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SU(2) slave fermion solution of the Kitaev honeycomb lattice model

F. J. Burnell1,2 and Chetan Nayak3,4

1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
2All Souls College, Oxford, United Kingdom

3Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, California 93106, USA
4Department of Physics, University of California, Santa Barbara, California 93106, USA

(Received 16 May 2011; revised manuscript received 21 July 2011; published 13 September 2011)

We apply the SU(2) slave fermion formalism to the Kitaev honeycomb lattice model. We show that both the
toric code phase (the A phase) and the gapless phase of this model (the B phase) can be identified with p-wave
superconducting phases of the slave fermions, with nodal lines which, respectively, do not or do intersect the
Fermi surface. The non-Abelian Ising anyon phase is a p + ip superconducting phase that occurs when the B
phase is subjected to a gap-opening magnetic field. We also discuss the transitions between these phases in this
language.
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I. INTRODUCTION

In Ref. 1, Kitaev introduced the following remarkable
model of s = 1/2 spins on a honeycomb lattice:

H = −Jx

∑
x links

Sx
j Sx

j − Jy

∑
y links

S
y

j S
y

j − Jz

∑
z links

Sx
j Sz

j , (1)

where the z links are the vertical links on the honeycomb
lattice, and the x and y links are at angles ±π/3 from the
vertical. This model is exactly solvable and has a gapped
Abelian topological phase (the A phase), which is equivalent to
the toric code.2 It also has a gapless phase (the B phase), which,
when subjected to an appropriate time-reversal symmetry-
breaking perturbation, becomes a gapped non-Abelian topo-
logical phase supporting Ising anyons.

This model is one of the rare instances of an exactly solvable
model of a quantum magnet that does not order in its ground
state and, instead, condenses into a topological phase. As such,
it is a useful testing ground for theoretical techniques, such
as slave fermion representations, which have been applied to
approximately solve models of frustrated magnets that are not
exactly solvable. Applying these techniques to Eq. (1) can
shed light on the physics of this model and, conversely, on the
applicability of these techniques.

Kitaev solved the Hamiltonian (1) by introducing a fermion-
ization of the spins in terms of Majorana fermions. By
expressing each spin operator as a product of two Majorana
fermions, the spin model can be described exactly as a
model of Majorana fermions coupled to a Z2 gauge field.
In this description, the effect of the gauge field is particularly
transparent: the physical correlators are captured exactly by
the fermionic band structure, and the gauge field serves only
to enforce the fact that only gauge-invariant observables (e.g.,
products of spins) are physical.

In this paper, we apply a different fermionization proce-
dure, the SU(2) slave fermion formalism. This representation
requires a different projection to eliminate redundancies in
the Hilbert space compared to Kitaev’s representation in
terms of Majorana fermions; therefore, it is interesting to see
how the same low-energy degrees of freedom emerge. In the
SU(2) slave fermion formalism, the spins are written in terms
of standard, rather than Majorana, fermionic spinons. The

Hamiltonian of Eq. (1) is then expanded about a resonating
valence bond (RVB) mean-field state. We show that this
is a stable mean-field theory which captures the physical
correlation functions of the exact ground state of Eq. (1).
We find that the A phase is a p-wave superconducting state
of the slave fermions. The state is fully gapped because
the nodes in the order parameter do not intersect the Fermi
surface. The Majorana fermions of Kitaev’s solution appear as
Bogoliubov–de Gennes quasiparticles of the superconducting
state. The B phase is a p-wave superconducting state with
gapless excitations at the nodal points. These excitations form a
single Dirac fermion. When the order parameter develops an ip

component, the Dirac fermion acquires a mass, and the system
goes into an Ising anyon phase. The transition point between
the A phase and the gapless B phase is an interesting quantum
critical point, which we describe in terms of superconducting
order parameters.

By studying the theory of fluctuations about the mean-field
saddle point, we recover the Z2 gauge field as the unbroken
gauge symmetry remaining in the superconducting state. This
situates the ground state of the finely tuned Hamiltonian (1)
in the broader context of spin liquid3–12 and superconducting
phases, and allows us to understand its phase diagram in terms
of these more familiar phases of matter.

II. SU(2) SLAVE FERMION FORMULATION

A. Slave fermion mean-field Hamiltonian

Our starting point is the representation of the spin operators
in terms of spinful Dirac fermions, first discussed in Ref. 5 and
described in detail in Ref. 7. We thus write the spin operator
on site i Ŝα

i , α = x,y,z, as

Ŝα
i = 1

2f
†
iασ α

αβfiβ . (2)

Here, we have introduced the fermion operators fiα , usually
called spinons. For two-spin interactions of the form Ŝα

i Ŝ
β

j , one
way to treat the resulting Hamiltonian is to use a Hubbard-
Stratonovich transformation to decouple the four-fermion
interactions, reexpressing them as interactions between a
bosonic field � (which lives on a link in the lattice) and a
pair of fermion operators on the sites i and j bordering this
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link. One may then study the mean-field solutions, which can
be obtained by condensing the bosons. This is often a fruitful
way to investigate candidate “spin liquid” ground states, in
which the spins are strongly correlated but have no spatial
order.

One important caveat in this formulation is that Eq. (2)
gives a faithful representation of the Hilbert space only in
the subspace of fermionic states for which each site is singly
occupied. Thus, at each site (i), we must impose the three
(redundant) constraints

ni↑ + ni↓ = 1,
(3)

f
†
i↑f

†
i↓ = 0, fi↑fi↓ = 0.

As explained in Refs. 5,13, and 14 when the Hamiltonian pre-
serves SU(2) spin rotation symmetry, the Lagrange multipliers
of these constraints can be viewed as the temporal component
of an SU(2) gauge field, leading to a theory of fermions coupled
to a fluctuating gauge field. [The spatial components of this
gauge field are given by the phases of the fermion kinetic terms,
which here arise due to condensation of a bosonic field (see
Appendix B 3).] Projection would be enforced by integrating
out the gauge fields. In practice, this is typically done
approximately using perturbation theory in the fermion gauge-
field coupling.15

Thus the decoupling (2) leads to a description of the spin
model as a theory of fermions (spinons) coupled to an SU(2)
gauge field. For the Hamiltonian (1), we will find that the
spinons are in a superconducting phase, such that this gauge
symmetry is broken down to Z2. The SU(2) gauge fields are
therefore fully gapped, such that the effect of dynamical gauge-
field fluctuations on the fermion band structure is minimal.
We will nonetheless find that this gauge theory is a useful tool
to understand the origin of the various topologically ordered
phases described in Ref. 1.

We begin our analysis with the mean-field description of
the exact spin-liquid ground state of the Hamiltonian (1). In the
case of spin-rotationally invariant Hamiltonians, such as the
Heisenberg model, the Hamiltonian simplifies considerably
when written in terms of the fermions (2). In the absence of
spin-rotational symmetry, as in Eq. (1), the Hamiltonian is
more complicated. For instance, the Hamiltonian on x links
takes the form

Ŝx
i Ŝx

j = − 1
4 [f †

i↑f
†
j↑fi↓fj↓ + f

†
i↓f

†
j↓fi↑fj↑

+ f
†
i↑fj↑f

†
j↓fi↓ + f

†
i↓fj↓f

†
j↑fi↑] (4)

with similar terms on the y links, as detailed in Appendix B.
(This form is not unique; using the constraints, it can
be rewritten in different forms that are equivalent in the
constraint subspace.) In the Heisenberg model, by contrast,
the Hamiltonian on each link can be written in the form

Ŝx
i Ŝx

j + Ŝ
y

i Ŝ
y

j + Ŝz
i Ŝ

z
j =

∑
α,β

1

4
f

†
iαfiαf

†
jβfjβ

− 1

2
f

†
iαfjαf

†
jβfiβ .

As a result of the more complex form of the Hamiltonian,
it is necessary to introduce four Hubbard-Stratonovich fields

to decouple the four Fermi interactions. For example, the
Lagrangian on the x links can be written in the form

Lx = −8(|�1|2 + |�2|2)

Jx

− 8(|�1|2 + |�2|2)

Jx

+�1(f †
i↑fj↑ + f

†
i↓fj↓) + i�2(f †

i↑fj↑ − f
†
i↓fj↓) + ˜H.c.

+�1(f †
i↑f

†
j↑ + f

†
i↓f

†
j↓) + i�2(f †

i↑f
†
j↑ − f

†
i↓f

†
j↓) + ˜H.c.,

where ˜H.c. is the Hermitian conjugate with all spin directions
reversed. The Lagrangian can be decoupled in a similar manner
on the y and x links as well, as detailed in Appendix B.

Before proceeding, it will be helpful to pick a unit cell for
the honeycomb lattice. We will label the two different sites in
the unit cell by the index u = 1,2 and different unit cells by
R = n1x̂ + n2( 1

2 x̂ +
√

3
2 ŷ). Then, we denote the fermion fields

by fRuσ . (We will continue to use fiσ to denote a fermion
operator on site i in either sublattice.) Their Fourier transforms
are defined by

fquσ = 1√
N

∑
�R

eiR·q fRuσ , (5)

where N is the total number of unit cells.
To proceed, we assume that �i , �i acquire nonzero

expectation values. We parametrize these expectation values
by tij,α , �ij,α , α =↑ ,↓, as explained in Appendix B 2. Unlike
in the case of Heisenberg interactions, to describe the Kitaev
model, we must condense both hopping and superconducting
order parameters or else the mean-field equations will not
be satisfied (except in the special case Jx = Jy = 0, Jz �= 0),
as shown below. (In the Heisenberg case, hopping and d-
wave superconducting terms can be rotated into each other
by a gauge transformation. This is not true for the p-
wave superconducting case considered here.) Because SU(2)
spin-rotation invariance is explicitly broken on each link,
the superconducting terms �↑,�↓ are spin polarized. Thus,
replacing the fields �i , �i by their expectation values, we
obtain the mean-field Hamiltonian

HMF = 1

2

∑
q,σ

ψ†
qσ

×

⎡
⎢⎣

0 tσ (q) 0 �σ (q)
t∗σ (q) 0 −�σ (−q) 0

0 −�∗
σ (−q) 0 −t∗σ (−q)

�∗
σ (q) 0 −tσ (−q)

⎤
⎥⎦ψqσ ,

ψ†
q = (f †

q,1,σ f
†
q,2,σ f−q,1,σ f−q,2,σ ). (6)

(Here, the factor of 1
2 in the first line compensates for the fact

that the expression (6) counts each term in the Hamiltonian
twice. Alternatively, we could sum over half the Brillouin
zone.) If we write ψq in components, it has three indices (in
addition to momentum) ψqlσa , where u = 1,2 is a sublattice
index, σ =↑ ,↓ is a spin index, and a = ± is a particle-hole
index.

Since we will often be using Pauli matrices to act on these
indices, we will, to avoid confusion, introduce three different
notations for Pauli matrices. We will use σ

x,y,z

αβ for Pauli
matrices acting on spin indices; μx,y,z

uv for Pauli matrices acting
on sublattice indices; and τ

x,y,z

ab for Pauli matrices acting on
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particle-hole indices. (Of course, it is precisely the same three
matrices in all three cases.)

By requiring self-consistency of the expectation values, we
can express tij,α , �ij,α in terms of Jx,y,z, as shown in Eq. (B7).
At the saddle point of interest, the relevant parameters are

t↑(q) = − i

16
(ei �q·l̂1Jx + ei �q·l̂2Jy),

�↑(q) = − i

16
(ei �q·l̂2Jy − ei �q·l̂1Jx),

(7)

t↓(q) = − i

16
(ei �q·l̂1Jx + ei �q·l̂2Jy + 2Jz),

�↓(q) = i

16
(ei �q·l̂1Jx + ei �q·l̂2Jy),

where l̂1,2 =
√

3
2 ŷ ± 1

2 x̂ are the lattice vectors.
The band energies and eigenfunctions of HMF reveal the

correspondence between this picture and the Majorana fermion
decoupling of Ref. 1. The mean-field spectrum consists of three
flat bands, with energies

ε↑x = ±Jx

8
, ε↑y = ±Jy

8
, ε↓z = ±Jz

8
, (8)

and one dispersing band of energy

ε↓(q) = ± 1
8 |Jxe

i �q·l̂1 + Jye
i �q·l̂2 + Jz|. (9)

[Since we have included an explicit factor of 1/2 in our
definition of the spin operators �Si , our Jx,y,z are four times
larger than those of Kitaev. There is an additional explicit
factor of 4 in his definition of the spectrum in Eqs. (31)
and (32) in Ref. 1. This accounts for the factor 16 between
our spectra.] The corresponding eigenvectors are naturally
expressed in terms of the Majorana fermions

by
qu = f

†
qu↑ + f−qu↑, bx

qu = i(f †
qu↑ − f−qu↑),

(10)
bz

qu = f
†
qu↓ + f−qu↓, cqu = i(f †

qu↓ − f−qu↓).

We have used the same labels as Ref. 1 for these operators.
However, this is not a unique mapping. For instance,

we could, instead, take c = −(f †
↑ + f↑), bx = i(f †

↓ − f↓),

by = f
†
↓ + f↓, bz = i(f †

↑ − f↑). Furthermore, the mean-field
Hamiltonian has a different expression in terms of these
operators than in the mean-field theory of Ref. 1. For example,
the bilinears bz

R,1b
z
R,2 do not commute with the mean-field

Hamiltonian. The reason for this is that, if the spin operators
are expressed in terms of the f,f †s according to Eq. (2), and
then the f,f †s are written in terms of c,bx,by,bz, according
to Eq. (10), then we will not obtain the same representation
as in Ref. 1. Only after the constraints are imposed do the
operators in Eq. (10) become equivalent to those of Kitaev.
This is explained in more detail in Appendix A.

