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We investigate the nature of the Mott-insulating phases of half-filled 2N -component fermionic cold atoms
loaded into a one-dimensional optical lattice. By means of conformal field theory techniques and large-scale
DMRG calculations, we show that the phase diagram strongly depends on the parity of N . First, we single out
charged, spin-singlet degrees of freedom that carry a pseudospin S = N/2, making it possible to formulate a
Haldane conjecture: For attractive interactions, we establish the emergence of Haldane insulating phases when N

is even, whereas a metallic behavior is found when N is odd. We point out that the N = 1,2 cases do not have the
generic properties of each family. The metallic phase for N odd and larger than 1 has a quasi-long-range singlet
pairing ordering with an interesting edge-state structure. Moreover, the properties of the Haldane insulating
phases with even N further depend on the parity of N/2. In this respect, within the low-energy approach, we
argue that the Haldane phases with N/2 even are not topologically protected but equivalent to a topologically
trivial insulating phase and thus confirm the recent conjecture put forward by Pollmann et al. [arXiv:0909.4059
(to be published)].
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I. INTRODUCTION

Topological phases have attracted much interest in recent
years due to their robustness against perturbations and their
relevance to quantum computation. A topological ordered
phase is a gapped phase which displays a protected ground-
state degeneracy dependent on the topology of the mani-
fold in which the model is embedded.1 This phase is not
characterized by a local order parameter and falls beyond
the usual symmetry-breaking paradigm of condensed-matter
physics.2

One of the simplest examples of topologically ordered
phases is the Haldane phase in quantum spin chains. In 1983,
Haldane argued that the spin-S Heisenberg chain displays
striking different properties depending on the parity of 2S.3

While half-integer Heisenberg spin chains have a gapless
behavior, a finite gap from the singlet ground state (GS) to
the first triplet excited states is found when 2S is even. On
top of the existence of a gap, the spin-1 phase (the so-called
Haldane phase) has remarkable exotic properties which may be
regarded as manifestations of the existence of a topological or-
dered phase. This phase is not characterized by a local order but
displays nonlocal string long-range ordering which signals the
presence of a hidden Néel antiferromagnetic order.4 The latter
can be revealed through a nonlocal unitary transformation and
the emergence of a complete breaking of aZ2 ×Z2 symmetry.5

One remarkable resulting consequence of the Haldane phase is
the liberation of fractional spin-1/2 degrees of freedom at the
edge of the sample when the chain is doped by nonmagnetic
impurities.6

Haldane’s conjecture is now well understood and has been
confirmed experimentally in quasi-one-dimensional (quasi-
1D) compounds as well as numerically (see, for instance,

Refs. 7 and 8). The Haldane phase displays unusual and
interesting physical properties so that it is important to
experimentally stabilize it in other contexts. In this respect,
it has been argued that the Haldane phase is relevant to
Josephson junction array systems.9 Furthermore, it is likely
that the Haldane physics will be explored experimentally in
the near future in trapped ultracold atomic systems thanks to
the tunability of interactions in these systems using optical
lattices and Feshbach resonances. A first possible direction
is to consider spin-1 bosons loaded into a 1D optical lattice
with one atom per site so that the Haldane phase is one
of the possible insulating phases of this model.10 A second
route consists in preparing 1D ultracold quantum gases with
dipolar interactions, like 52Cr bosonic atoms, where a Haldane
insulating (HI) phase has been predicted.11–14 Finally, we have
recently shown that a similar phase can also be stabilized by
considering 1D spin-3/2 cold fermions at half filling with
contact interactions only.15

In this paper, we pursue our investigation of the HI phase
in the context of 1D ultracold fermionic alkaline atoms
in the general half-integer (hyperfine) spin F = N − 1/2
case at half filling (N atoms per site). In this respect,
we use complementary analytical [renormalization group
(RG) analysis, conformal field theory (CFT)16] and density-
matrix renormalization group (DMRG)17 techniques to fully
determine the nature of the Mott-insulating phases at half
filling when N � 2. The starting point of the analysis is
the lattice model of 2N components cold fermions with
contact interactions. Due to Pauli principle, low-energy s-
wave scattering processes of spin-F fermionic atoms are
allowed only in the even total spin J = 0,2, . . . ,2N − 2
channels, so that the general effective Hamiltonian with
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contact interactions reads as follows in absence of a magnetic
field:18

H = −t
∑
i,α

[c†α,icα,i+1 + H.c.] − μ
∑
i,α

c
†
α,icα,i

+
∑
i,J

UJ

J∑
M=−J

P
†
JM,iPJM,i, (1)

where c
†
α,i is the fermion creation operator corresponding

to the 2N hyperfine states (α = 1, . . . ,2N ) at the ith site
of the optical lattice. The pairing operators in Eq. (1) are
defined through the Clebsch-Gordan coefficients for spin-F
fermions: P

†
JM,i = ∑

αβ〈JM|F,F ; αβ〉c†α,ic
†
β,i . In the general

spin-F case, there are N coupling constants UJ in model
(1), which are related to the N two-body scattering lengths
of the problem. In the following, in order to simplify the
analysis of the Mott-insulating phases when N > 2, we
perform a fine-tuning of the different scattering lengths in
channels J � 2; that is, U2 = ... = U2N−2. Using the identity∑

JM P
†
JM,i PJM,i = n2

i − ni , model (1) can then be mapped
onto the following:

H = −t
∑
i,α

[c†α,icα,i+1 + H.c.] − μ
∑

i

ni

+ U

2

∑
i

n2
i + V

∑
i

P
†
00,iP00,i , (2)

with U = 2U2 and V = U0 − U2, and ni = ∑
α nα,i =∑

α c
†
α,icα,i is the density at site i. In Eq. (2), the singlet

BCS pairing operator for spin-F fermions is
√

2NP
†
00,i =∑

αβ c
†
α,iJαβc

†
β,i = −∑

α(−1)αc
†
α,ic

†
2N+1−α,i , the matrix J

being a 2N × 2N antisymmetric matrix with J 2 = −I . When
N = 1, P †

00,i coincides with the Cooper pairing c
†
↑,ic

†
↓,i so that

model (2) is equivalent to the spin-1/2 Hubbard model.
Model (2) obviously conserves the total number of fermions

– no atoms are dynamically created or annihilated. This
conservation law is associated to a U(1) continuous symmetry
cα,i → eiθ cα,i , which, by analogy with condensed matter
dealing with electrons, we will refer to as a “U(1)c charge
symmetry,” the charge being simply the number of fermions.
On top of this symmetry, model (2) displays an extended
continuous symmetry for N > 1 in spin space. When V = 0
(U0 = U2) model (2) is the Hubbard model for 2N -component
fermions with a U(2N ) = U(1)c × SU(2N ) invariance. The
Hamiltonian (2) for V �= 0 still displays an extended symmetry
since the BCS singlet-pairing operator P

†
00,i is invariant under

the Sp(2N ) group, which consists of 2N × 2N unitary matri-
ces U that satisfy U ∗JU † = J . When V �= 0, the continuous
symmetry of model (2) is thus U(1)c × Sp(2N ).19,20 In the
F = 3/2 case, that is, N = 2, there is no fine-tuning; models
(1) and (2) are equivalent and share an exact Sp(4) 
 SO(5)
spin symmetry.21 The zero-temperature phase diagram of
model (2) away from half filling has been investigated by
means of a low-energy approach22–24 in the general N case
and by quantum Monte Carlo and DMRG calculations for
N = 2.25,26 A rich exotic physics emerge when N � 2 with,
in particular, the stabilization of a superconducting instability

with charge 2Ne for attractive interactions and at sufficiently
low density.22–25

