis adapted to the cubic symmetry56

T 1 = 1√
3

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ,

(A1)

T u = 1√
6

⎡
⎣−1 0 0

0 −1 0

0 0 2

⎤
⎦ , T v = 1√

2

⎡
⎣1 0 0

0 −1 0

0 0 0

⎤
⎦

where T 1 is the dilatation (irreducible representation A1g), T u

and T v tetragonal and orthorhombic shears of type Eg , and the
three shears of type T2g do not enter in the calculation, since
they are orthogonal to the Eg JT distortion. The generic strain
ε can be decomposed as |ε〉 = ∑

γ εγ |T γ 〉, or explicitly εij =∑
γ εγ T

γ

ij with components εγ = 〈T γ |ε〉, the scalar product
being defined as Tr{T γ : ε} = ∑

ij T
γ

ij εji . Analogously, the
uniaxial stress along n̂ is decomposed as

σij = σ0ninj =
∑

γ

σγ T
γ

ij .

Thanks to the orthonormality of the T γ only the two compo-
nents σu and σv will couple with λu and λv and we write them
as

σu = σ0u, σv = σ0v

with

u = 〈n̂|T u|n̂〉 = 2n2
33 − n2

11 − n2
22√

6
(A2)

v = 〈n̂|T v|n̂〉 = n2
11 − n2

22√
2

.

The elastic quadrupoles of the two JT states are written as

λu = λT u, λv = λT v

where λ gives the strength of the distortion.
The application of σ changes their elastic energies by

d(Eu − Ev) = −v0
∑

ij (λu
ij − λv

ij )σji = −v0σ0λ(u − v) and
their populations,

nu = e−Eu/kBT
/(

e−Eu/kBT + e−Ev/kBT
)

and nv = 1 − nu change as dnu

dσ0
� v0

4kBT
λ(v − u), where it is

used λσ � kBT . This change of populations results in a
change of the anelastic strain

dεan = c
∑

γ

λγ dnγ = σ0v0c

4kBT
λ2(u − v)[T v − T u].

The uniaxial component of dεan parallel to n̂ is 〈n̂|dεan|n̂〉 =∑
ij ninjdεan

ij , and using Eq. (A2) or 〈n̂|T v − T u|n̂〉 = (u −
v), the relaxation of the Young’s modulus along n̂ is

δE−1(n̂) = 〈n̂|dεan|n̂〉
σ0

= cv0

4kBT
λ2(u − v)2.

A simple formula for the polycrystalline average of the
relaxation strength �(n̂) = δE−1(n̂)/E−1(n̂) is obtained from
the Reuss approximation of uniform stress over the grains,31
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taking the angular average 〈�〉 � 〈δE−1(n̂)〉E where the
anisotropy of the material is neglected. By using Eq. (A2)
and 〈n2

i 〉 = 1
3 , 〈n4

i 〉 = 1
5 , 〈n2

i n
2
j 〉 = 1

15 one finally obtains

〈�〉 � cv0λ
2

15kBT
E.

It is possible to introduce a mixing of the two normalized
symmetry strains, due to hybridisation with the O2p orbitals
and delocalisation,60 by setting λu = λ[(1 − f

2 )T u + f

2 T v]
and similarly for λv with 0 � f � 1. In this case, in the
above formulas λ should be replaced by λ(1 − f ), but from
anelastic measurements it is not possible to evaluate λ and f

independently, and we assume f = 0.

APPENDIX B

The softening in Eq. (5) is valid above the CO or OO
transition temperature; below that temperature, the restiffening
depends on the precise nature of the transition. In the simplest
cases of doublet OO,53 the susceptibility below TC is given by

χ = 1

kBT cosh2(h/kBT )

where h is the mean field felt by each ion, acting as order
parameter, and is solution of the self-consistent equation

h = kBTC tanh(h/kBT ).

For CO, consider the Landau expansion in terms of powers
of the charge fluctuation order parameter, as in Ref. 47 but
limiting to the case that only one order parameter Q is relevant.
Than the free energy is written as

F = F0 + α

2
Q2 + β

4
Q4 + C0

2
ε2 − gQε

where α = α0(T − �). Solving the equilibrium conditions
∂F/∂Q = 0 and ∂F/∂ε = 0 one finds Q2(T ) = α0/β(T −
TCO) with TCO = � + �T , �T = g2/(C0α0). The renormal-
ized elastic constant is then

C = C0 − g
∂Q

∂ε

where ∂Q/∂ε can be obtained by derivating with respect to ε

the equation ∂F/∂Q = 0:

∂Q

∂ε
= g

α + 3βQ2
.

When T > � it is Q = 0 and we obtain Eq. (5) as before, here
rewritten as

C = C0
(T − � − �T )

(T − �)

In the CO phase, we obtain

C = C0
(T − � − �T )(
T − � − 3

2�T
) .

These formulas have been used for the fits in Fig. 4.
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8J. A. Alonso, J. L. Garcı́a-Muñoz, M. T. Fernández-Dı́az, M. A. G.
Aranda, M. J. Martı́nez-Lope, and M. T. Casais, Phys. Rev. Lett.
82, 3871 (1999).
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