The eigenvectors corresponding to the eigenvalues (8) and
(9) are given by

αx±(q) = 1
2

(
iei �q·l̂1bx

q,1 ± bx
q,2

)
,

αy±(q) = 1
2

(
iei �q·l̂2by

q,1 ± b
y

q,2

)
,

(11)
αz±(q) = 1

2

(
ibz

q,1 ± bz
q,2

)
,

α0±(q) = 1
2 (ieiθq cq,1 ± cq,2),

where θq = Arg(Jxe
i �q·l̂1 + Jye

i �q·l̂2 + Jz), and in all cases, plus
sign corresponds to the negative-energy solution. The bα

q,i

therefore lie in the three flat bands, and are localized on x,y,
and z links, respectively, and c is the dispersing Majorana
mode identified by Ref. 1.

Hence, the saddle point (7) reproduces exactly the descrip-
tion of Ref. 1, with the precise mapping between the fermions
fquσ and Kitaev’s Majorana fermions given by Eq. (10). The
only difference is that Ref. 1 does not include the energy of
the flat bands, so that bx,y,z enter only in determining the band
structure of the remaining Majorana mode c. The fermionic
mean-field energy we obtain per unit cell at half-filling is

−1

8
(Jx + Jy + Jz) − 2

N

∑
q

εq . (12)

However, the first term is canceled by the zero-point energy
arising from terms of the form |�i |2

Jx,y,z
, |�i |2

Jx,y,z
in the Hubbard-

Stratonovich Hamiltonian, so we are left with precisely the
same energy as in Kitaev’s solution.

Superficially, we have obtained an eight-band mean-field
theory from a model of spinful fermions on a lattice with a
two-site unit cell. Readers might, thus, justifiably be concerned
that we have in fact obtained double the degrees of freedom
that we would have expected. However, we have combined
fquσ and f

†
−quσ into the same spinor; consequently, we

should restrict q to half the Brillouin zone to avoid double
counting.

B. Slave fermion band structure

To understand the physics of this model, it is useful to focus
on the band structure of the down-spin fermions. It suffices to
consider the case Jx = Jy = J :

ε↓(q) = ±J

8

⎧⎨
⎩
(

Jz

J
+ 2 cos

qx

2
cos

√
3qy

2

)2

+ 4

(
cos

qx

2
sin

√
3qy

2

)2
⎫⎬
⎭

1/2

. (13)

This describes a pair of bands that cross at either 0 or 2
distinct points in the Brillouin zone, as shown in Fig. 1.
Following Ref. 1, we will call the former case, which occurs
for |Jz| > 2|J |, the A phase. In the A phase, the spectrum is
fully gapped. When |Jz| < 2|J |, there are two Majorana cones
in the spectrum or, equivalently, a single Dirac cone. This is
the B phase. Our objective here is to understand how this
band structure arises in the slave fermion superconductor, and
use this analogy to understand the transitions between these
phases.

We begin with a more scrupulous analysis of the nature of
the superconducting state. Since the character of the phase is
determined by the dispersing fermion band, we will focus
on the mean-field Hamiltonian for the down spins. If we
combine the down-spin fermions on the two sublattices into the
spinor

q =
(

fq1↓
fq2↓

)
, (14)
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−2

0

2

4

FIG. 1. (Color online) Fermionic spectra for the dispersing mode
of the fermionized Hamiltonian, in the gapless B phase (a), and
gapped A phase (b). (The remaining 6 bands of the Hamiltonian
(6) are flat, and lie at energies ±Jx, ± Jy , and ±Jz). In the gapless
phase the Fermi surface consists of nodes at two distinct points in
the hexagonal Brillouin zone. The loci of these nodes varies with the
relative magnitudes of Jx,Jy , and Jz. The transition to the gapped A

phase occurs when the pair of nodes come together and annihilate, as
shown in (c).

then the Hamiltonian has the general form

Hdown = †
q

[
ε(x)
q μx + ε(y)

q μy

]
q

+†
q

(
�(s)

q μy + �(t)
q μx

)
(†

−q)T + H.c.

+ Jz

8

(
2 − J

Jz

)
†

qμyq, (15)

where we have taken Jx = Jy = J , and

ε(x)
q = J

8
cos

qx

2
sin

√
3qy

2
,

(16)

ε(y)
q = J

16

(
1 + 2 cos

qx

2
cos

√
3qy

2

)

represent the kinetic energy for fermions hopping on the
honeycomb lattice. The third line corresponds to an in-plane
“magnetic field” in pseudospin space due to the enhanced
hopping along the z links. This term shifts the positions of the
Majorana cones, but is otherwise unremarkable.

The second line is a superconducting pairing term along the
x and y links. Both

�(s)
q = J

8
cos

√
3qy

2
cos

qx

2
,

(17)

�(t)
q = −J

8
sin

√
3qy

2
cos

qx

2
are nonvanishing in the mean-field state. The superscipts (s)
and (t) refer to the fact that these are pseudospin-singlet and
pseudospin-triplet superconducting order parameters.

If we linearize about the nodes (we work at the isotropic
point J = Jz for simplicity), then the Hamiltonian for down
spins takes the form

Hdown = †
p

[
−J

√
3

32
pyμx + J

√
3

32
pxμy − J

16
μy

]
p

− J

16
†

pμy(†
−p)T + H.c.

+ J
√

3

32
†

p[pyμx − pxμy](†
−p)T + H.c. (18)

Here, �p is the distance from the node (4π/3,0). This Hamilto-
nian has four eigenvalues, the two nondispersing ones ±Jz/8
and the two dispersing ones in Eq. (13).

It is helpful to isolate the dispersing band. [The Hamiltonian
(15) contains both the dispersing and nondispersing down-spin
bands]. To this end, we form the Dirac fermion

ηq = eiπ/4(cq1 − icq2). (19)

The mean-field Hamiltonian for ηq is (up to a constant)

H̃ = 1

2

∑
q

(εqη
†
qηq + �qη

†
qη

†
−q + H.c.), (20)

where

εq = 1

8

(
Jz + 2J cos

qx

2
cos

√
3

2
qy

)
, (21)

�q = 1

4
J cos

qx

2
sin

√
3

2
qy. (22)

To understand this Hamiltonian better, it is useful to
momentarily imagine that �q = 0 and focus on εq . The Hamil-
tonian now describes spinless fermions on the honeycomb
lattice with dispersion εq . First, consider Jz > 2J . We see that
there is no Fermi surface: εq is never equal to zero. Consider
the minimum energy excitation, which occurs at �q = (0, 2π√

3
)

and has energy Jz − 2J . Near the minimum, the band is
approximately quadratic. There are no excitations near zero
energy because the effective “Fermi energy” lies below the
bottom of the band. Superconductivity does not change this
picture very much, other than to break U(1) symmetry (which
is very important when we go beyond the mean field). When
superconductivity is turned back on, there are no nodes or
nodal excitations because there is no Fermi surface.
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JJ /Jz
2

B phase A phase

-2

A phase

FIG. 2. Schematic phase diagram of the Hamiltonian (1).

For Jz < 2J , there is a Fermi surface that surrounds the
point (0, 2π√

3
). Strictly speaking, for the usual Brillouin zone,

this point sits on its boundary, so half the Fermi surface
encircles (0, 2π√

3
), while the other half encircles the equivalent

point (0, − 2π√
3
), which differs by a reciprocal lattice vector.

Of course, we could take a different unit cell for the reciprocal
lattice that only includes one of these two points; then, the
Fermi surface will surround this point. We now restore the
superconducting gap �q . This opens a gap on the Fermi
surface, except at the points on the Fermi surface that intersect
the nodal line (qy = 2π√

3
). [The nodal line qy = 0 does not

intersect the Fermi surface, except for the point (4π/3,0),
which is equivalent to (2π/3,2π/

√
3) under translation by a

reciprocal lattice vector.] For 2 − Jz/J � 1 small, the Fermi
surface is approximately circular. Let us expand momenta
about (0, 2π√

3
) so that (qx,qy) ≈ (0, 2π√

3
) + (2px,2py/

√
3). Then

εp ≈ J (p2
x + p2

x) − μ, where the Fermi energy μ is given by
μ = 2J − Jz, and �p = J py . Thus, the Hamiltonian in the B
phase looks like that of a py superconductor, which has nodes
at py = 0. As Jz is decreased and the system moves toward
the isotropic point, the nodes move toward the corners of the
Brillouin zone, eventually reaching the graphene spectrum at
the isotropic point.

III. MEAN-FIELD PHASE DIAGRAM IN THE ABSENCE
OF TIME-REVERSAL SYMMETRY-BREAKING

PERTURBATIONS

We will now apply the mean-field description outlined in the
preceding section to understanding the phase diagram of (1) in
terms of its fermionic band structure and superconducting gap.
For reference, a schematic mean-field phase diagram is shown
in Fig. 2. As we shall see, the principal advantage of the spinful
mean-field decoupling is that it allows us to better understand
the system’s behavior away from the exactly solvable point,
both in terms of proximate phases and the fate of physical
quantities such as the spin-spin correlation functions as we
perturb the Hamiltonian (1). At the end of this section, we also
describe at mean-field level the nature of the phase transition
separating the gapped A phase and gapless B phase.

A. The A phase

We begin by studying the A phase, for which Jz > 2J

and the band structure (13) is fully gapped. In this phase,
superconductivity, which couples fermions along the x and
y links, competes with dimerization along the z links, as is
evident from the two-band Hamiltonian (15). In the A phase,
the dimerization term dominates, leading to a fully gapped
band structure. In the extreme limit J = 0, Jz �= 0, dimeriza-
tion leads to a gap, even in the absence of superconductivity.
(Indeed, many fruitful explorations of the A phase treat it as
an effective theory of such interacting dimers.16–19)

As seen at the end of the preceding section, we may view
the A phase as a spin-polarized p-wave superconductor with
chemical potential which lies below the conduction band. One
amusing consequence of this is that the topological order of
this phase is, as explained in Ref. 20, that of a Z2 gauge
theory. Its topological nature stems from the fact that, in the
condensed phase, the only remnant of the interactions between
gauge fields and matter is a “statistical” interaction21 due to the
Berry phase of π accrued by a charge if it encircles a vortex of
flux h̄

2e
. This provides an alternative perspective on the well-

documented fact1,16 that the A phase is smoothly connected to
the so-called toric code,2 a model of Ising spins that realizes
a topological Z2 gauge theory with matter. In particular, this
highlights that the topological order of the A phase is not
restricted to the set of exactly solvable Hamiltonians described
by (1), but is that of a garden-variety s-wave superconductor.

If we only cared about the single-particle gap, then we could
close the superconducting gap entirely without closing the total
fermion gap. However, the gauge symmetry of the problem
would not be broken down to Z2 in this case, so there would be
gapless gauge-field fluctuations about the mean-field solution.
[In the dimerized limit where Jz = Jy = 0, these gapless
modes are absent since the gauge field cannot propagate, even
though the U(1) gauge symmetry is unbroken.]

Because the A phase is fully gapped, it is stable to
weak perturbations away from the solvable point discussed
here. For instance, we could add a weak magnetic field
and/or Heisenberg interaction without changing the qualitative
features of this phase. Since the system is fully gapped,
perturbation theory can be used and the effect will be small,
so long as the perturbation is weak. This is in contrast to the
B phase, which, as we will see, is unstable in the face of
appropriately chosen perturbations.

B. The nodal B phase

We now briefly describe the B phase, for which Jz < 2J .
Now Eq. (20) is the band structure of a p-wave superconductor,
whose nodes of which intersect the Fermi surface at two
distinct points in the Brillouin zone.

To simplify the algebra, we will consider the symmetric
point Jx = Jy = Jz ≡ J . The energies of the dispersing
Majorana bands are then exactly those of free fermions in a
honeycomb lattice. The spectrum is gapless at the points �q =
(± 2π

3 , 2π√
3
) [and at the equivalent points (± 4π

3 ,0), ( 2π
3 , − 2π√

3
),

which differ from the first two by reciprocal lattice vectors].
These nodes account for two distinct cones in the energy
spectrum, as in graphene. However, unlike in graphene, the
band structure (13) is that of a pair of bands of dispersing
Majorana fermions. In the vicinity of these nodal points, it is
useful to rewrite the Hamiltonian (20) in terms of the spinor

χq =
(

ηq

η
†
−q

)
, (23)

where �q is restricted to lie in half of the Brillouin zone to avoid
double counting, e.g., over qx > 0. In terms of this spinor, the
Hamiltonian can be written in the form

H = 1

2

∑
qx>0,qy

χ †
q [�qτx + εqτz]χq. (24)
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In the vicinity of the nodes (at the isotropic point Jz = J ), we
can expand �q = ( 4π

3 ,0) + (px,py) and write

χ̃p =
(

η
( 4π

3 ,0)+ �p
η
†
−( 4π

3 ,0)− �p

)
, (25)

and �p now ranges unrestricted over small �p (e.g., over | �p| <

�, for some cutoff �), i.e., near the nodes. Expanding ε =√
3J

16 py,� =
√

3J
16 px , we can write

H =
∑

�p
χ̃ †

p

[√
3J

32
pyτx +

√
3J

32
pxτz

]
χ̃p

= v

∫
d2x χ̃ †[i∂yτy + i∂xτz]χ̃ (26)

with v =
√

3
32 J . Thus, these two Majorana fermions combine

to form a single Dirac fermion. This Dirac cone is formed
by combining the two nodes of a py superconductor. This
single Dirac cone does not violate the usual fermion doubling
arguments since the gauge symmetry is broken. We will
see presently, however, that it is central to the non-Abelian
statistics of the gapped B∗ phase.