At half filling (when μ = NU + V/N ), model (2) enjoys
a particle-hole symmetry cα,i → (−1)i

∑
β Jαβc

†
β,i , which

plays a crucial role in the following. In the N = 1 case,
it is well known that the particle-hole symmetry enlarges
the U(1)c charge symmetry of the spin-1/2 Hubbard model
to an SU(2)c symmetry at half filling.27,28 In addition, the
physics of the half-filled spin-1/2 Hubbard model for repulsive
and attractive interactions are related through a canonical
transformation c↑,i → (−1)ic†↑,i , c↓,i → c↓,i . While for U >

0 a Mott-insulating phase with one gapless spin mode is
stabilized, there is a spin gap for attractive interaction which
marks the emergence of a singlet-pairing phase.29,30 When
N > 1, all these properties do not generalize; in particular,
the symmetry enlargement of the charge degrees of freedom
at half filling requires an additional fine tuning V = NU to
display an SU(2)c × Sp(2N ) global invariance.15 We have
shown in Ref. 15 that this SU(2)c symmetry is central to the
emergence of an even-odd scenario for attractive interactions
in close parallel to the famous Haldane conjecture in spin-S
SU(2) Heisenberg chains. In this respect, we have identified
a spin-singlet pseudospin N/2 operator which governs the
low-energy properties of the model in the vicinity of the
SU(2)c line for attractive interactions. This operator gives
rise to a Haldane-charge conjecture with the emergence of
a HI phase when N is even, while a metallic phase is
stabilized when N is odd. Such a scenario has been checked
in Ref. 15 by a low-energy approach in the N = 2 case
and DMRG calculations for N = 2,3 in the vicinity of the
SU(2)c line. In the special N = 2 case, these complementary
techniques reveal unambiguously the existence of a HI phase
with nonlocal string charge correlations and pseudo-spin-1/2
edge states.

In this paper, we extend the results of our letter Ref. 15
by determining the zero-temperature phase diagram of model
(2) at half filling by means of a low-energy approach in the
general N case and DMRG calculations for N = 2,3,4. On
top of the confirmation of the Haldane-charge conjecture,
we show that the N = 1 and N = 2 cases are special and
are not the generic cases of each family. In particular, for
N > 1 odd, the metallic phase with dominant singlet-pairing
correlation has an interesting edge-state structure when open-
boundary conditions (OBC) are used, similarly to the spin-3/2
Heisenberg chain.31,32 For all N even > 2, a new gapless phase
with dominant singlet-pairing instability is stabilized between
the HI phase and the rung-singlet (RS) phase. In addition, we
show, within the low-energy approach, that the HI phase has
striking different properties depending on the parity of N/2.
When N/2 is even, the HI phase turns out to be equivalent
to the topologically trivial RS insulating phase whereas it is a
topologically ordered phase when N/2 is odd in full agreement
with the recent findings in the study of integer Heisenberg spin
chains.33,34

The rest of the paper is organized as follows. In Sec. II, we
discuss the strong-coupling analysis of model (2) along special
highly symmetric lines which give some clues about the nature
of the Mott-insulating phases. The low-energy approach of the
general N case is presented in Sec. III. In Sec. IV, we map
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out the phase diagram of model (2) with N = 2 by means of
intensive DMRG calculations. Sections V and VI describe
our DMRG results, respectively, for the N = 3,4 cases to
complement the low-energy approach. Finally, our concluding
remarks are given in Sec. VII.

II. STRONG-COUPLING ANALYSIS

Before investigating the zero-temperature phase diagram of
model (2) by means of the low-energy and DMRG approaches,
a strong-coupling analysis along the highly symmetric lines
of the model might be useful to shed light on the possible
Mott-insulating phases. To this end, let us first consider the
energy spectrum for the single-site problem.

The Hubbard term of Eq. (2) distributes the different
states into energy levels with the same number of particles
n, with n = 0, . . . ,2N ; this is the one-site spectrum of the
U(2N ) Hubbard model. The singlet-pairing term in Eq. (2)
with coupling constant V will split these levels into levels
with different pairing schemes, denoted (n,k). The level (n,k)
group states with n particles, among which 2k particles are
in k Sp(2N ) singlets. These states transform in the ω̄n−2k

representation of Sp(2N ). Note that, for a given number
of particles n, 0 < k < E(n/2) if n � N , and n − N < k <

E(n/2) if n > N , where E(x) is the floor function. In order to
write down the eigenstates in terms of fermionic operators, let
us define the pair operator that creates a pair of fermions with
spins α and 2N + 1 − α by

P
†
α,i = c

†
α,ic

†
2N+1−α,i . (3)

In terms of these operators, the singlet pairing operator P
†
00,i

is

P
†
00,i = −2√

2N

N∑
α=1

(−1)αP
†
α,i . (4)

We now need to define a set of N − 1 linear combinations
of P

†
α,i “orthogonal” to P

†
00,i that we label as �

†
l,i (with

l = 1, . . . ,N − 1). The n − 2k particles that are not Sp(2N )
singlets then divide into two kinds: They can be either
written as linear combinations of pairs of particles with spin
(α,2N + 1 − α) and thus as a combination of pair operators
�

†
l,i , or they are unpaired and can be only written with a single

creation operator c
†
α,i . In the end, the eigenstates that belong

to the energy level (n,k) are written as

|n; k,m〉 = 1

Mn,k,m

c
†
α1,i

. . . c
†
αp,i�

†
l1

. . . �
†
lq

(P †
00,i)

k|0〉,
(5)

where m labels the state, Mn,k,m is a normalization factor, p

is the number of “single” particles, and 2q is the number of
“paired” particle that cannot be penned down in terms of P

†
00,i .

The energy of the eigenstates (5) only depends on (n,k) and
reads

E(n,k) = n2

2
U +

[
2k

(
1 + k + 1

N
− n

N

)]
V − nμ. (6)

The energy level (n,k) is D(n,k)-fold degenerate, with

D(n,k) = 2(N − n + 2k + 1)(2N + 1)!

(n − 2k)!(2N − n + 2k + 2)!
. (7)

At half filling, μ is set by the particle-hole symmetry: μ =
NU + V/N , and the energy levels read

E(n,k) =
(
n2

2
− nN

)
U +

[
2k

(
1+k + 1

N
− n

N

)
− n

N

]
V.

(8)

At this point, we can consider two important highly
symmetric lines for all N : V = 0 (respectively, V = NU ) with
the emergence of a U(2N ) [respectively, SU(2)c × Sp(2N )]
extended symmetry. We also mention that in the special N = 2
case, there is an additional SO(7) symmetric line at half filling
when V = −2U .21 However, despite the fact that we indeed
find an additional degeneracy for the one-site problem in the
general N case on the special line V = −N2U/2, the latter
seems not to correspond to an enlarged symmetry since the
kinetic term lifts it.