We now consider some of the correlation functions of the B
phase. Since there are gapless excitations, the energy density
will certainly have power-law correlations. How about the
spin-spin correlation function? At the soluble point, this is
short ranged. Consider, for instance, the Sz-Sz correlation. In
terms of the slave fermions, Sz

i = (f †
i↑fi↑ − f

†
i↓fi↓)/2. Since

up and down spins decouple,〈
Sz

i S
z
j

〉 = 1
4 〈f †

i↑fi↑f
†
j↑fj↑〉 + 1

4 〈f †
i↓fi↓f

†
j↓fj↓〉. (27)

The first term vanishes since it only involves bx and by , and
these create and annihilate fermions in the up-spin flat bands.
Here, bx and by are defined in terms of f↓, f

†
↓ according to

Eq. (10). (It is important to remember that, although they play
the same role in our analysis as the operators with the same
labels in Ref. 1, they are not identical, in spite of the obvious
similarity.) Thus, we are left with〈
Sz

i S
z
j

〉 = 〈f †
i↓fi↓f

†
j↓fj↓〉/4

= (
1 + 〈

ibz
i ci

〉 + 〈
ibz

j cj

〉 − 〈
bz

i ci b
z
j cj

〉)/
16 = 0. (28)

At the mean-field level, this is a free fermion problem, so
we can evaluate these correlation functions. The Hamiltonian
does not mix bz with c, so 〈ibz

i ci〉 = 0 and 〈bz
i ci bz

j cj 〉 =
〈bz

i b
z
j 〉〈cj ci〉. Since bz creates a fermion in a flat, nondispersing

band, 〈bz
i b

z
j 〉 = 0 unless i and j are the same or neighboring

sites.
One of the appealing features of the formalism we use is that

correlation functions in the presence of small perturbations to
the Hamiltonian (1) can be calculated with relative ease. For
instance, suppose we consider a weak magnetic field in the
z direction, as in Ref. 22. This adds a perturbation to the
Hamiltonian

Hpert = 1

2
hz

∑
i

(f †
i↑fi↑ − f

†
i↓fi↓). (29)

For small hz, this perturbation does not spoil the basic
structure of the spectrum: there are still three gapped

bands and one gapless one. The up-spin gapped band will
still be nondispersing and will be at the same energy,
but the corresponding eigenoperators will mix bx and by [un-
like the eigenoperators (11) in the unperturbed Hamiltonian].
The down-spin gapped band will now disperse weakly, but will
remain gapped. However, the eigenoperators for the down-spin
bands will now mix bz and c. Thus, when we compute the
〈Sz

i S
z
j 〉 correlation function, bz will have a small amplitude,

proportional to hz for small hz, to create a dispersing fermion.
Thus, this correlation function will have power-law falloff.

To see this more precisely, we add the magnetic-field term
to the down-spin Hamiltonian

Hdown = †
p

[
−J

√
3

32
pyμx + J

√
3

32
pxμy − J

16
μy

]
p

+ J
√

3

32
†

p[pyμx − pxμy](†
−p)T + H.c.

− J

16
†

pμy(†
−p)T + H.c. − 1

2
hz

†
pp. (30)

When we diagonalize this Hamiltonian, we find a new set
of eigenoperators α̃z±, α̃0±. The eigenoperator α̃z+ creates a
fermion in a weakly dispersing gapped band and has short-
ranged correlation functions. The eigenoperator α̃0+ creates a
fermion in a gapless band and has power-law correlation func-
tions. For small hz (and, for simplicity, small momentum k),
we can express the fermions αz± = (ibz

q,1 ± bz
q,2)/2, α0± =

(ieiθq cq,1 ± cq,2)/2, in terms of these new eigenoperators as

αz± = α̃z± ± hz

2
α̃0±,

(31)

α0± = ∓hz

2
α̃z± + α̃0±.

Thus, we now have〈
bz

i b
z
j

〉 = −〈(αz+,i + αz−,i)(αz+,j + αz−,j )〉
= −〈[α̃z+,i + α̃z−,i + hz(α̃0+,i − α̃0−,i)/2]

× [α̃z+,j + α̃z−,j + hz(α̃0+,j − α̃0−,j )/2]〉
= 〈α̃z+,i α̃z+,j 〉 + 〈α̃z−,i α̃z−,j 〉

+ h2
z

4
(〈α̃0+,i α̃0+,j 〉 + 〈α̃0−,i α̃0−,j 〉). (32)

Here, we have assumed that, for the sake of concreteness and
simplicity, the sites i and j are on the 1 sublattice. From the
Hamiltonian (30), we have, for large separation |x − y| and to
zeroth order in hz,

〈α̃0+,xα̃0+,y〉 + 〈α̃0−,xα̃0−,y〉

=
∫

dω

2π

d2k

(2π )2

J
√

3
16 (ky + ikx/2) eik·(x−y)

ω2 −
(

J
√

3
16

)2 (
k2
x + 4k2

y

) . (33)

Therefore, at long distances,

〈α̃0±,xα̃0±,y〉 ∼ 1

|x − y|2 . (34)

Combined with the 〈cicj 〉, which has the same power law, this
gives an 〈Sz

i S
z
j 〉 correlation function that falls off as 1/r4 in
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the presence of a small magnetic field, in agreement with the
results of Ref. 22.

In the face of perturbations that are not quadratic in the
fermions, such explicit calculations are more difficult in
general. However, as is frequently the case in spin-liquid
models,8 the structure of the Fermi surface (here a pair of
Dirac cones) is protected by symmetries of the mean-field state.
Thus, small perturbations which do not break any symmetries
of the problem can not open a gap in the spectrum.

C. Transition between A and B phases

As we move within the gapless B phase, from the isotropic
point Jx = Jy = Jz toward the boundary to the A phase, the
two nodal points move together and, at the phase-transition
point, merge. The nodes then annihilate as the phase boundary
is crossed. In this section, we focus on the transition point.

As discussed in Sec. II, the dispersing spin-down band
can be rewritten as a model of spinless fermions with py

superconducting order, as in Eq. (20). At the boundary between
the A and B phases, the Fermi surface has shrunk to a point
because the effective chemical potential is precisely at the
bottom of the band. When the effective chemical potential
is at the bottom of the band, the spectrum is quadratic in
the absence of superconductivity. Superconductivity with py

pairing symmetry leaves the spectrum gapless but makes the
spectrum linear in one direction. We now examine this in more
detail. Expanding about the bottom of the band (qx,qy) ≈
(0, 2π√

3
) + (2px,2py/

√
3), we can write the Hamiltonian (20)

in the form

H̃ = 1

2

∑
p

[
J

8
p2 η†

pηp − J

4
py (η†

pη
†
−p − ηpη−p)

]

= 1

2

∑
px>0,py

χT
−p

[
−J

4
pyI − J

8
p2iτy

]
χp, (35)

where

χp =
(

ηp

η
†
−p

)
. (36)

If we go to a Majorana basis

ϕp = 1√
2

(
ηp + η

†
−p

(ηp − η
†
−p)/i

)
, (37)

this can be rewritten as

H = 1

2

∑
px>0,py

ϕT
−p

[
−J

4
pyτz − J

8
p2τy

]
ϕp

= 1

2

∫
d2x ϕT

[
−J

4
i∂yτz − J

8
∂2τx

]
ϕ. (38)

Therefore, the low-energy theory can be called a single gapless
Majorana fermion, albeit an anisotropic and nonrelativistic
one.

IV. BEYOND MEAN-FIELD THEORY

Thus far, we have found a consistent mean-field solution
of (1) using the fermionization (2), which reproduces exactly
the Majorana fermion band structure and phase diagram of the

exact solution proposed by Ref. 1. We next ask what can be
said about its fate upon including fluctuations of the various
bosonic fields. The answer is not obvious since, unlike the
decoupling used by Ref. 1, the product bα

i bα
i+1 on each link does

not commute with the full unprojected fermion Hamiltonian
(although it does commute with the quadratic Hamiltonian
HMF). Here, we first establish that these fluctuations do
not alter the results of the previous sections. Second, we
demonstrate that, at long wavelengths, these bosonic modes
lead to precisely the Z2 gauge theory of Ref. 1. Together, these
facts cement the equivalence between the fermionization (2)
and Kitaev’s exact solution.

The underlying reason for this stability is that the unpro-
jected mean-field wave functions we obtain can be mapped
via Eq. (10) onto unprojected wave functions in the Majo-
rana fermionization of Ref. 1. Enforcing the SU(2) gauge
constraints to reduce the model back to the physical Hilbert
space amounts to two things: First, it eliminates the distinction
between different possible mappings between fσ ,f †

σ and
bx,y,z,c. Second, it imposes a condition that is equivalent to
the Z2 constraint required for the fermionization of Ref. 1.
Thus, when expressed in the Majorana basis given by (10),
the effect of this projection will be to apply the projector
relevant to Kitaev’s Majorana fermionization. In this way,
both fermionizations lead to the same wave functions after
projection.

A. Symmetries and robustness of the mean-field solution

First, we will show that, for the solvable Hamiltonian (1),
the model’s unusually large number of symmetries protect the
exact fermionic band structure. The mean-field solution is thus
exact in that it correctly describes all correlators of the physical
spin degrees of freedom, in spite of the apparent violence done
to the wave function by Gutzwiller projection.

We begin by listing the symmetries that are relevant to this
discussion. The Hamiltonian (1) has the following discrete
symmetries:

Ĉ : S
x,y,z

i → sx,y,zS
x,y,z

i , (39)

where the sign sx,y,z = ±1 can be chosen independently for
x, y, and z spin operators. In the fermionic description, this
leads to two discrete symmetries preserved by the mean-field
Hamiltonian:

Ĉ : fquσ → f
†
−quσ ,

(40)
Ŝ : fq1σ → f−q1σ , fq2σ → −f−q2σ .

Here, the charge-conjugation symmetry Ĉ is unitary [it is sim-
ply ψquσa → (τ x)ab ψquσb], while the sublattice symmetry Ŝ is
an antiunitary symmetry. Thus, in the mean-field Hamiltonian,
Ĉ takes �ij ,tij → �ij ,tij while Ŝ takes �ij ,tij → �∗

ij ,t
∗
ij .

Quadratic Hamiltonians invariant under Ĉ have eigenstates
that are diagonal in the Majorana basis (10). These symmetries
impose an important restriction on tij and �ij . Ĉ is preserved
as long as tij ,�ij are purely imaginary. Ŝ is preserved so long
as there are no terms directly coupling fermions on the same
sublattice.
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Time-reversal symmetry is also respected by the model and
its mean-field solution

T̂ : fqu↑ → f−qu↓, fqu↓ → −f−qu↑. (41)

Single-spin terms (i.e., a magnetic field) and three-spin
interactions break this symmetry. However, not all T̂-breaking
perturbations will open a gap in the B phase: only those
perturbations that break Ŝ will open a gap in the spectrum, as
we will see below. For example, the magnetic field discussed
in Sec. III B breaks T̂ and Ĉ, but not Ŝ. As shown explicitly
above, this does not gap the B phase and indeed results in
power-law spin-spin correlations.