A. Strong-coupling argument close to the V = 0 line

When V = 0, as already stated in the Introduction, model
(2) is equivalent to the U(2N ) Hubbard model. The degen-
eracies of the energy-spectrum (8) with V = 0 are related
to the dimensions of representations of the SU(2N ) group.
In particular, when U > 0, we observe from Eq. (8) that the
lowest-energy states correspond to n = N and transform in
the antisymmetric self-conjugate representations of SU(2N )
(representation described by a Young tableau with one column
of N boxes). This case has been studied in Ref. 35 and
in the strong coupling limit the model is equivalent to an
SU(2N ) Heisenberg spin chain where the spin operators
belong to the antisymmetric self-conjugate representation of
SU(2N ). The latter model is expected to have a dimerized or
Spin-Peierls (SP) twofold degenerate GS, where dimers are
formed between two neighboring sites.35,36 In the N = 2 [i.e.,
SU(4)], such a SP phase has been ascertained by means of
a low-energy approach, quantum Monte Carlo, and DMRG
calculations.37–40 The strong U limit gives the opportunity to
get a simple physical picture of the GS, as well as of the
low-lying excitations. The twofold degenerate GS allows for
kink configurations that interpolate between the two vacua.
As depicted in Fig. 1, these kinks have zero charge but
carry a nonzero SU(2N ) spin since they transform in the
antisymmetric self-conjugate representation of SU(2N ). Note
that the system also allows for charged kinks, that carry charge
Qk = k − N with k = 0, . . . ,2N . These states transform in
ωk , the antisymmetric representation of SU(2N ) with Young
tableau made of a single column with k boxes. Although at
large U they are expected to have a large gap of order �k ∼
U (N − k)2/2 as seen from (8), we nevertheless introduce
them here since they will play an important role at small U

(see Sec. III C). Notice also that these kink excitations have
a collective nature; that is, their quantum number cannot be
reproduced by states built by using a finite number of fermions.

In the attractive case (U < 0), the lowest energy states are
the empty and the fully occupied state, which is an SU(2N )
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FIG. 1. Sketch of the kinks supported by the U(2N ) repulsive
Hubbard model that interpolate between the two degenerate dimer-
ized vacua [the boxes indicate an SU(2N ) singlet made of 2N

fermions]. Here N = 5. At large U , in the low-energy sector, all
sites have exactly N fermions. (a) Neutral kinks, that are the only
low-energy excitations at large U , and transform in the antisymmetric
representation ωN . Note that they are their own antiparticle. (b)
Charged kinks, that play a role at small U , depicted here with charge
Q = −2.

[and Sp(2N ) as well] singlet. At second order of perturbation
theory, the effective model is thus41

Heff = t2

N (2N − 1)|U |
∑

i

(nini+1 − Nni). (9)

The first term introduces an effective repulsion interaction
between nearest-neighbor sites. This leads to a fully gapped
charge-density wave (CDW) where empty and fully occupied
states alternate. This phase has a long-range order and is
twofold degenerate.

B. Strong-coupling argument close to the V = NU line

The second highly symmetric line corresponds to the
additional SU(2)c symmetry in the charge sector for V = NU

that we have identified in Ref. 15. On this line, one easily
verifies from Eq. (8) that all pure (P †

00,i)
k states (i.e., the

states with n = 2k, k = 0, . . . ,N) are degenerate, with energy
E = 0. Let us give the proper normalization factor for these
states:

∣∣P k
00,i

〉 = 1

M(k)
(P †

00,i)
k|0〉,

(10)

with M(k) =

√√√√√(
2

N

)k

⎛⎝k−1∏
q=0

(k − q)(N − q)

⎞⎠.

They transform in the spin-N/2 representation of SU(2) and
we define the corresponding pseudospin operator acting on
them as

S†
i =

√
N/2P

†
00,i ,

(11)
Sz

i = (ni − N )/2.

This operator carries charge and is a Sp(2N ) spin-singlet.
It generalizes the η-pairing operator introduced by Yang for
the half-filled spin-1/2 (i.e., N = 1) Hubbard model27 or by
Anderson in his study of the BCS superconductivity.42 It is easy
to observe that �Si satisfies the SU(2) commutation relations;

S†
i allows to construct the whole set of states with E = 0 from

|0〉 with

S†
i

∣∣P k
00,i

〉 =
√

(N − k)(k + 1)
∣∣P k+1

00,i

〉
,

(12)
S−

i

∣∣P k
00,i

〉 =
√

k(N − k + 1)
∣∣P k−1

00,i

〉
.

Let us check the commutation relation of �S with the
Hamiltonian. For the interacting part alone (Hint = H[t = 0]),
we have (for a generic filling)

[Hint,S†
i ] =

[
−2μ − 2U + 2V

N
(N + 2)

+ 2

(
U − V

N

)
ni

]
S†

i , (13)[
Hint,Sz

i

] = 0,

so that they commute only at half filling and when V = NU ;
as for the hopping term, Ht = −t

∑
i,α(c†α,icα,i+1 + H.c.), it

commutes with the total charge pseudospin operator if we
define it as

S† =
∑

i

(−1)iS†
i ,

(14)
Sz =

∑
i

Sz
i .

The pseudospin operator thus generates a higher SU(2)c ×
Sp(2N ) symmetry at half filling along the line V = NU and
we can recast the interacting (on-site) Hamiltonian asHint =
2U

∑
i[ �S2

i − N (N + 2)/4]; the pseudospin �Si is a spin-N/2
operator. The existence of such an extended SU(2) symmetry
in the charge sector for N = 2 has been first noticed in Ref. 43.

For a strong attractive U , one can derive an effective
Hamiltonian in the strong-coupling regime |U |  t using the
standard strategy.44 To second order of perturbation theory,
one obtains the effective model:

Heff =
∑

i

(
J �Si · �Si+1 + D

(
Sz

i

)2), (15)

with

J = 4t2

N (2N + 1)|U | ,
(16)

D = 2

(
U − V

N

)
.

On the SU(2)c symmetric line (V = NU ), D = 0, and model
(15) is the spin-N/2 antiferromagnetic SU(2) Heisenberg
chain. From this strong-coupling approach, we thus expect
the emergence of an even-odd dichotomy for attractive
interactions along the SU(2) line. For even N , that is, integer
pseudospin, the HI phase is formed while a metallic phase is
stabilized when N is odd, that is, half-integer pseudospin. This
is the same as Haldane’s conjecture for model (15) except that
the underlying spin �S is nonmagnetic and carries charge. In
this respect, we coin it Haldane-charge conjecture. When we
deviate from this SU(2)c line, the SU(2)c charge symmetry is
broken down to U(1)c and the single-ion anisotropy appears.
The phase diagram of the resulting model for general N is
known from the bosonization work of Schulz.45 For even
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N , on top of the Haldane phase, Néel and large-D singlet
gapful phases appear. Using the expression of the pseudospin
operator (11), the Néel and large-D singlet phases correspond,
respectively, to the CDW and RS phases. When N is odd,
gapless (XY ) and gapful (Ising) phases are stabilized in the
vicinity of the SU(2) line. The gapless XY phase can be viewed
as singlet-pairing phase since S†

i ∼ P
†
00,i .

III. LOW-ENERGY APPROACH

In this section, we present the low-energy description of the
model (2) in the general N case. This will lead us to map out the
phase diagram at zero temperature and to show the emergence
of the Haldane-charge conjecture in the weak-coupling limit.
As will be shown, the N = 2 case, which was already presented
in Ref. 15, turns out to be very particular and is not the generic
case of the even N family.

A. Continuum limit

The low-energy effective field theory of the lattice model
(2) is derived by taking the standard continuum limit of the
lattice fermionic operators cα i , written in terms of left- and
right-moving Lα,Rα Dirac fermions:29,30

cα i√
a0

→ RαeikF x + Lαe−ikF x, (17)

with x = ia0 (a0 being the lattice spacing) and kF = π/(2a0) is
the Fermi momentum. In the continuum limit, the noninteract-
ing part of the Hamiltonian (2) corresponds to the Hamiltonian
density of 2N free relativistic massless fermions:

H0 = −ivF (R†
α∂xRα − L†

α∂xLα), (18)

where vF = 2ta0 is the Fermi velocity and we assume in the
following a summation over repeated indices. The continuous
symmetry of the noninteracting part of the model is enlarged
to SO(4N )|L × SO(4N )|R since 2N complex (Dirac) fermions
are equivalent to 4N real (Majorana) fermions. This SO(4N )
symmetry is the maximal continuous symmetry of 2N Dirac
fermions. The corresponding CFT is the SO(4N )1 with central
charge c = 2N .16

The crucial point is now to find a good basis describ-
ing the low-energy properties of the model. Some simple
considerations on its symmetries guide us to choose the
relevant conformal embedding of the problem. No spin-charge
separation at half filling is expected for N > 1, and since the
global symmetry invariance of model (2) is Sp(2N ), we need
to understand how the noninteracting conformal symmetry
SO(4N )1 decomposes into Sp(2N )1 CFT. The general list of
conformal embeddings can be found in Ref. 46 and the one
which is directly relevant to our problem is:47

SO(4N )1 ∼ SU(2)N × Sp(2N )1, (19)

where the SU(2)N [respectively, Sp(2N )1] CFT has central
charge c = 3N/(N + 2) [respectively, c = N (2N + 1)/(N +
2)].

The next step of the approach is to express the 2N (4N − 1)
SO(4N )1 currents, which are made from all Dirac fermionic
bilinears, in terms of the currents of the SU(2)N and Sp(2N )1

CFTs, in order to write down the effective interacting Hamilto-
nian in the new basis. To this end, let us consider the following
left currents which appear in the low-energy description of the
model away from half filling:22,23

JA
L = L†

αT A
αβLβ, the SU(2N )1 spin currents,

J a
L = L†

αT a
αβLβ, the Sp(2N )1 spin currents, (20)

J i
L = L†

αT i
αβLβ, the SU(2N )1/Sp(2N )1 currents,

where T A are the 4N2 − 1 SU(2N ) generators in the fun-
damental representation, T a being the N (2N + 1) Sp(2N )
generators in the fundamental representation, and T i are the
2N2 − N − 1 remaining generators of SU(2N ). All these
generators are normalized in such a way that they satisfy
Tr(T AT B) = δAB/2. We need then to introduce the SU(2)N
currents to complete the conformal embedding. In this respect,
one may use the recognition of the SU(2) pseudospin operator
(11) to consider the following left current:

J †
L = 1

2 L†
αJαβL

†
β,

(21)
J z

L = 1
2 : L†

αLα : ,

where : : stands for the normal ordering with respect to the
Fermi sea of the noninteracting theory. Note the unusual
definition of the charge current J z

L; the 1/2 factor in Eq. (21)
is there to realize the SU(2)N algebra:48

J a
L (z)J b

L (0) ∼ Nδab

8π2z2
+ iεabc

2πz
J c

L(0), (22)

with a,b = 1,2,3 and z = vF τ + ix (τ being the imaginary
time).

At this point, we have only defined 4N2 + 2 currents,
and we now have to introduce the 4N2 − 2N − 2 other
pseudocurrents in order to take into account the umklapp terms
of the form K†

αK
†
β,KαKβ (K = L,R). In this respect, let us

consider

J i+
L = L†

αT̃ i
αβL

†
β, (23)

where the generators T̃ i
αβ are such that, together with Jαβ , they

form the set of antisymmetric generators of SU(2N ); there
are N (2N − 1) − 1 of them, so that all the left 2N (4N − 1)
SO(4N )1 currents are described by J a

L,J i
L,J ±

L ,J z
L,J i±

L , with
a = 1, . . . ,N(2N + 1) and i = 1, . . . ,2N2 − N − 1.

With these currents at hand, we can now derive the low-
energy effective expression of the interacting part of model
(2) at half filling. The interacting part of this low-energy
Hamiltonian can then be deduced by symmetry, simply by
requiring the Sp(2N ) invariance:

Hint = g1J
a
RJ a

L + g2J
i
RJ i

L + g3J z
RJ z

L + g4

2

(
J i+

R J i−
L + H.c.

)
+ g5

2
(J +

R J −
L + H.c.), (24)

where we have neglected four-fermion chiral interactions
which would only introduce a velocity anisotropy. A direct
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continuum limit leads to the identification:

g1 = −a0

(
2U + 4V

N

)
,

g2 = −a0

(
2U − 4V

N

)
,

g3 = 2

N
a0

(
U (2N − 1) + 2V

N

)
, (25)

g4 = 2Ua0,

g5 = 2

N
a0(U + 2V ).

Along the U(2N ) line with V = 0, we have g1 = g2 =
− N

2N−1g3 = −g4 = −Ng5. When V = NU , model (24) dis-
plays a manifest SU(2)c × Sp(2N ) invariance with g2 = g4

and g3 = g5. The interaction of model (24) is marginal, so
that a one-loop RG analysis can be performed to deduce its
low-energy properties.

B. Phase diagram for N = 2

The RG analysis for N = 2 has been presented in details
in Refs. 15 and 40. For completeness and especially for the
comparison with the DMRG calculations of Sec. IV, we give
here a brief account of the main results of this case.

Since Sp(4)1 ∼ SO(5)1 and SU(2)2 ∼ SO(3)1, the currents in
Eq. (24) admit a free-field representation in terms of eight Ma-
jorana fermions: ξa

R,L,a = 1, . . . ,5 describe the fluctuations of

the Sp(4) spin degrees of freedom whereas ξ
6,7,8
R,L account for

the remaining ones. The interacting Hamiltonian (24) reads as
follows in terms of these Majorana fermions:

Hint = g1

2

(
5∑

a=1

ξa
Rξa

L

)2

+ g2 ξ 6
Rξ 6

L

5∑
a=1

ξa
Rξa

L

+ g3

2

(
ξ 7
Rξ 7

L + ξ 8
Rξ 8

L

)2 + (
ξ 7
Rξ 7

L + ξ 8
Rξ 8

L

)
×

(
g4

5∑
a=1

ξa
Rξa

L + g5 ξ 6
Rξ 6

L

)
. (26)

One particularity of the Majorana fermion basis is that it allows
for a very simple representation of nonperturbative hidden
duality symmetries in the low-energy effective Hamiltonian
(26). These discrete symmetries are very useful to determine
the zero-temperature phase diagram.49 For model (26), we can
define two independent duality symmetries:

�1 : ξ
7,8
L → −ξ

7,8
L

(27)
�2 : ξ 6

L → −ξ 6
L,

while the right-moving fermions remain invariant. The trans-
formations (27) are exact symmetries of Eq. (26) if the cou-
plings are simultaneously changed according to g4,5 → −g4,5

for �1, and g2,5 → −g2,5 for the second duality �2. These
duality symmetries along with the one-loop RG equations
enable us to map out the phase diagram of the N = 2 case.
This analysis has been done in Refs. 15 and 40 and we find
four insulating phases in the phase diagram, depicted in Fig. 2.