The relation between these symmetries is

T̂ = ŜĜxĈ, (42)

where the symmetry Ĝx is given by

Ĝx,y : fi↑ → f
†
i↓

tij,↑,�ij,↑ → tij,↓,�ij,↓
tij,↓,�ij,↓ → tij,↑,�ij,↑, (43)

which are a discrete subset of the off-diagonal SU(2) rotations
interchanging up and down spins. In the mean-field solution,
these are no longer local symmetries. However, they remain
global symmetries of the theory, the effect of which is
to rotate between different possible mappings between the
four Majorana fermions (c,bx,y,z) and the four self-adjoint
combinations f

†
iσ + fiσ ,i(f †

iσ − fiσ ) of the spinful fermions.
Thus, T̂ is a projective symmetry, i.e., a symmetry that maps
the system to a different but gauge-equivalent saddle point.
Such projective symmetries are important to classifying the
phases of spin-liquid systems.8

Besides these more generic discrete symmetries [Eq. (1)]
represents a somewhat special point in a more extended
space of similar spin Hamiltonians: there is a product of
spin operators on each plaquette that commutes with H .
This is

P =
6∏

i=1

Se(i)(i) = ± 1

26
, (44)

where e(i) = z for a vertex that sits between x and y links on
the plaquette, y for a vertex that sits between x and z links on
a plaquette, and x for a vertex that sits between y and z links
on a plaquette (see Fig. 3). In the ground state, the value of
this operator is positive on each plaquette.1

In terms of the fermionic operators, P can be written as

Pf ≡ P0

(
6∏

i=1

bα
i bα

i+1

)
P0, (45)

where P0 denotes Gutzwiller projection onto singly occupied
states, α = x,y,z on x,y, and z links, respectively, and bα

i are
the Majorana fermions defined in Eq. (10). [Since the quantity
in parentheses is not SU(2) gauge invariant, the projection
operator is necessary in this case.] In the mean-field state, each
species of Majorana fermion is localized on the appropriate

z

x y

z

y x

σy

σz
σx

σy

σz

σx

FIG. 3. (Color online) The product of spin operators conserved
separately on each plaquette by the Kitaev Hamiltonian (1). The
Hamiltonian (1) distinguishes between three types of links on the
honeycomb lattice, which we call x, y, and z links (color-coded
red, green, and blue, respectively, here). On x links the spin-spin
interaction term is S

(x)
i S

(x)
j , and similarly for y and z links. The product

of spin operators shown here—a product around a plaquette of the spin
variable associated with the external edge at each vertex—commutes
with the spin Hamiltonian.

links, with 〈bα
i bα

i+1〉MF = 1/2. Terms annihilated by P0 do not

contribute since 〈f †
i↑f

†
i↓〉MF = 〈fi↑fi↓〉MF = 0. Hence, we find

that the mean-field value

Pf = 〈
bx

1bx
2

〉〈
b

y

2b
y

3

〉〈
bz

3b
z
4

〉〈
bx

4bx
5

〉〈
b

y

5b
y

6

〉〈
bz

6b
z
1

〉 = 1

26
(46)

is precisely that of the exact solution.
We now show that, combined with the discrete symmetries

mentioned above, conservation of Pf prevents fluctuations
about mean field from altering the fermionic band structure
in any way. We will first establish that the symmetries forbid
any terms other than those in Eq. (46) from contributing to
Pf . If there can be no further contributions to Pf induced
by fluctuations, however, then also no spectral weight can be
transferred from the equal-time correlation functions of the bα ,
as otherwise we would not arrive at the correct value for P .
This means that all further-neighbor correlators must vanish
exactly.

By Wick’s theorem, we need only consider the possibility
of other pairings of the fermionic operators that give a nonzero
contribution to Pf . The only possibility allowed by Ĉ and P̂Ŝ
is to give a nonvanishing expectation value to terms of the form
〈bx

1bx
4 〉,〈by

2b
y

5 〉, etc. Thus, we consider〈
bx

1bx
4

〉〈
b

y

2b
y

5

〉〈
bz

3b
z
6

〉〈
bx

2bx
5

〉〈
b

y

3b
y

6

〉〈
bz

4b
z
1

〉
. (47)

However, the interacting Hamiltonian for the up spins de-
couples exactly into separate Hamiltonians for each chain of
x-y links in the lattice. In particular, the full Hamiltonian
contains no interaction term coupling bx

1 and bx
4 , as they lie on

different chains. Hence interactions can not shift 〈bx
1bx

4 〉 from
its mean-field value of 0. As (47) is the only extra contribution
to Pf not explicitly forbidden by symmetry, we conclude
that Eq. (46) must remain valid in the full solution, and that
consequently no fermion bilinears can be shifted from their
mean-field values.

B. Gauge theory of fluctuations about mean field

Thus far, we have shown how to reproduce Kitaev’s
mean-field portrait of the exact spin-liquid ground state using
the fermionization (2), and argued that including fluctuations
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about mean field will not change the fermionic band structure.
Hence, we have obtained an alternative mean-field description
of the ground state of (1), which reproduces faithfully the spin
correlators of the exact ground state.

Although the mean-field solutions describe identical
physics, however, the fermionization (2) differs quite dramati-
cally from that of Ref. 1 in the nature of the bosonic variables,
and consequently the theory of fluctuations about mean field.
After Hubbard-Stratonovich transforming the four-fermion
interactions, we obtain bosonic fields which condense to give
both the hopping and superconducting order parameters as
well as the SU(2) gauge fields associated with the constraint
(3). One might therefore wonder why these do not lead to
significantly different physical theories after fluctuations about
mean field have been accounted for. Here we address this
question, allowing us to posit that (6) describes a gapped
spin-liquid phase that exists even away from the exactly
solvable limit of the Hamiltonian (1).

The bosonic fluctuations about mean field can be separated
into the following degrees of freedom. There are three scalar
fields describing fluctuations in the amplitudes of the various
kinetic and superconducting terms. All of these are massive,
and as we shall see, two of them can be interpreted as Higgs
fields for the broken SU(2) symmetry. In addition, there are
three independent fields associated with phase fluctuations
of the various link variables. These can be identified as
an SU(2) gauge field (describing phase fluctuations of the
spin-symmetric hopping term) and two Goldstone bosons
associated with the phases of the order parameters breaking
the SU(2) symmetry. We will briefly discuss each type in turn;
a more detailed analysis is presented in Appendix B 3.

We begin with the scalar fields describing fluctuations in
the amplitude of the various bosonic order parameters that
fix the mean-field fermionic band structure. The general
form of the Hubbard-Stratonovich action ensures that all of
the scalar fields are massive, with energy gaps of order 1

J

at the isotropic coupling point. Because of this mass gap,
fluctuations in the amplitudes of the mean-field parameters
are not generally expected to have an important effect on the
fermions. The notable exception to this23 is in cases when
they destabilize the spin-liquid saddle point in favor of a
“dimerized” state with spins hopping predominantly along a
subset of links in the lattice. As we discuss in Sec. III A, an
analog of the dimerized phase does occur for anisotropic Jx,y,z;
in general, we may therefore conjecture that, away from the
solvable point, this phase boundary may be shifted, but that
fluctuations of the mean-field hopping and superconducting
amplitudes will not qualitatively alter the phase diagram.

Next, we consider the impact of phase fluctuations de-
scribed by the SU(2) gauge theory. Naively, the gauge theory
is strongly fluctuating since there is no small parameter in the
problem. However, the ground state of (1) is a Higgs phase, so
the gauge field is massive. (Importantly, this explains why the
gauge theory is not confined.)

To see that the model (1) is in a Higgs phase, we view the
mean-field solution (6) as a condensate of two independent
order parameters in the adjoint representation of SU(2).
As explained in detail in Appendix B 3, the combination
of superconducting and spin-antisymmetric hopping terms
break the SU(2) gauge symmetry. This leaves only the

residual Z2 gauge-symmetry group one normally finds in a
superconductor:

fiσ , f
†
iσ → −fiσ , − f

†
iσ , tij,σ ,�ij,σ → tij,σ ,�ij,σ (48)

comprising the residual Z2 symmetry of the U(1) subgroup
broken by superconductivity. As a result of the Anderson-
Higgs phenomenon, the dynamical fluctuations in the gauge
field are suppressed at long wavelengths, so that gauge-
field fluctuations are not expected to substantially alter the
fermionic band structure. (Here the gauge field results from
the constraints of the purely two-dimensional system, and
consequently is fully gapped unlike the electromagnetic gauge
field in thin-film superconductors.) However, the gauge field
makes itself felt in the interesting topological structure of the
spin-liquid phase.

An alternative route for a gauge field to acquire a mass is
through the generation of a Chern-Simons term. We will return
to this possibility when we consider perturbations breaking T̂
in Sec. V, where we shall see that it plays an important role in
the topological nature of the theory.

In summary, we can understand the exact ground state of
Eq. (1), i.e., a phase whose propagating degrees of freedom
consist of Majorana fermions coupled to a Z2 gauge field, as a
rather special incarnation of the Z2 spin liquid: a spin-polarized
p-wave superconductor. In this description, we arrive at
Majorana fermions not by expressing the spins directly in
a Majorana basis, but rather by starting with Dirac fermions
coupled to an SU(2) gauge field and choosing a mean-field
solution, which breaks the gauge symmetry. The Z2 flux is thus
the superconducting vortex, while the Z2 charge carried by the
Majorana fermions reflects the fact that the superconducting
state conserves charge modulo 2.

V. T̂-BREAKING PERTURBATIONS: THE
GAPPED B∗ PHASE

In Sec. III C, we showed that one way to open a gap in the B
phase, i.e., by merging the two nodes, can be understood as a
transition between a nodal and nodeless superconductor. This
drives the system into the A phase. There is, however, a second
way to open a gap: we may add another pairing term to the
effective Hamiltonian (15), which will fully gap the spectrum
provided that the corresponding gap does not vanish at the
Dirac points. Here we focus on this latter gapped phase, and
discuss its topological properties.

As noted in Sec. IV A, this second gapped phase necessarily
breaks one of the two discrete symmetries of the mean-field
solution—and hence the physical time-reversal symmetry of
the spin model—since we must include couplings between
sites on the same sublattice. Here we will focus on the case
of broken Ŝ, as this can be realized by adding a three-spin
interaction that commutes with the Hamiltonian (1).

A. Mean-field theory with T̂ -breaking terms

In terms of the original spin degrees of freedom, the T̂
-breaking term we must add to enter the B∗ phase is

J ′

2

⎛
⎝∑

�rik=x̂

Sx
i Sz

jS
y

k +
∑
�rik=l̂1

Sz
i S

y

j Sx
k +

∑
�rik=l̂2

Sz
i S

x
j S

y

k

⎞
⎠ , (49)
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where l̂1,2 are the lattice vectors of the honeycomb lattice
(see Fig. 4). It is easy to see that this commutes with the
plaquette product of spins (44),24 and hence preserves the
Z2 vorticity on each plaquette. Hence, it also commutes with
the full Hamiltonian, although not individually with the spin
bilinears on each edge.

Expressing the spins in terms of Dirac fermions yields
a six-fermion interaction. Although we can not perform the
analog of an exact Hubbard-Stratonovich transformation for
the resulting action, which contains both four and six fermion
terms, at small J ′ it is possible to evaluate its effect on the
mean-field solution in a controlled way (see Appendix C). We
find that (consistent with the treatment of Ref. 1) the effect
of such a term is to induce second-neighbor hopping and
superconducting terms, without altering the rest of the band
structure (except for an overall rescaling of the bandwidth).

We therefore begin by studying the resulting mean-field
Hamiltonian. The three-spin interaction introduces the follow-
ing quadratic fermion terms for the down-spin band:

H
(1)
MF = J ′

8
(− sin qx + sin �q · l̂1 − sin �q · l̂2)[−†

qμzq

+†
q (†

−q)T + H.c.], (50)

where  was defined in Eq. (14). As shown in Appendix C, the
perturbation (49) does not alter the mean-field Hamiltonian of
the up spins, which therefore maintain their flat band structure
and remain localized on x and y links. In addition, the new
couplings do not disrupt the pair of flat spin-down bands.
Thus, the basic structure of the initial mean-field solution is
preserved, and the only effect of the interaction (49) at mean
field is to alter the structure of the dispersing spin-down band.

The new effective mean-field Hamiltonian for the spin-
down fermions therefore has the form

Hdown = †
q

[
ε(x)
q μx + ε(y)

q μy + ε(z)
q μz

]
q

+†
q

(
�(s)

q μy + �(t)
q μx

)
(†

−q)T + H.c.

+ �̃(p)
q †

q(†
−q)T + H.c. + Jz

8

(
2 − J

Jz

)
†

qμyq

(51)

with ε
(x,y)
q ,�

(s,p)
q given in Eqs. (16) and (17), and

εz = �̃(p) = J ′

8

(
− sin qx + 2 sin

qx

2
cos

√
3qy

2

)
. (52)

In the vicinity of the Dirac cone, for Jx,y,z ≡ J , this gives

Hdown = −†
q

[√
3

32
Jqyμx −

√
3

32
Jqxμy + J

16
μy

+
(

3
√

3

64
J ′q2 − 3

√
3

16
J ′
)

μz

]
q

+ J
√

3

32
†

p[pyμx − pxμy](†
−p)T + H.c.

− J

16
†

pμy(†
−p)T + H.c.

+ (3/8
√

3J ′2q2 + 3
√

3J ′/2)†
q (†

−q)T + H.c.,

(53)

which we can view as a mixed s-wave and chiral p-wave
superconductor. This term opens a gap at the Dirac cone, so that
the system is now fully gapped. We discuss the consequences
in the next section.

B. Topological features of the gapped B∗ phase

Thus far, we have established that adding the spin inter-
action (49) has the effect, at mean field, of breaking Ŝ and
opening a gap in the spectrum of the dispersing Majorana
mode (c), while leaving the band structure of the localized
Majorana modes (bx,y,z) unchanged. We will now see how
this perturbation leads to a topological phase with zero-energy
Majorana fermions bound to vortices, exactly as in the spinless
p + ip superconductor of Read and Green.25

The simplest way to identify the nature of the B∗ phase is
to consider the Hamiltonian (20), where the B phase is a py

superconductor. The perturbation modifies the Hamiltonian
according to

�q → �q − i
J ′

4
sin

qx

2

(
cos

√
3

2
qy − cos

qx

2

)

≈ −i sgn(qx)
J ′

4

(
1 + Jz

2J

)√
1 −

(
Jz

2J

)2

. (54)

In the second line, we have approximated �q by its value in
the vicinity of the nodes. From this expression, we see that
this is an ipx superconducting gap, which opens up a gap at
the nodes.

As noted previously, in the nodal B phase, the “chemical
potential” μ = 2J − Jz lies in the band. Thus, when the gap
is opened, the system goes into the “weak-coupling” p + ip

superconducting phase. As �q ranges over the Brillouin zone,
the vector (Re�q,Im�q,εq)/(ε2

q + |�q |2)1/2 wraps around
the sphere. The corresponding winding number can not be
changed without closing the gap, i.e., without going through a
phase transition.