A first twofold degenerate phase, which contains the SU(4)
line with repulsive U , is a SP phase with a nonzero order
parameter OSP = ∑

α(−1)ic†α,i+1cα,i . The duality symmetry

FIG. 2. (Color online) Phase diagram obtained by the low-energy
approach in the N = 2 case.

�1 gives a second gapful twofold degenerate phase which is a
CDW phase with order parameter OCDW = ∑

α(−1)ic†α,icα,i .
This phase contains the SU(4) line with negative U , in full
agreement with the numerical result of Ref. 41. On top of
these twofold degenerate phases, there are two nondegenerate
insulating phases which are stabilized with help of the �2

duality symmetry. Starting from the CDW phase and applying
the �2 transformation, one obtains a HI phase which includes
the SU(2)c line V = 2U with attractive U . This gapful
nondegenerate phase is equivalent to the Haldane phase of the
spin-1 Heisenberg chain and displays a hidden ordering which
can be revealed through a nonlocal string order parameter. This
order parameter is built from the pseudospin operator (11) and
the HI phase is characterized by the long-range ordering:

lim
|i−j |→∞

〈
Sz

i e
iπ

∑j−1
k=i+1 Sz

kSz
j

〉 �= 0. (28)

As a consequence of this ordering, this phase displays pseudo-
spin-1/2 edge states which carry charge but are spin-singlet
states (holon edge states).15 Finally, the last insulating phase
is obtained from this HI phase by applying the �1 duality. One
obtains a gapful nondegenerate RS phase, equivalent to the
RS phase of the two-leg spin ladder with antiferromagnetic
interchain coupling.29,30 This RS phase has no edge states and
is characterized by the string ordering:15

lim
|i−j |→∞

〈eiπ
∑j−1

k=i+1 Sz
k 〉 �= 0. (29)

Finally, the different quantum phase transitions of Fig. 2
can also be determined by means of the duality symmetries
(27). The transitions SP/CDW and HI/RS are Berezenskii-
Kosterlitz-Thouless (BKT) transitions with central charge
c = 1, whereas SP/RS and CDW/HI transitions belong to the
2D Ising universality class with central charge c = 1/2.

C. Renormalization group analysis: General N case

We now turn to the general N > 2 case, which is much more
involved. The leading effects of the current-current interaction
of model (24) can be inferred from a one-loop RG approach.
In this respect, it is useful to rescale the coupling constants
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as g1,2,4 → 2πvF Ng1,2,4 and g3,5 → 2πvF g3,5 to obtain the
one-loop RG equations:

ġ1 = N

2

[
(N + 1)g2

1 + (N − 1)g2
2 + 2(N − 1)g2

4

]
,

ġ2 = N2g1g2 + (N2 − N − 2)g2
4 + 2g4g5,

ġ3 = (2N2 − N − 1)g2
4 + g2

5, (30)

ġ4 = N2g1g4 + (N2 − N − 2)g2g4 + g3g4 + g2g5,

ġ5 = (2N2 − N − 1)g2g4 + g3g5,

where ġi = ∂gi/∂l(i = 1, . . . ,5), l being the RG time.
Here we remark the particular character of the case N = 2,

where the term in N2 − N − 2 cancels out in the equation for
g2 and g4. It is this very term that makes the general N case
tricky. Indeed, because of it, the duality symmetry �2 of the
N = 2 case (27) disappears for N > 2 and, with it, fades out in
a very satisfactory way to precisely identify and characterize
the different phases in the phase diagram. The only duality
symmetry �1 which remains when N > 2 corresponds to the
transformation Lα → iLα on the left-moving Dirac fermions,
so that

�1 : J ±
L → −J ±

L , J i±
L → −J i±

L , (31)

while the other currents are invariant. Thus, the duality
transformation �1 is an exact symmetry of model (24) when
g4,5 → −g4,5. In particular, the RG Eqs. (30) are indeed
symmetric with respect to g4,5 → −g4,5.

We have solved numerically the RG equations by a standard
Runge-Kutta method. In order to have a picture of the RG
flow, it is useful to draw diagrams on a ring defined by R2 =
U 2 + V 2, U = R cos θ , V = R sin θ with θ = 0 . . . 2π ; in our
numerical calculations, we set R = 0.1t . The procedure is the
following: We initiate the couplings gi for a given value of
θ and run the Runge-Kutta algorithm on the RG Eqs. (30).
The coupling constants gi flow to the strong coupling regime
under RG time so we need to stop the procedure at one point.
To this end, we stop the RG iterations as soon as one of the
couplings reaches a limit value G; this happens at RG time l0,
and defines a mass scale � = a−1

0 e−l0 that gives an estimate
of the largest gap in the model (a−1

0 is a UV cutoff). At this
point, we extract the values of all the gi(l0) and draw them,
renormalized by g1(l0) [gi/g1(l0)] on the ring diagram. We
reinitiate the couplings for a new θ and restart the procedure
for all values of θ . The resulting diagram looks very similar
for all N > 2 and different regimes can be defined (see Fig. 3
for N = 3) as a function of the lattice coupling constants U

and V . Two qualitatively different behaviors of the flow can
be identified in the asymptotic limit of weak coupling, where
l0 is large (small Ra0). In regions (I) and (II) of Fig. 3, at large
l0, the ratios gi/g1 do not evolve anymore with the RG time
and have already reached fixed values when the RG iterations
are stopped. On the other hand, in region (III), g1 is always
the first coupling to reach the limit value G at which we stop
the RG; the ratios gi/g1(l0) for i = 3,4,5 vanish in the weak
coupling limit:

lim
R→0

[gi/g1(l0)] = 0, (32)

whereas the ratio g2/g1(l0) remains finite. This property will
be important when we will derive effective models to describe

−1

−0.5

0

0.5

1

0 π/2 π 3π/2 2π
g i

θ

SU(2)c line

(I) (II) (III) (I)

g5/g1

g4/g1

g3/g1

g2/g1

FIG. 3. (Color online) Ratio of the coupling constants, to which
the RG flow leads in the IR limit, for N = 3; θ spans a ring with fixed
radius R = 0.1t in the phase diagram: U = R cos θ , V = R sin θ .
Three different regions can be defined as function of θ .

this last region. We now turn to the description of the physical
properties of the different regimes.