Conversely, when the three-spin interaction is included
in the A phase, the chemical potential lies below the band.
For sufficiently small J ′, (Re�q,Im�q,εq)/(ε2

q + |�q |2)1/2

remains in the northern hemisphere, and thus has winding
number zero. Thus, this is the strong-pairing phase of the
chiral p-wave superconductor. In other words, including a
weak Ŝ-breaking perturbation in the A phase leaves the system
in the A phase.

Once we have identified the B∗ phase with the weak-
pairing phase of the chiral p-wave superconductor, we are
faced with the following riddle: in its usual incarnation, the
superconducting coherence length is assumed to be much
larger than the lattice scale, so that vortices are well modeled
by a continuum theory. In particular, the vortex will have a
core that is in the normal state. The argument put forth by
Read and Green25 to show that, in the weak-pairing phase,
a zero-energy Majorana fermion is bound to the vortex core,
relies on the existence of a domain wall between the vortex
core and the superconductor in an essential way. Since phase
B∗ is known to have the same topological order as the chiral
p-wave superconductor, in which the existence of Ising anyons
is due to the fact that these zero-energy Majorana fermions are

125125-10



SU(2) SLAVE FERMION SOLUTION OF THE KITAEV . . . PHYSICAL REVIEW B 84, 125125 (2011)

bound to the vortex cores, we expect a similar phenomenon.
In the lattice model at hand, however, a vortex exists on a
single plaquette, and there is no vortex core. How, then, do the
Majorana fermions become bound to these vortices?

One answer to this question comes from studying the long-
wavelength gauge theory. First, we observe that the key effect
of the T̂-breaking three-spin interaction is that it induces a
mass term m( 4π

3 ,0) = −m( −4π
3 ,0) = 3

√
3

2 J ′ at the two nodes in
the Brillouin zone. As discussed previously, the low-energy
effective theory is that of a single species of massive Dirac
fermion. If we integrate it out, then as shown explicitly in
Appendix D, the one-loop effective action for the gauge fields
is precisely what we would expect from a single Dirac cone,
except that, since U(1) is broken down to Z2, a Higgs mass is
also generated:

L(one loop)
g = 1

2
|�|2 AμAμ − 1

4πm
FμνFμν

+ m

|m|
1

8π
εμνλA

μ∂νAλ. (55)

In other words, we obtain the usual Higgs mass term, the
field-strength tensor squared, and a Chern-Simons term with
level 1

2 (as usual from a single Dirac cone12). The Higgs mass
is proportional to the condensate fraction |�|2, and is crucial
outside a vortex. However, in a vortex core, the condensate
vanishes. We will assume that the Higgs mass can be neglected
in the core. Thus, in a vortex core, we have

δL
δAμ

= m

|m|
1

8π
εμνλ∂

νAλ + Jμ, (56)

where Jμ is the fermion current, and we have used ∂νFμν = 0.
Taking μ = 0,m > 0, we obtain the constraint

1

4π
Bz

�R = ρ �R, (57)

where ρ ≡ J0. In the case at hand, we have

ρq =
∑
u=1,2

∑
k

[f †
k,u↓fk−q,u↓ + f−k,u↓f

†
−k+q,u↓]. (58)

(Here, k is technically restricted to momenta near the Dirac
cone; more generally, we sum over only half the Brillouin
zone.) The rather counterintuitive fact that holes at the left
Dirac cone carry the same charge as particles at the right Dirac
cone results from the fact that the two cones have opposite
chirality.

The density ρq is a sum of the density of particles at
the right Dirac cone and holes at the left Dirac cone. The
creation operator associated with this density is the Majorana
fermion cqu = i(f †

qu↓ − f−qu↓), which simultaneously creates
a particle at q and a hole at −q. Hence, Eq. (57) tells us
that there is a Majorana fermion c bound to every half-flux
quantum. These half-flux quanta are precisely the Z2 vortices
of the superconductor; hence, we conclude that there is a
Majorana fermion c bound to each Z2 vortex.

VI. SPIN-DENSITY-WAVE STATES

As described in the preceding section, a T̂-breaking three-
spin term opens up a gap. It is instructive to express the
Hamiltonian in terms of the χ̃ fermions:

χ̃p =
(

η �Q/2+ �p
η
†
− �Q/2− �p

)
. (59)

At the isotropic point, Jx = Jy = Jz, �Q/2 = ( 4π
3 ,0). The

Hamiltonian in the B phase can be written in the form

H =
∑

�p
χ̃ †

p[vpyτy + vpxτz]χ̃p, (60)

where v =
√

3J
2 at the isotropic point. The Dirac mass term

generated by the three-spin interaction is of the form

HD.M. = m
∑

�p
χ̃ †

pτyχ̃p, (61)

where m = 3J ′/2.
However, this is not the only possible term that can open a

gap at the nodes of the B phase. The other possible term is (W
is a coupling, which we introduce to parametrize the strength
of this term)

Hpair = W
∑

�p
χ̃T

p iτyχ̃−p + H.c.

= 2W
∑

�p
η
†
− �Q/2+ �pη �Q/2+ �p + H.c.

= 4W
∑

�p
[c �Q/2− �p,1c �Q/2+ �p,1 + (1 → 2)

+ ic �Q/2− �p,1c �Q/2+ �p,2 + (1 ↔ 2)] + H.c.

= −4W
∑

�p
[f †

�Q/2− �p,1
f

†
�Q/2+ �p,1

− f
†
�Q/2− �p,1

f− �Q/2− �p,1

+ . . .] + H.c. (62)

Thus, such a mass term breaks translational symmetry. It
includes terms that induce superconductivity at nonzero wave
vector as well as terms that induce a spin-density wave at
wave vector �Q. We can imagine that a spin-spin interaction
which is added to the Kitaev model as a perturbation will,
upon decoupling, generate such a mass term. However, since
the density of states at the nodes is zero, interactions will
only generate such a term at O(1) coupling strength (not at
infinitesimal coupling, as would be the case for a Fermi surface
instability). At O(1) coupling strength, there is no reason to
focus on the the nodal regions, so many other instabilities
could also occur. It is possible that, in a large-N version of
this model, such a translational-symmetry-breaking instability
will occur at weak coupling.

Similar but distinct spin-density-wave states have recently
been discussed in the context of a hybrid Kitaev-Heisenberg
model in Refs. 26 and 27.

VII. DISCUSSION

In describing the spin-liquid ground states of the various
phases of Kitaev’s honeycomb model using the slave fermion
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FIG. 4. (Color online) The three-spin interaction that breaks T̂ but
commutes with the conserved six-spin product on each plaquette (see
Fig. 3) (Ref. 24). The operator is constructed by taking the product
of spin operators on three adjacent vertices, where the direction of
the central spin is that associated with the external edge at the vertex,
while the two external spins match the edges joining their associated
vertices to the central vertex. In the figure, the central vertex is at
the upper left, and the operator is the product of σz at the lower left
vertex, σy at the upper left vertex, and σx at the top vertex.

approach, we may learn several things about the nature of the
phases of this model, their potential stability to perturbations
away from the solvable point, and their precise relationship to
other phases of matter that exhibit similar physics.

First, the fermionic mean-field theory allows us to relate
the various phases of the Kitaev model to the ground states
of different Bogoliubov–de Gennes Hamiltonians. This can
be done in two different ways: (i) in terms of the fermions
f↑,↓ introduced in Eq. (2) and (ii) in terms of the fermions
η introduced in Eq. (19). The latter are formed from the
propagating part of f↓. Each way has its conceptual and
technical advantages, as we have seen.

The mean-field phase diagram is summarized in Fig. 5,
which can be interpreted in terms of the η fermions as follows.
The A phase, in which the nodes of the superconductor do
not intersect the Fermi surface, is adiabatically connected to
an s-wave superconductor. The B phase is a nodal p-wave
superconductor. The B∗ phase is the weak-pairing phase of
a chiral p-wave superconductor, with the consequent Ising
topological order. The A∗ phase is the corresponding strong-
pairing chiral p-wave superconductor phase. As a result of the
strong-pairing nature of this phase, the topological order is,
in fact, again that of an s-wave superconductor. The reason
for this is that, at the mean-field level (i.e., when treated
as a free fermion problem), the A and A∗ phases can be
adiabatically deformed into each other, so the line between
them in Fig. 5 is a crossover line. On the other hand, the
other transitions in Fig. 5 are genuine phase boundaries,
which are essentially the same as the corresponding transitions
in the superconductor. One important difference needs to
be emphasized. In a two-dimensional superconductor with
a three-dimensional electromagnetic field, there is a gapless
plasmon. Thus, a thin superconducting film is not fully gapped,
even though its fermionic spectrum is fully gapped. However,
in the Kitaev honeycomb lattice model, the gauge field is two
dimensional. Consequently, the plasmon is gapped and the
system is fully gapped.

Although the SU(2) mean-field theory described here is
clearly more complicated than that of Kitaev at the soluble
point, it has the salient virtue that it is well suited to perturbing

B: Nodal
p-wave super-
conductor

B∗: Chi-
ral p-wave
superconduc-
tor (Weak
pairing)

A: Gapped
p-wave super-
conductor

A∗: Chi-
ral p-wave
superconduc-
tor (Strong
pairing)

J = 0 J = 0

J/Jz

FIG. 5. (Color online) Schematic phase diagram of the Kitaev
honeycomb model, and the corresponding superconducting phases.
The phase is determined by the ratio J/Jz, and by whether the
coefficient J ′ of the three-spin interaction is non-vanishing.

away from the soluble point, particularly in the gapless B
phase.

It is interesting to consider the fate of the phase diagram
shown in Fig. 5 when the spin Hamiltonian is deformed away
from the exactly solvable point. The fully gapped phases, i.e.,
the A and B∗ phases, will be robust against small perturbations
by virtue of their energy gaps. As long as the gauge symmetry
is broken to Z2 by the saddle-point solution, the gauge field
is gapped, and we do not expect fluctuations to lead to
confinement. Therefore, the model still admits effective spinon
excitations, and the topological order of the spin liquid will be
robust to gauge field fluctuations. Since the spinons are also
gapped in these phases, they are stable against adding weak
interactions between the fermions. The gapless B phase is a
little trickier. Since the gauge field is fully gapped, we believe
that the gauge-field action is robust against small perturbations.
The fermions, on the other hand, are gapless. However, since
they have a single gapless Dirac point (rather than a Fermi
surface), weak interactions between the fermions are irrelevant
by power counting. This is the reason that an SU(2)-invariant
Heisenberg perturbation does not lead to a phase transition
until the perturbation is sufficiently strong. Thus, we could say
that the stability of the gapless B phase relies on phase-space
limitations. However, as we have seen, although the gapless
B phase is stable against weak perturbations, some features of
the soluble point are not generic to this phase. For instance,
a magnetic field will make the spin-spin correlation functions
have a power law rather than short-ranged form.

The fact that the bosonic fluctuations are all gapped
does not, however, prevent the theory from acquiring a new
lowest-energy saddle point if we deform far enough away from
the solvable model. For instance, as we have discussed, the
gapless B phase can acquire a gap by an alternative method:
the development of a spin-density wave, as discussed in
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Sec. VI. Various perturbations of the Kitaev model, including
a Heisenberg interaction,26,27 can lead to such an instability.
Furthermore, it is well known7,23 that symmetric spin-liquid
states are often prone to dimerization instabilities in which the
spins pair with neighbors in a valence-bond crystal, which
breaks a lattice symmetry. Away from the solvable limit,
therefore, it is likely that the phase diagram will also include
some such valence-bond-crystal states. At the symmetric point,
the model has a spin-orbit-type three-fold rotation symmetry
[entailing a three-fold lattice rotation about a vertex, coupled
with a global spin rotation of the form (43)] which makes
the saddle point perturbatively stable, although in principle
lower-energy symmetry-breaking saddle points might exist.
Away from the isotropic point Jx = Jy = Jz, such states
need not break any symmetries of the Hamiltonian, so that
symmetry does not prevent the saddle point from flowing to
such a valence-bond crystal upon including fluctuations of the
amplitudes of the mean-field hopping and superconducting
terms.

The fact that the exact ground state of (1) can be correctly
described in the slave fermion mean-field approach used here
is also interesting in its own right. As discussed above, since
the mean-field state is a Higgs phase of the gauge field, the
model is in a regime where the spin-liquid saddle point is most
likely to be stable. Even in this case, however, examples of
Hamiltonians where the exact ground state can be shown to be a
spin liquid are rare. The Kitaev model is thus a potential testing
ground for the slave fermion approach since we may begin with
a Hamiltonian for which it is demonstrably valid, and consider
the fate of the ground state under various perturbations. In
particular, on general grounds28 we expect that, for small
perturbations that do not close the gap in the spectrum, the
slave fermion mean-field theory will continue to capture the
topological order of the gapped phases.