In the region (I) of Fig. 3, all coupling constants of
the low-energy effective Hamiltonian (24) flow to strong
coupling in the infrared (IR) limit at fixed ratio: gi/g1 = 1
(i = 1, . . . ,5). Along this special isotropic ray, model (24)
displays an extended global SO(4N ) symmetry and becomes
equivalent to the SO(4N ) Gross-Neveu (GN) model,50 in
the sense that the low-energy spectrum model of (24) is
adiabatically connected to that of the SO(4N ) GN model
(for a precise discussion, see Ref. 49). This phenomenon is
an example of a dynamical symmetry enlargement by the
interactions as found in half-filled two-leg Hubbard ladders
or in the half-filled U(4) Hubbard chain, with the emergence
of an SO(8) symmetry that becomes asymptotically exact in
the weak-coupling limit.37,51,52

The SO(4N ) GN model is a massive integrable field theory
whose mass spectrum is known exactly.53,54 It consists of the
elementary fermions with mass m, their bound states, and of
kinks. The bound states have masses (N > 1)

mn = m
sin

(
πn

2(2N−1)

)
sin

(
π

2(2N−1)

) , (33)

with n = 2, . . . ,2N − 2, while the kinks’ mass reads

mkinks = m

2 sin
(

π
2(2N−1)

) . (34)

The N = 2 case is special since the kinks’ mass is equal
to that of the fermions. The SO(8) GN model enjoys a
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triality symmetry which has been exploited in the study of
the half-filled two-leg Hubbard ladder.51,55 In the N > 2 case,
the lowest excitations are the fermions which transform into
the vectorial representation of the SO(4N ) group: They have
the same quantum numbers as the original fermions Rα,Lα

and R†
α,L†

α .
The kinks transform in the spinorial representations of

SO(4N ). It is more transparent to characterize these states
by giving their charge and spin quantum numbers under
U(1)c and SU(2N ) respectively: The kinks are those 22N

states that carry charge Qk = k − N and transform in the
ωk representation of SU(2N ), where k varies from 0 to 2N .
One can distinguish even and odd kinks, which transform
in the even (odd, respectively) spinorial representation and
correspond to even (odd, respectively) k’s. In particular, the
low-energy spectrum of the SO(4N ) GN model contains
Sp(2N ) spin-singlet states with charge Q = ±N which can
be viewed as the generalization of the Cooperon excitations
of the N = 2 case.51,55 These kink states identify with those
discussed in Sec. II A.

The development of the strong-coupling regime in the
SO(4N ) GN model leads to the generation of a spectral gap and
the formation of a SP phase for all N > 1 with order-parameter

OSP = i(L†
αRα − H.c.). (35)

This order parameter is the continuum limit of the spin Peierls
operator OSP = (−1)i

∑
α c

†
α,i+1cα,i and it has a nonzero

expectation value in the GS as can be seen by a direct
semiclassical approach of the SO(4N ) GN model. The phase
is twofold degenerate and breaks spontaneously the one-step
translation symmetry (Ta0 ): Lα → −iLα,Rα → iRα since
OSP → −OSP under Ta0 . This SP phase contains the U(2N )
line (V = 0) with U > 0, that is, the repulsive U(2N ) Hubbard
model.

The second region of Fig. 3 can be easily determined
with help of the duality symmetry �1. The transformation of
the SO(4N ) isotropic line under �1 is 1 = g2/g1 = g3/g1 =
−g4/g1 = −g5/g1, which turns out to be the asymptote of the
RG flow in the region (II) of Fig. 3. We thus deduce a second
Mott-insulating phase which is obtained from the SP phase
by applying the duality symmetry �1. Since Lα → iLα under
�1, its order parameter can be obtained from Eq. (35):

OCDW = L†
αRα + H.c., (36)

which is nothing but the continuum limit of the 2kF CDW
operator: OCDW = ∑

α(−1)ic†α,icα,i . Region (II) is thus a fully
gapped CDW phase. This CDW phase contains the U(2N ) line
(V = 0) with U < 0.

What happens in region (III) of Fig. 3 is clearly of a different
nature: The RG flow displays no symmetry enlargement, and
we have to develop other tools to tackle the physics in this
interesting region. This is done in the next section, where we
reveal striking differences according to the parity of N . Before
that, we would like to give hand-waving arguments, based on
the spectrum of the SO(4N ) GN model, supporting this even-
odd scenario. To understand what happens to the system when
one leaves regions (I) and (II) where symmetry enlargement
occurs, one should recast the whole particle content of the
SO(4N ) GN model in multiplets of the internal continuous

symmetry group of our problem, namely, Sp(2N ) × U(1)c.
One already knows how the SO(4N ) multiplets split into
U(1)c × SU(2N ) representations, which we write (Q,λ) with
λ an SU(2N ) weight and Q the U(1)c charge (the number
of fermions measured with respect to the GS). Denoting
the vectorial representation (to which the GN “fundamental
fermions” belongs) by V , the even spinorial (to which even
kinks belong) by S(+) and the odd spinorial (to which odd
kinks belong) by S(−), one has

V = (1,ω1) ⊕ (−1,ω2N−1),

S(+) = ⊕N
k=0(2k − N,ω2k), (37)

S(−) = ⊕N−1
k=0 (2k + 1 − N,ω2k+1).

A quick way to check those quantum numbers is to note
that they must be compatible with the fundamental fermions
being a bound state of two kinks. The only missing piece
of information is the splitting of the SU(2N ) representations
ωk into Sp(2N ) representation. Denoting by ω̄k the kth
Sp(2N ) fundamental representation, one has ω2n = ⊕n

k=0ω̄2k

and ω2n+1 = ⊕n
k=0ω̄2k+1, so that any SU(2N ) representation

ω2n contains one and only one Sp(2N ) singlet, whereas all
states of ω2n+1 carry nonzero Sp(2N ) spin.

Now one notices that region (III) of Fig. 3 occurs at negative
V , where the system tends to favor Sp(2N ) singlets. Let us
assume that there is adiabatic continuity in the low-energy
part of the spectrum. Then, the quantum numbers of the lowest
energy modes can be obtained by looking at those states in the
SO(4N ) GN spectrum that are Sp(2N ) singlets. It results that
when N is even, one expects the “elementary” charged particle
[with the smallest U(1)c charge] to carry charge Q = ±2. On
the other hand, when N is odd, there is a kink state that is a
Sp(2N ) singlet and carries charge Q = ±1. We will shortly see
that this even-odd dichotomy does indeed occur and that the
elementary charged particles have the aforementioned charges.

D. Even-odd scenario

The last region of the RG flow of Fig. 3, that is, region (III),
is difficult to analyze due to the absence of the second duality
symmetry �2 when N > 2. In this region, which includes the
SU(2)c line with V = NU and U < 0, the operator with cou-
pling constant g1 in the low-energy effective Hamiltonian (24)
reaches the strong-coupling regime before the others. In the
limit of weak coupling, one has a separation of energy scales,
due to the property (32) of the RG flow. Neglecting all other
couplings for the moment, the corresponding perturbation is an
integrable massive field theory for g1 > 0.56,57 A spin gap �s

thus opens for the Sp(2N ) spin sector in region (III). The next
step of the approach is to integrate out these spin degrees of
freedom to derive an effective Hamiltonian in the low-energy
limit E � �s from which the physical properties of region
(III) will be deduced.