Another interesting prediction of the slave fermion ap-
proach is that, near the solvable point, the Kitaev model be-
comes a superconductor upon doping. Specifically, we imagine
starting with a Mott insulator, the effective Hamiltonian at half-
filling of which is given by (1). After doping away from half-
filling, we must account for the fermion hopping terms, leading
to a t − J model, with the spin Hamiltonian given by (1).
Following the prescription used to study the cuprates,29 we
may decompose the spin operators as in Eq. (2), and express
the electron operator as

c
†
iσ = f

†
iσ biσ (63)

with the constraint

f
†
i↑fi↑ + f

†
i↓fi↓ + b

†
i bi = 1. (64)

It follows that, at temperatures below the Bose condensation
temperature of the bosons, and at sufficiently low dopings, the
mean-field solution described above is a good approximation
for the spinons (fiσ ), and the superconducting order parameter
is

�
phys
k;σ,σ ′ = 〈c†kσ c

†
−kσ ′ 〉 = 〈f †

k+q,σ f
†
−k−q,σ ′ 〉〈b−qσ bqσ ′ 〉

= �k;σ,σ ′ρs, (65)

where ρs is the bosonic superfluid density. Thus, the mo-
mentum dependence of the physical superconducting order

parameter is set by that of the mean-field superconducting
order parameter � for the fermionic spinons f . For the
Hamiltonian (1), this predicts spin-triplet superconductivity
(with equal spin pairing), with a mixed singlet and triplet
pseudospin order parameter.

Finally, it is interesting to compare the mean-field ground
state of the Kitaev model with existing proposals for generating
the B∗ phase’s topological Majorana fermions in physical
materials. The mean-field Hamiltonian of the B phase is
manifestly equivalent to a p + ip superconducting state of
spin-polarized fermions.25 It also has an interesting relation
to the the effective Hamiltonian of Fu and Kane30 for surface
states of a topological insulator in the presence of induced
s-wave superconductivity. In the absence of superconductivity,
these surface states form a single Dirac fermion. This Dirac
fermion is analogous to the Dirac fermion, which we have in
the gapless B phase. If a magnetic film is brought into contact
with the topological insulator, and the magnetic moment is
perpendicular to the interface, then the resulting term in the
Hamiltonian is a Dirac mass term, which breaks time-reversal
symmetry and opens a gap. This is analogous to the three-spin
term in the Kitaev model, which opens a gap and drives
the system into the B∗ phase. Note that this term in the
Kitaev model is not analogous to the term generated by an
s-wave superconducting film on the surface of a topological
insulator. Instead, s-wave superconductivity on the surface of
a topological insulator is analogous to a term χ̃T

p iτyχ̃p + H.c.,
which is a down-spin-density wave at wave vector (8π/3,0) at
the symmetric point Jx = Jy = Jz.

In all cases, the essential ingredients for generating topo-
logical Majorana fermions are a two-band model in which
the band structure is that of a massive Dirac fermion, and with
induced superconductivity. As we described in Sec. V B above,
the massive Dirac fermion in all of these models is implicitly
coupled to a gauge field since it forms a superconducting state.
The fermion mass therefore generates a Chern-Simons term in
the effective gauge-field action, which has the effect of binding
a half-quantum vortex to each charge since there is only a single
Dirac cone. The charge that is bound in the superconducting
state is a Bogoliubov–de Gennes quasiparticle, rather than a
fermion, which, when the superconducting order parameter has
a p-wave component, binds a Majorana fermion to the vortex.
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APPENDIX A: MAPPING BETWEEN SU(2) AND
MAJORANA FERMIONIZATIONS

Here, we explain in more detail the correspondence be-
tween the fermionization (2) and the Majorana fermionization
employed by Kitaev.1 We begin with the mean-field correspon-
dence

bx
qu = i(f †

qu↑ − f−qu↑), by
qu = f

†
qu↑ + f−qu↑,

(A1)
bz

qu = f
†
qu↓ + f−qu↓, cqu = i(f †

qu↓ − f−qu↓),
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which gives a mapping between unprojected spinful fermions
and unprojected Majorana fermions. This mapping is not
unique, as each Majorana fermion can be represented by any
linear combination:

cqu = f †
quσ eiφ + H.c. (A2)

and any choice of four such combinations, which mutually
anticommute, could be associated with {bx,by,bz,c}. However,
this difference is not physical as all such mappings are
equivalent under SU(2) gauge transformations.

The mapping (A1) does not preserve the form of the unpro-
jected spin operators, however. Specifically, the fermionization
(2) gives

Sx
i = (f †

i↑fi↓ + f
†
i↓fi↑), S

y

i = −i(f †
i↑fi↓ + f

†
i↓fi↑),

(A3)
Sz

i = (f †
i↑fi↑ − f

†
i↓fi↓),

while Kitaev’s Majorana fermionization stipulates

S̃x
i = ibx

i ci = −i(f †
i↑ − fi↑)(f †

i↓ − fi↓),

S̃
y

i = ib
y

i ci = −(f †
i↑ + fi↑)(f †

i↓ − fi↓), (A4)

S̃z
i = ibz

i ci = −(f †
i↓ + fi↓)(f †

i↓ − fi↓).

This gives

S̃x
i =−S

y

i − i(f †
i↑f

†
i↓+fi↑fi↓), S̃

y

i =Sx
i −(f †

i↑f
†
i↓−fi↑fi↓),

(A5)
S̃z

i = −Sz
i + (ni↑ + ni↓ − 1),

which, after a gauge transformation to rotate the spins and
eliminate the extra phases, differs from the spin operators (A4)
by terms that vanish under projection onto the physical Hilbert
space. It is these extra terms that lead to the fact that the mean-
field Hamiltonian (6) does not conserve bx

i b
x
j on x links (and

similarly for y and z) so that it is not obvious that the mean-field
theory captures the essentials of the spin-spin correlations, as
it is in the Majorana description.

However, one way to view the equivalence of the two
descriptions is via the wave functions that they produce after
projection. The Majorana projector is

Di ≡ bx
i b

y

i b
z
i ci = 1̂

= −(f †
i↑ + fi↑)(f †

i↑ − fi↑)(f †
i↓ + fi↓)(f †

i↓ − fi↓). (A6)

By expanding the constraint in terms of Dirac fermion
operators, we obtain

Di = −(2ni↑ − 1)(2ni↓ − 1)

= −2(ni↑ + ni↓ − 1)2 + 1. (A7)

Hence, imposing the diagonal SU(2) constraint

ni↑ + ni↓ − 1 = 0 (A8)

automatically imposes the Majorana constraint Di = 1̂.
Therefore, if we begin with a mean-field wave function

expressed in terms of the spinful fermions, and project onto
the physical Hilbert space of singly occupied states, this is
equivalent to studying the same mean-field wave function
expressed in terms of Majorana fermions, and applying the
projector (A6) at each site. This gives an alternative perspective
on why the mean-field theory is exact.

APPENDIX B: MEAN-FIELD THEORY OF THE
QUADRATIC SPIN MODEL

Here, we will review the detailed derivation of the mean-
field Hamiltonian (7). We will first show how to derive the full
effective action, and then present the self-consistent mean-field
solution.

1. Hubbard-Stratonovich decoupling of the
Kitaev model

In the Dirac fermion basis, the three different types of terms
in the Hamiltonian (1) are

Ŝx
i Ŝx

j = − 1
4 [f †

i↑f
†
j↑fi↓fj↓ + f

†
i↓f

†
j↓fi↑fj↑ + f

†
i↑fj↑f

†
j↓fi↓ + f

†
i↓fj↓f

†
j↑fi↑],

Ŝ
y

i Ŝ
y

j = − 1
4 [−f

†
i↑f

†
j↑fi↓fj↓ − f

†
i↓f

†
j↓fi↑fj↑ + f

†
i↑fj↑f

†
j↓fi↓ + f

†
i↓fj↓f

†
j↑fi↑], (B1)

Ŝz
i Ŝ

z
j = − 1

4 [f †
i↑f

†
j↑fj↑fi↑ + f

†
i↓f

†
j↓fj↓fi↓ + f

†
i↑fj↑f

†
j↑fi↑ + f

†
i↓fj↓f

†
j↓fi↓],

where we have used ni↑ = 1 − ni↓ in the last expression.
To decouple the four-fermion interactions using Hubbard-Stratonovich fields, we take the Lagrangian

Lx = −8(|�1|2 + |�2|2)

Jx

+ �1(f †
i↑fj↑ + f

†
i↓fj↓) + i�2(f †

i↑fj↑ − f
†
i↓fj↓) + ˜H.c.

− 8(|�1|2 + |�2|2)

Jx

+ �1(f †
i↑f

†
j↑ + f

†
i↓f

†
j↓) + i�2(f †

i↑f
†
j↑ − f

†
i↓f

†
j↓) + ˜H.c.,

Ly = −8(|�1|2 + |�2|2)

Jy

+ �1(f †
i↑fj↑ + f

†
i↓fj↓) + i�2(f †

i↑fj↑ − f
†
i↓fj↓) + ˜H.c. (B2)

− 8(|�1|2 + |�2|2)

Jy

+ i�1(f †
i↑f

†
j↑ + f

†
i↓f

†
j↓) + �2(f †

i↑f
†
j↑ − f

†
i↓f

†
j↓) − ˜H.c.,

Lz = −4(|�1|2 + |�2|2)

Jz

+ �1f
†
i↑fj↑ + �2f

†
i↓fj↓ + ˜H.c. − 4(|�1|2 + |�2|2)

Jz

+ �1f
†
i↑f

†
j↑ + �2f

†
i↓f

†
j↓ + ˜H.c.,
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where the fields �i,�i are to be understood as being evaluated on the link in question, and the H̃.c. is the Hermitian conjugate
with all spin directions reversed. We can check that this decoupling gives back the original action by integrating out the bosonic
fields. For example, completing the square for the first line of Lx gives

Lx = − 8

Jx

[
�1 − Jx

8
(f †

j↑fi↑ + f
†
j↓fi↓)

] [
�

†
1 − Jx

8
(f †

i↑fj↑ + f
†
i↓fj↓)

]
+ Jx

8
(f †

i↑fj↑ + f
†
i↓fj↓)(f †

j↑fi↑ + f
†
j↓fi↓)

− 8

Jx

[
�2 − i

Jx

8
(f †

j↑fi↑ − f
†
j↓fi↓)

] [
�

†
2 − i

Jx

8
(f †

i↑fj↑ − f
†
i↓fj↓)

]
− Jx

8
(f †

i↑fj↑ − f
†
i↓fj↓)(f †

j↑fi↑ − f
†
j↓fi↓). (B3)

Integrating out the factors involving �1 and �2 gives a
constant; the sum of the remaining pieces gives

Jx

4
(f †

i↑fj↑f
†
j↓fi↓ + f

†
i↓fj↓f

†
j↑fi↑) (B4)

as expected.
Now we proceed in the usual way for mean-field theories,

namely, the fields � and � have gapped amplitude fluctuations
as well as phase fluctuations. We will thus begin with a mean-
field solution �σ,ij (t) ≡ �σ,ij ,�σ,ij (t) ≡ tσ,ij , which repro-
duces the quadratic fermionic spectrum of the exact solution.
We then consider the fate of the fluctuations of both gapped
amplitude modes and gapless phase modes about mean field.

2. Mean-field solution

At mean-field level, the relevant information contained in
Eq. (B2) is that on each link there are potentially four bosonic
fields: t↑ associated with hopping of up spins, t↓ with hopping
of down spins (which formally transforms in the opposite
way under time reversal), and separate superconducting order
parameters �↑,�↓ for the spin-up and spin-down sectors.
Formally, in terms of the fields of the previous section, we take

t↑ = 〈�1 + i�2〉 on x and y links, t↑ = 〈�1〉 on z links,

t↓ = 〈�1 − i�2〉 on x and y links, t↓ = 〈�2〉 on z links,

�↑ =〈i�1 + �2〉 on y links, �↓ =〈i�1 − �2〉 on y links,

�↑ = 〈�1 + i�2〉 on x links, �↑ = 〈�1〉 on z links,

�↓ = 〈�1 − i�2〉 on x links, �↓ = 〈�2〉 on z links. (B5)

From the Lagrangian (B2), the saddle-point equations are

t
(x,y)
↑ = Jx,y

4
〈f †

j↓fi↓〉, t
(x,y)
↓ = Jx,y,

4
〈f †

j↑fi↑〉,

t
(z)
↑ = Jz

4
〈f †

j↑fi↑〉, t
(z)
↓ = Jz,

4
〈f †

j↓fi↓〉,

�
(x)
↑ = Jx

4
〈fj↓fi↓〉, �

(x)
↓ = Jx

4
〈fj↑fi↑〉, (B6)

�
(y)
↑ = −Jy

4
〈fj↓fi↓〉, �

(y)
↓ = −Jy

4
〈fj↑fi↑〉,

�
(z)
↑ = Jz

4
〈fj↑fi↑〉, �

(z)
↓ = Jz

4
〈fj↓fi↓〉.

To satisfy the mean-field conditions (B6), we take

tij,↓ = −�ij,↓ = iJx

16
on x links,

tij,↓ = −�ij,↓ = iJy

16
on y links,

tij,↑ = �ij,↑ = 0 on z links,

tij,↑ = −�ij,↑ = iJx

16
on x links,

tij,↑ = �ij,↑ = iJy

16
on y links,

tij,↓ = i
Jz

8
�ij,↓ = 0 on z links, (B7)

which gives the mean-field Hamiltonian (7).

3. Theory of fluctuations about mean field

We now turn to the fluctuations about the mean-field
solutions. Since symmetry dictates that these can not change
the fermionic band structure, our focus will be to describe the
bosonic degrees of freedom in this theory, and demonstrate
that the gauge field is in a Higgsed phase with a residual Z2

symmetry group.
The Hubbard-Stratonovich decoupling introduces four

bosonic fields: �1,2, whose saddle-point expectation values are
associated with fermion hopping terms; and �1,2, associated
with the spin-triplet superconductivity. We parametrize their
fluctuations according to

�1ij = ∓
(

i

16
(Jxδij,x + Jyδij,y + 2Jzδij,z)e

iaij + iφij

)
,

�2ij = ±i

(
Jz

8
δij,ze

iθ̃ij + ρ̃ij

)
,

(B8)

�1ij = ±i

(
Jy

16
δij,ye

iθij + ρij

)
,

�2ij = ∓i

(
Jx

16
δij,xe

iθij + ρij

)
,

where the functions δij,x,y,z have support on x,, y, and z

links, respectively, and the top (bottom) sign is taken for edges
oriented from sublattice 1(2) to sublattice 2(1).

The physical interpretation of these fields is as follows.
�1 is associated with the spin-rotation-invariant hopping
terms familiar from spinon decompositions of the Heisenberg
model.7,8 The phase variables aij are the spatial components of
the gauge fields associated with the constraints (3); fluctuations
in the amplitude of this hopping term are parametrized by the
scalar φ.

The remaining terms parametrize fluctuations of a con-
densed superfluid, which breaks the SU(2) gauge group down
to Z2. We combine the fields associated with �1 and �2, each
of which is nonvanishing at mean field either on x or y links,
respectively, into a single pair of scalar fields ρ,θ defined on all
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links in the lattice. Since, at mean field, �’s expectation value
generates a spinful superconducting pairing, θ is the phase
of a charged superfluid and, hence, in the condensed phase
becomes the longitudinal component of the corresponding
gauge field. ρ parametrizes the (gapped) fluctuations in this
superfluid density.

That �2, the hopping antisymmetric in spin, is associated
with a charged superfluid is less obvious. We will show
shortly, however, that 〈�2〉 breaks the off-diagonal generators
of SU(2). As these are not the same as the generator broken
by the superconducting terms, we use a new field θ̃ to denote
the phase fluctuations.

To find the residual symmetry group, we must evaluate the
SU(2) flux through each lattice plaquette at mean field.8 It is
enlightening to express the fermionic degrees of freedom in
terms of the usual BCS spinors

χq =
(

f↑,q

f
†
↓,−q

)
, (B9)

which transform under gauge transformations by ei �α·�σ as

χq → ei �α·�σχq. (B10)

In this basis, the spin-symmetric and spin-antisymmetric
hopping terms can be expressed as

it↑+↓(ij )(f †
i↑fj↑ + f

†
i↓fj↓ − f

†
j↑fi↑ − f

†
j↓fi↓)

= it↑+↓(ij )(χ †
i χj − χ

†
j χi),

(B11)
it↑−↓(ij )(f †

i↑fj↑ − f
†
i↓fj↓ − f

†
j↑fi↑ + f

†
j↓fi↓)

= it↑−↓(ij )(χ †
i σzχj − χ

†
j σzχi).

As promised, the first term is gauge invariant under all
generators. The effect of a gauge transformation on the second
term is to conjugate the matrix σz by ei �α·�σ . Hence, this term
is invariant under the U(1) subgroup comprised of rotations
about the z axis, but not under rotations by the two generators
σx and σy . Fluctuations in θ̃ are therefore associated with the
longitudinal modes of the broken generators a

(x,y)
ij .

The remaining U(1) symmetry is broken by the supercon-
ducting terms. As the pairing occurs here in the spin-triplet
channel, these can not naturally be expressed in the BCS
basis; however, they are clearly charged under the residual
U(1) symmetry fiσ ⇒ eiαi fiσ . Hence, the U(1) symmetry is
broken to the Z2 subgroup fiσ ⇒ ±fiσ , which is the residual
gauge symmetry of the Hamiltonian. [Indeed, the spin-triplet
superconducting terms are certainly not gauge equivalent to the
terms associated with t↑−↓, guaranteeing that the SU(2) gauge
symmetry is fully broken to Z2, rather than to a residual U(1) as
might otherwise be the case.] As usual, the phase fluctuations
θ can be absorbed by means of a gauge transformation into the
longitudinal modes of the broken U(1) generator.

As an aside: Equation (B8) reveals that the longitudinal
modes of the broken generators are confined to x-y chains and z

links in the lattice, respectively. Since the corresponding gauge
fluctuations are no longer purely transverse in the condensed
phase, this means that only the residual Z2 gauge field and the
amplitude fluctuations are free to propagate in both dimensions
of the lattice. This explains, to a large degree, why the effect
of including these bosons in the theory is so innocuous.

In summary, the fluctuations about mean field are described
by the real scalars ρ, ρ̃, and φ, describing fluctuations in the
amplitudes of the various condensed bosonic fields, and the
SU(2) gauge field that is Higgsed in a bi-adjoint representation
to a residual symmetry group Z2, which we may consider
to have absorbed the remaining phase fluctuations as two
Goldstone bosons.

APPENDIX C: MEAN-FIELD THEORY OF THE
GAPPED B PHASE

Here, we describe the mean-field theory in the presence
of the three-spin interaction, which leads to the gapped
topological B phase. We will show that the band structure
discussed in Sec. V is, up to irrelevant operators, a saddle
point of an appropriate action and thus constitutes at least a
self-consistent mean-field solution to the fermion problem, if
not a global minimum of the action.

We begin by rewriting the three-spin interaction as a sum
of products of six-fermion interaction terms

Sx
i S

y

j Sz
k = i

8
(f †

i↑f
†
j↑fj↓fi↓ − fi↑fj↑f

†
j↓f

†
i↓

+ f
†
i↑fj↑f

†
j↓fi↓ − f

†
j↑fi↑f

†
i↓fj↓)(2f

†
k↓fk↓ − 1),

(C1)

where we have used ni↑ = 1 − ni↓ to express Sz
i in terms

of down spins only. Of the possible fermion bilinears, only
(f †

i↑fj↑),(f †
i↓fj↓), and (f †

j↓fk↓) (together with their analogs in
the particle-particle and hole-hole channels) have nonvanish-
ing expectation values at mean field (〈f †

k↓fk↓ − f
†
k↑fk↑〉 = 0).

This gives us two possible ways to replace two of the three
fermion bilinears by their mean-field values. First, we may
take

i

8
(〈f †

i↑f
†
j↑〉〈fj↓fi↓〉 − 〈fi↑fj↑〉〈f †

j↓f
†
i↓〉 + 〈f †

i↑fj↑〉〈f †
j↓fi↓〉

− 〈f †
j↑fi↑〉〈f †

i↓fj↓〉)(2f
†
k↓fk↓ − 1), (C2)

which vanishes in the mean-field solution relevant to the Kitaev
model as the fermion bilinears are purely imaginary in position
space. The only remaining possibility is

i

8
[〈f †

i↑f
†
j↑〉〈f †

k↓fj↓〉fi↓fk↓ − 〈f †
i↑f

†
j↑〉〈fj↓fk↓〉f †

k↓fi↓

− 〈fi↑fj↑〉〈f †
k↓f

†
j↓〉f †

i↓fk↓ + 〈fi↑fj↑〉〈f †
j↓fk↓〉f †

k↓f
†
i↓

+ 〈f †
i↑fj↑〉〈f †

k↓f
†
j↓〉fi↓fk↓ − 〈f †

i↑fj↑〉〈f †
j↓fk↓〉f †

k↓fi↓

+ 〈f †
j↑fi↑〉〈f †

k↓fj↓〉f †
i↓fk↓ − 〈f †

j↑fi↑〉〈fj↓fk↓〉f †
k↓f

†
i↓].

(C3)

Taking 〈ij 〉 to be an x link and 〈jk〉 to be a z link, and
substituting in the mean-field values given in Eq. (B7), this
becomes

i

27
[fi↓fk↓ − f

†
k↓f

†
i↓ + f

†
k↓fi↓ − f

†
i↓fk↓]

= i

27
(f †

i↓ − fi↓)(f †
k↓ − fk↓). (C4)

In light of the correspondence (10) between our Dirac fermions
and the Majorana basis originally used to diagonalize the
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problem, this is exactly the term originally proposed by Ref. 1
to break T̂ and open a gap in the B phase.

Before analyzing the resulting band structure, let us
understand why we may simply replace the fermion bilinears
by their mean-field values, as we have done above. In fact,
we can modify the Lagrangian (B2) to produce just such a
term at mean-field level. To see why this is so, we consider the
action

LF = χ
†
1χ1 + χ

†
2χ2 + iJ ′χ †

1χ
†
2χ

†
3 + H.c. (C5)

We will show that LF is well approximated by the Hubbard-
Stratonovich–type action

L = −|�1|2 − |�2|2 + χ1�1 + χ2�2

− iJ ′(�1�2 − χ
†
2�1 − χ

†
1�2)χ †

3 + H.c., (C6)

where χ1,2,3 are fermion bilinears. [The Lagrangian (B2) is of
the general form of the quadratic terms in Eq. (C6), albeit with
more different scalar fields. This multiplicity of indices will
not affect our qualitative result.] The saddle-point equations
are

�1 = χ
†
1 − iJ ′χ3(�†

2 − χ2),
(C7)

�2 = χ
†
2 − iJ ′χ3(�†

1 − χ1).

For J ′ = 0, the saddle-point equations specify that �i = χ
†
i .

This is also the unique solution of the saddle-point equations
for J ′ �= 0 (although in this case one might worry about
instabilities that tend to drive �1,2 toward ∞ if 〈χ3〉 �= 0).
Hence, the extra term does not modify the structure of the
mean-field equations, except inasmuch as 〈χ1,2〉 might be
modified by the new interaction.

As in the standard Hubbard-Stratonovich decoupling, we
would like to integrate out �1,2 to obtain LF . As the
Lagrangian (C6) is no longer quadratic in the variables �i,χi ,
we will not be able to perform the integral exactly; rather, we
will obtain LF as the lowest-order term in an expansion in J ′.
To see this, it is helpful to reexpress L as

L = −|�̃1|2 − |�̃2|2 − iJ ′�̃1�̃2χ
†
3 + H.c. + LF , (C8)

where �̃i ≡ �i − χ
†
i . In the standard Hubbard-Stratonovich

transformation, there would be at this point no cross terms
coupling fermions to the scalar fields. We could therefore
integrate out the latter exactly, and this proves that (C6) is
exactly equivalent to LF . Here, we are unable to eliminate the
cross term �1�2χ

†
3 by further shifting the scalar fields, so that

integrating out the �̃ fields will not reproduce LF exactly. If
we take J ′ small, however, we may consider the effect of the
cross term perturbatively, and ask what the undesired additions
to the fermionic action will be. The exact correction is given
by evaluating the series

δLF = log

{∫
[D�̃1][D�̃2]ei

∫ |�̃1|2+|�̃2|2

×
∞∑

n=0

(iJ ′)n

n!
(�̃1�̃2χ

†
3 + H.c.)n

}
. (C9)

Terms with n odd integrate to 0 since the action contains
only even powers of �̃i . Hence, the leading correction is

of order J ′2; to linear order in J ′, then, we have recovered
exactly the fermionic action we wanted. Since the scalar-
scalar-fermion bilinear interaction is decidedly irrelevant (all
scalars here are massive), we may conclude that the difference
between the action (C6) and the true fermionic action LF is
unimportant, at least for the low-energy physics.

The general form of this correction is simple to understand.
The leading-order correction in the series (C9) is proportional
to (J ′)2

2 χ
†
3χ3. If we take χ3 to have the form fi↓fk↓, then

we have χ
†
3χ3 = (χ †

3χ3)r = n̂i↓n̂k↓ for all r , and all terms
in the series induce the same type of extraneous interaction,
which is to induce a second-neighbor Coulomb repulsion
term.

We conclude that at least the low-energy structure of
the phase we are interested in can be obtained by studying
the Lagrangian (C6). We may now proceed as in Sec. B 2,
obtaining a mean-field solution, which satisfies

〈�i〉 = 〈χ †
i 〉. (C10)

As noted above, the mean-field consistency conditions are
identical to those at J ′ = 0; the only new feature of this saddle
point is that it now includes quadratic terms coupling fermions
on the same sublattice, such as

J 〈�1〉〈�2〉f †
i↓f

†
k↓. (C11)

This means that, to lowest order in J ′, the effect of the three-
spin interaction is, exactly as originally postulated by Ref. 1,
to modify the band structure by adding next-nearest-neighbor
quadratic couplings. (We now also have to contend with
the four-fermion interactions; however, when the quadratic
problem has no Fermi surface, we do not expect these to be
associated with instabilities of the free fermion problem and,
hence, we can safely drop them without altering the qualitative
nature of the physics.)

1. Form of the mean-field Hamiltonian with
three-spin interactions

Here we will derive the expression (50) for the terms
induced by the set of all three-spin interactions at mean-field.
There are three distinct three-spin interactions that we must
consider:

Sx
i S

y

j Sz
k if rik = l̂1,

S
y

i Sx
j Sz

k if rik = l̂2, (C12)

Sx
i Sz

jS
y

k if rik = x̂.

The contributions to mean field involve decoupling the
resulting six-fermion interactions into combinations of a pair
of two-point functions multiplying a fermion bilinear.