1. Parafermionization

The resulting low-energy effective Hamiltonian involves
the remaining degrees of freedom of the initial confor-
mal embedding (19), that is, the SU(2)N sector. Since the
global continuous symmetry of model (24) is, in general,
U(1)c × Sp(2N ), we need to understand how we go from the

125123-8



COMPETING ORDERS IN ONE-DIMENSIONAL HALF- . . . PHYSICAL REVIEW B 84, 125123 (2011)

SU(2)N CFT to the U(1)c one. Such a mapping is realized
by the conformal embedding: ZN ∼ SU(2)N/U(1)c, which
defines the ZN parafermionic CFT series with central charge
c = 2(N − 1)/(N + 2).58,59 This CFT describes the critical
properties of 2D ZN generalizations of the Ising model. The
ZN CFT is generated by the parafermionic currents �kL,R

(k = 1, . . . ,N ) with scaling dimensions hk = k(N − k)/N .
The different operators of Eq. (24) can be written in this

parafermionic basis. First of all, the SU(2)N currents (21) can
be directly expressed in terms of �1L,R and a bosonic field �c

which accounts for charge fluctuations:58

J †
L,R 


√
N

2π
: exp(±i

√
8π/N �cL,R) : �1L,R,

(38)

J z
L,R 


√
N

2π
∂x�cL,R,

where the charge field �c = �cL + �cR is a compactified
bosonic field with radius Rc = √

N/2π : �c ∼ �c + √
2πN .

The remaining currents of Eq. (24) can also be expressed in
terms of the parafermionic degrees of freedom using the results
of Ref. 23:

J i
LJ i

R ∼ ε1Trφ(2),
(39)

J i+
L J i−

R ∼ μ2Trφ(2) exp
(
i
√

8π/N �c

)
,

where φ(2) is the second primary operator of the Sp(2N )1 CFT
with scaling dimension 2N/(N + 2). In Eq. (39), ε1 is the
first thermal operator of the ZN CFT with scaling dimension
4/(N + 2), and μ2 is the second disorder operator with scaling
dimension 2(N − 2)/N(N + 2) which orders when the ZN

symmetry is not spontaneously broken.58

Before investigating the low-energy limit E � �s , it is
crucial to analyze the hidden discrete symmetries of model (24)
which become explicit thanks to the conformal embedding.
It is well known that the ZN CFT has a global ZN × Z̃N

discrete symmetry under which the parafermionic currents
�kL (respectively, �kR) carry a (k,k) [respectively, (k, − k)]
charge:58

�kL,R → ei2πmk/N�kL,R under ZN,
(40)

�kL,R → e±i2πmk/N�kL,R under Z̃N,

with m = 0, . . . ,N − 1. The thermal operator ε1 transforms as
a singlet under these discrete symmetries while the order and
disorder operators σk , μk carry, respectively, a (k,0) and (0,k)
charge:

σk → ei2πmk/Nσk under ZN,
(41)

μk → ei2πmk/Nμk under Z̃N,

and σk (respectively, μk) remains unchanged under the Z̃N

(respectively, ZN ) symmetry. The ZN symmetry of the
parafermions has a simple interpretation in terms of the
original lattice fermions or the Dirac fermions of the con-
tinuum limit. It is nothing but a special phase transformation
cα,i → e−iπm/Ncα,i or, in the continuum description,

Lα → e−iπm/NLα, Rα → e−iπm/NRα, (42)

with m = 0, . . . ,N − 1. This ZN symmetry leaves invariant
model (24), and the correspondences (38), (39) are also
compatible with the definition (42). In contrast, the Z̃N

symmetry of the parafermions does not exist on the lattice.
Away from half filling, it becomes an independent emergent
symmetry of the model in the continuum limit and takes the
form22,23

Lα → e−iπm/NLα, Rα → eiπm/NRα. (43)

At half filling, this transformation is no longer a symmetry of
model (24) due to the umklapp operators. The Z̃N symmetry
has a more subtle role here: Its combination with the following
identification on the charge bosonic field:

�c ∼ �c − m

√
2π

N
+ p

√
Nπ

2
, m = 0, . . . ,N − 1, (44)

becomes a symmetry of model (24), as can be seen from
Eq. (39). In fact, this symmetry is a gauge redundancy since
it corresponds to the identity in terms of the Dirac fermions.
The last important discrete symmetries of the problem are the
�1 duality transformation (31) and the one-step translation
invariance (Ta0 ), which only affect the charge field:

�1 : �c → �c + 1

2

√
Nπ

2
,

(45)

Ta0 : �c → �c +
√

Nπ

2
.

2. Low-energy Hamiltonian

We are now in position to derive the low-energy limit E �
�s by integrating out the gapful Sp(2N ) degrees of freedom.
Using the parafermionization formulas (38, 39), one finds

Hint = λ2ε1 + λ3∂x�cL∂x�cR

+ λ4

2
[μ2 exp(i

√
8π/N �c) + H.c.]

+ λ5

2
[�1L�

†
1R exp(i

√
8π/N �c) + H.c.], (46)

where λ2,4,5 
 〈Trφ(2)〉g2,4,5 and λ3 = g3N/2π . The low-
energy Hamiltonian (46) enables us to explore the whole phase
diagram of the model for all N . Along the SU(2)c line with
V = NU , model (46) can be written in terms of the SU(2)N
fields:

Hint = g3 �JR · �JL + λ2Tr�(1), (47)

where �(1) is the spin-1 primary field of the SU(2)N CFT with
scaling dimension 4/(N + 2). The effective Hamiltonian (47)
is the low-energy theory of the spin-N/2 SU(2) Heisenberg
chain derived by Affleck and Haldane in Ref. 60. As shown by
these authors, model (47) has a spectral gap, when N is even,
while it describes a massless flow to the SU(2)1 CFT when
N is odd, in full agreement with Haldane’s conjecture.60 The
latter result has also been found by means of a parafermionic
approach similar to Eq. (46) in the presence of an SU(2)
symmetry.61

The crucial point to map out the general phase diagram
of the low-energy Hamiltonian (46) for all N stems from the
status of the ZN symmetry (42). The first term in Eq. (46)
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describes an integrable deformation of the ZN CFT which
is always a massive field theory for all signs of λ2.62 In
our conventions, if λ2 > 0 (respectively, λ2 < 0) the ZN

symmetry is unbroken (respectively, spontaneously broken)
and the disorder fields (respectively, order fields) condense,
〈μk〉 �= 0 (respectively 〈σk〉 �= 0) for all k = 1, . . . ,N .

Let us first reinvestigate the emergence of the CDW,
SP phases in regions (I, II) within this parafermionization
approach. When λ2 > 0 (i.e., g2 > 0), the ZN symmetry
remains unbroken and one may integrate out the gapful
parafermionic degrees of freedom to derive an effective field
theory on the charge bosonic field. Since we have 〈μ2〉 �= 0 and
〈�1L�

†
1R〉 �= 0 in the ZN high-temperature phase, we obtain

from Eq. (46)

Hc = vc

2

(
1

Kc

(∂x�c)2 + Kc(∂x�c)2

)
+ gc cos(

√
8π/N �c),

(48)

where the Luttinger parameter is given by

Kc = 1√
1 + g3N/(2πvF )

. (49)

The low-energy Hamiltonian for the charge degrees of freedom
(48) is the well-known sine-Gordon model at β2 = 8πKc/N .
We thus deduce the existence of a charge gap when Kc < N ,
which is always the case at weak coupling as seen from
Eq. (49). The nature of the Mott-insulating phase depends on
the sign of gc, which is changed by the duality transformation
�1 (45). When gc < 0 (i.e., g4 < 0), the development of
the strong-coupling regime of the sine-Gordon model (48)
is accompanied by the pinning of the charged field on the
minima: 〈�c〉 = p