First, we show that only contributions multiplying bilinears
of the form fiσ fkσ ,f

†
iσ fkσ , etc., are nonvanishing. The mean-

field eigenfunctions imply that 〈Sα
i 〉 = 0 on each site. To show

that 〈Sα
i Sα′

j 〉 = 0 if α �= α′, we first note that if α = x,y and
α′ = z, any grouping of the resulting four-fermion interaction
into pairs involves one term in each pair, which contains both a
spin-up and spin-down fermion. Since the two-point functions
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of all terms involving spin flips are strictly 0, these terms
consequently all vanish. If α = x,α′ = y, then we have

−i(f †
i↑fi↓ + f

†
i↓fi↑)(f †

j↑fj↓ − f
†
j↓fj↑)

= i(〈f †
i↑f

†
j↑〉〈fi↓fj↓〉 + 〈f †

i↓fj↓〉〈f †
j↑fi↑〉 − H.c.), (C13)

which vanishes since the two-point function on every link
is purely imaginary, so that the products shown are purely
real.

The only remaining possibility is terms in which the two-
point functions whose mean-field expectation we take involve
fermion operators from all three sites. Since all two-point
functions between sites i and k vanish at mean field (this is

guaranteed by the discrete symmetries Ĉ and T̂), the only
possibility is terms that multiply fermion bilinears, which
couple the sites i and k.

Our next task is to understand the precise form of
these terms. For rij = l̂1,2, it is convenient to write Sz

i =
fi↓f

†
i↓ − f

†
i↓fi↓; for rij = x̂, we write Sz

i = f
†
i↑fi↑ − fi↑f

†
i↑.

The resulting expressions contain couplings only between the
spin-down fermions on sites i and k. Thus, the three-spin
interaction does not modify the band structure of the spin-up
fermions, which remain localized, at least at the mean-field
level.

The quadratic couplings between the down spins induced
by the three-spin interactions can be expressed as

Sx
i S

y

j Sz
k = i

8

[(
T

(1)
ijk;↓ + T

(3)
ijk;↓

)
f

†
k↓fi↓ + (

T
(2)
ijk;↓ + T

(4)
ijk;↓

)
fk↓fi↓ + (

T
(6)
ijk;↓ + T

(8)
ijk;↓

)
f

†
i↓fk↓ + (

T
(5)
ijk;↓ + T

(7)
ijk;↓

)
f

†
i↓f

†
k↓
]
,

S
y

i Sx
j Sz

k = i

8

[(
T

(1)
ijk;↓ − T

(3)
ijk;↓

)
f

†
k↓fi↓ + (

T
(2)
ijk;↓ − T

(4)
ijk;↓

)
fk↓fi↓ − (

T
(6)
ijk;↓ − T

(8)
ijk;↓

)
f

†
i↓fk↓ − (

T
(5)
ijk;↓ − T

(7)
ijk;↓

)
f

†
i↓f

†
k↓
]
, (C14)

Sx
i Sz

jS
y

k = i

8

[(
T

(1)
ijk;↑ − T

(3)
ijk;↑

)
f

†
k↓fi↓ + (

T
(2)
ijk;↑ − T

(4)
ijk;↑

)
fk↓fi↓ − (

T
(6)
ijk;↑ − T

(8)
ijk;↑

)
f

†
i↓fk↓ − (

T
(5)
ijk;↑ − T

(7)
ijk;↑

)
f

†
i↓f

†
k↓
]

with

T
(1)
ijk;σ =−〈f †

i↑f
†
j↑〉〈fjσ fkσ 〉 = − 16

JijJjk

(�(ij )
↑ )∗�(kj )

σ ,

T
(2)
ijk;σ =−〈f †

i↑f
†
j↑〉〈f †

kσ fjσ 〉 = − 16

JijJjk

(�(ij )
↑ )∗

(
t (kj )
σ

)∗
,

T
(3)
ijk;σ =−〈f †

i↑fj↑〉〈f †
jσ fkσ 〉 = − 16

JijJjk

(t (ij )
↑ )∗t (kj )

σ ,

T
(4)
ijk;σ =〈f †

i↑fj↑〉〈f †
kσ f

†
jσ 〉 = 16

JijJjk

(t (ij )
↑ )∗

(
�(kj )

σ

)∗
,

(C15)

T
(5)
ijk;σ =〈f †

j↑fi↑〉〈fjσ fkσ 〉 = − 16

JijJjk

t
(ij )
↑ �(kj )

σ ,

T
(6)
ijk;σ =〈f †

j↑fi↑〉〈f †
kσ fjσ 〉 = 16

JijJjk

t
(ij )
↑

(
t (kj )
σ

)∗
,

T
(7)
ijk;σ =〈fj↑fi↑〉〈f †

jσ fkσ 〉 = 16

JijJjk

�
(ij )
↑ t (kj )

σ ,

T
(8)
ijk;σ =〈fj↑fi↑〉〈f †

kσ f
†
jσ 〉 = 16

JijJjk

�
(ij )
↑

(
�(kj )

σ

)∗
,

where we have used t (jk)∗ = t (kj ), �(jk)∗ = �(kj ). [Here we
have defined �(ab) = �(x,z) on x and z links, and −�(y) on y

links, in accordance with Eq. (B7).]
We next substitute in the mean-field values given in Eq. (B7)

for t,� on each link. We take t to be the hopping from sublattice
1 to sublattice 2 (t (ij )

σ = 〈f †
�R1σ

f �R′2σ 〉), and similarly for �. Here
we write the induced quadratic couplings between two sites

on sublattice 1; the couplings between sites on sublattice 2 are
the same, but with rij → −rij .

For rij = l̂1, the interaction is of the form J ′Sx
i S

y

j Sz
k , with

ij an x link and jk a z link. We thus have �
(jk)
↓ = 0, giving an

interaction of

2iJ ′[−t
(x)∗
↑ t

(z)
↓ f

†
k↓fi↓ − �

(x)∗
↑ t

(z)∗
↓ fk↓fi↓

+ t
(x)
↑ t

(z)∗
↓ f

†
i↓fk↓ + �

(x)
↑ t

(z)
↓ f

†
i↓f

†
k↓] (C16)

with

�
(x)
↑ = −i

Jx

16
, t

(x)
↑ = −i

Jx

16
, t

(z)
↓ = −i

Jz

8
. (C17)

Similarly, for rij = l̂2, we have J ′Sy

i Sx
j Sz

k , with ij a y link and

jk a z link. Hence, again �
(jk)
↓ = 0, and the interaction is

2iJ ′[t (y)∗
↑ t

(z)
↓ f

†
k↓fi↓ + �

(y)∗
↑ t

(z)∗
↓ fk↓fi↓

− t
(y)
↑ t

(z)∗
↓ f

†
i↓fk↓ − �

(y)
↑ t

(z)
↓ f

†
i↓f

†
k↓] (C18)

with

�
(y)
↑ = i

Jy

16
, t

(y)
↑ = −i

Jy

16
, t

(z)
↓ = −i

Jz

8
. (C19)

For rij = x̂, we have J ′Sx
i Sz

jS
y

k , with ij an x link and jk a y

link. This gives the interaction

iJ ′[(�(x)∗
↑ �

(y)∗
↑ − t

(x)∗
↑ t

(y)
↑ )f †

k↓fi↓ + (�(x)∗
↑ t

(y)∗
↑

+ t
(x)∗
↑ �

(y)∗
↑ )fk↓fi↓ + (−t

(x)
↑ t

(y)∗
↑ − �

(x)
↑ �

(y)
↑ )f †

i↓fk↓

+ (t (x)
↑ �

(y)∗
↑ + �

(x)
↑ t

(y)
↑ )f †

i↓f
†
k↓] (C20)
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with

�
(x)
↑ = −i

Jx

16
, �

(y)
↑ = i

Jy

16
,

(C21)

t
(x)
↑ = −i

Jx

16
, t

(y)
↑ = −i

Jy

16
.

In all three cases, we obtain the mean-field interaction

±2iJ ′[f †
k↓fi↓ − fk↓fi↓ + f

†
i↓fk↓ − f

†
i↓f

†
k↓]

= ±2iJ ′(f †
k↓ − fk↓)(f †

i↓ − fi↓). (C22)

We see that this induces a coupling only between Majorana
modes in the dispersing band, leaving the band structure of the
Majoranas localized on the z links unaltered.

Hence, the net effect of adding the three-spin interaction,
at mean-field level, is exactly to add the next-nearest-neighbor
couplings to the dynamical Majorana modes, while leaving the
localized modes unchanged.

APPENDIX D: INDUCING CHERN-SIMONS TERMS BY
INTEGRATING OUT FERMIONS IN THE

GAPPED B PHASE

Here, we will consider the one-loop perturbative correction
to the effective U(1) gauge-field propagator due to the low-
energy fermions in the gapped phase. We demonstrate that
although the Dirac point is intrinsically a property of the band
structure of the superconductor—such that the electron bubble
has both particle-particle and particle-hole contributions—the
matrix structure about the Dirac point is such that integrating
out the low-energy fermions produces exactly the same Chern-
Simons correction to the effective action as doing so for a
normal Dirac cone.

Since the Dirac cone is in only one of the four fermion
bands, and we are interested only in the long-wavelength
theory, we will isolate the effect of the propagator of the
dispersing Majorana band. The general form of the spin-down
propagator in the gapped B phase is

G↓↓q = 1

2

⎧⎪⎪⎨
⎪⎪⎩

1

4m2
q + ω2 + |�q − tq |2

⎛
⎜⎜⎝

−2mq − iω −i(�q − tq) 2mq + iω i(�q − tq)
i(�∗

q − t∗q ) 2mq − iω −i(�∗
q − t∗q ) iω − 2mq

2mq + iω i(�q − tq) −2mq − iω −i(�q − tq)
−i(�∗

q − t∗q ) iω − 2mq i(�∗
q − t∗q ) 2mq − iω

⎞
⎟⎟⎠

+ 1

ω2 + |�q + tq |2

⎛
⎜⎜⎝

−iω i(�q + tq) −iω i(�q + tq)
−i(�∗

q + t∗q ) −iω −i(�∗
q + t∗q ) −iω

−iω i(�q + tq) −iω i(�q + tq)
−i(�∗

q + t∗q ) −iω −i(�∗
q + t∗q ) −iω

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ , (D1)

where we use the basis ψ = ( cq1,cq2,c
†
−q1,c

†
−q2 )T .

Here, we choose tq = −2Jz − Jxe
i �q·l̂1 − Jye

i �q·l̂2 ,�q =
Jxe

i �q·l̂1 + Jye
i �q·l̂2 . In this case, the bottom line is the propagator

of the flat band (energies given by ±|t + �| = ±2Jz); the top
line is the propagator of the dispersing band, which captures
all of the low-energy physics near the Dirac cones. It is easy
to check that cross terms between the two spin-down bands
vanish at one-loop order in the fermion correction, so that we
will drop contributions of the flat gapped band entirely.

In the vicinity of the Dirac cone �q = ( 4π
3 ,0), at the isotropic

point Jx = Jy = Jz, we have

�q − tq ≈
√

3J, mq ≈ 3
2

√
3J ′. (D2)

Near this point in the Brillouin zone, then, the part of the
propagator that we are interested in can be expressed as

Gc;q,ω = 1

2

(
G(0)

c;q,ω + G(sc)
c;q,ω

)
,

G(0)
c;q,ω = 1

4m2
q + ω2 + |�q − tq |2 (pμσμ + 2mσz) ⊗ 1, (D3)

G(sc)
c;q,ω = 1

4m2
q + ω2 + |�q − tq |2 (pμσμ + 2mσz) ⊗ σx,

with σμ = ( 1,σy,σx ). In addition to the usual term (G(0)
c;q,ω),

the fermion propagator contains an anomalous term (G(sc)
c;q,ω)

due to the presence of superconductivity. The 2 × 2 matrix
structure of both of these terms is, however, the same.

In this long-wavelength limit, the interaction between
fermions and the gauge field is

Aμ
q

∑
k

ψ
†
k γμψk−q − 2δμ0δq0, (D4)

where γμ = σμ ⊗ 1, and the last term occurs due to normal
ordering. (Here it should be understood that the sum encom-
passes only half the Brillouin zone.) The one-loop correction to
the gauge-field effective action induced by the fermion terms
is therefore

L(G)
μν ( �p,�) =

∫
d3p

(2π )3 Tr[γμGc;q,ωγνGc;q+p,ω+�]. (D5)

By using the expression (D3), we find that traces
of the cross terms between G(0)

c;q,ω and G(sc)
c;q,ω vanish,

leaving

L(G)
μν ( �p,�)

= 1

4

{
2L(1)

μν +
∫

d3p

(2π )3
Tr[γμG(sc)

c;q,ωγνG
(sc)
c;q+p,ω+�]

}
,

(D6)

where L(1)
μν is the effective action induced by the usual (2 + 1)-

dimensional Dirac cone (appearing here with a multiplicative
factor of 2 since we have counted both terms of the form
f

†
qifqi and f

†
−q,if−qi , effectively counting the contribution
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of both Dirac cones). The second contribution, due to the
superconducting terms, also has precisely the same form as
the first, since G(sc) has the same 2 × 2 structure as G(0). The
factor of 1

4 (due to the 1
2 in G(0) relative to its usual value) is

exactly canceled by the factor of 4 from these contributions.
This gives exactly the one-loop correction expected from a
single Dirac cone in QED, albeit with a mass of 2m rather
than m.
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