√
Nπ/2, p being an integer. Since we have

the identification �c ∼ �c + √
2πN due to the periodicity of

the charge field, we deduce that the insulating phase is twofold
degenerate with minima: 〈�c〉 = 0 and 〈�c〉 = √

Nπ/2; that
is, the one-step translation symmetry (45) is spontaneously
broken. The low-lying excitations are massive kinks and
antikinks which interpolate between the two GS. The charges
associated to these excitations are

Q = ±
√

2N/π

∫
dx ∂x�c = ±N. (50)

For N = 2, the excitations correspond to the Cooperon
excitations of the half-filled two-leg Hubbard ladder.51 The
charge excitations (50) correspond to the generalization of
these Cooperons. That they are the charge excitations with
the minimal charge can be deduced from considerations on
symmetry: Among the spectrum of the SO(4N ) GN model,
they are the only charged states that are both Sp(2N ) singlets
and neutral under ZN . [Indeed, the ZN charge of any state
can be simply read off from the way it transforms under
SU(2N ): States in ωk carry a ZN charge given by k mod N .]
The physical nature of the twofold degenerate Mott-insulating
phases can be determined by expressing the SP and CDW order
parameters (35, 36)in terms of the charge and the ZN fields:23

L†
αRα ∼ exp(i

√
2π/N �c)μ1Tr φ(1), (51)

where φ(1) is the first Sp(2N )1 primary field with scaling
dimension (2N + 1)/2(N + 2). Averaging over the Sp(2N )
and ZN degrees of freedom, we obtain

OCDW ∼ cos(
√

2π/N �c),
(52)

OSP ∼ sin(
√

2π/N �c).

The phase with gc < 0 (i.e., g4 < 0) is thus a CDW phase
(〈OCDW〉 �= 0) and corresponds to the region (II) of Fig. 3.
The second phase with gc > 0 is obtained from the CDW
phase by the application of the duality transformation �1.
The pinnings of the charge field are then 〈�c〉 = √

Nπ/8 and
〈�c〉 = 3

√
Nπ/8, which signals the formation of a SP phase

in the region (I) of Fig. 3 since from Eq. (52), 〈OSP〉 �= 0.
The quantum phase transition between the CDW/SP phases
belongs to the self-dual manifold of the duality symmetry
�1. Using the definition (45), one finds that the low-energy
Hamiltonian of the transition is given by

Hselfdual = vc

2

(
1

Kc

(∂x�c)2 + Kc(∂x�c)2

)
+ gc cos(

√
32π/N �c). (53)

The resulting quantum phase transition is of BKT type.
The transition displays a quantum-critical behavior with one
gapless bosonic mode if Kc > N/4. At this point, we need
complementary numerical techniques to extract the value of
Kc in order to conclude on the nature of the transition.

Finally, the case with λ2 < 0 (or g2 < 0) corresponds
to region (III) of Fig. 3 where the ZN symmetry is now
spontaneously broken. In this ZN low-temperature phase, the
ZN degrees of freedom are still fully gapped and the disorder
operators now average to zero: 〈μk〉 = 0. Similarly to the
λ2 > 0 case, we can integrate out the parafermionic fields
to obtain an effective field theory on the charge bosonic field.
However, due to the presence of the μ2 operator in Eq. (46),
the resulting integration strongly depends on the parity of N .

3. Phase diagram in the N odd case (N > 1)

Let us first consider the case where N is odd. Since all the
parafermionic operators in Eq. (46) average to zero in the ZN

broken phase, one has to consider higher orders in perturbation
theory to derive an effective theory for the charge field. TheZN

fields of model (46) carry a charge 2 under the Z̃N symmetry
[see Eq. (41) with k = 2 for μ2]. When N is odd, one has to
use the N th order of perturbation theory to cancel out the Z̃N

charge of μ2 so that we find

Hodd
c = vc

2

(
1

Kc

(∂x�c)2 + Kc(∂x�c)2

)
+ gc cos(

√
8πN �c), (54)

with gc ∼ gN
4 , while we do not have any estimate of the

Luttinger parameter except the bare one (49). On symmetry
grounds, the effective Hamiltonian (54) can also be derived
by finding the vertex operator in the charge sector with
the smallest scaling dimension which is compatible with
translational invariance (45) and the redundancy (44). The
resulting low-energy Hamiltonian (54) takes the form of a
sine-Gordon model at β2 = 8πNKc so that a charge gap opens
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FIG. 4. (Color online) Values of the coupling constants gi in the
infrared limit, in the vicinity of the transition from CDW phase (II)
to BCS critical phase (III), close to the SU(2)c symmetric line (V =
NU ). Notations are the same as in Fig. 3.

when Kc < 1/N . For Kc = 1/N , this sine-Gordon model
displays a hidden SU(2) symmetry which should correspond
to the SU(2)c line V = NU with U < 0 that belongs to region
(III). Close to this SU(2)c line, the RG flow of Fig. 4 shows that
the coupling constant g4 is negative so that gc < 0. When Kc <

1/N , the charge bosonic field is thus pinned on the minima:
〈�c〉 = p

√
π/2N , p being an integer. Taking into account the

gauge redundancy (44), we find that the strong-coupling phase
of the sine-Gordon model (54) is twofold degenerate with
〈�c〉 = 0 and 〈�c〉 = √

π/2N . The charges of the massive
kinks and antikinks excitations are now

Q = ±
√

2N/π

∫
dx ∂x�c = ±1, (55)

in sharp contrast to the charge Q = ±N of excitations (50)
of the CDW phase of region (II). At this point, we need
to find a local order parameter to fully characterize the
twofold degenerate Mott insulating phase in region (III).
When the Sp(2N ) and ZN degrees of freedom are integrated
out, the expression of the bilinear Dirac fermions (51) is
naively short-ranged in region (III), since it contains the first
disorder parameter. However, by fusing this operator with the
Hamiltonian (46) at the (N − 1)/2th order of perturbation
theory, the disorder operator cancels out and one obtains the
following low-energy description:

L†
αRα ∼ exp(i

√
2πN �c). (56)

In region (III), where the ZN is spontaneously broken, the
CDW and SP operators then read as follows:

OCDW ∼ cos(
√

2πN �c),
(57)

OSP ∼ sin(
√

2πN �c),

so that 〈OCDW〉 �= 0. The insulating phase in region (III) when
Kc < 1/N is thus the continuation of the CDW phase of region
(II). However, there is a striking difference at the level of
the low-lying excitations: The generalization of the Cooperon
excitations with charge Q = N is no longer a stable excitation
in region (III) but becomes a diffusive state made of the kinks
(55) which are massive holons. The situation is very similar to
the SP phase of the half-filled U(4) Hubbard model between
the weak and strong coupling regimes.37 As far as the GS
properties are concerned, there is a smooth crossover when
the ZN symmetry changes its status at λ2 = 0 and not a
ZN quantum phase transition as is the case away from half
filling.22,23

When Kc > 1/N , the charge degrees of freedom become
gapless. We then need to determine the leading instability
of this phase, that is, the one that has the slowest decaying
correlation functions. The singlet-pairing operator can be
expressed in terms of the charge and the ZN fields as23

P
†
00 ∼ exp(i

√
2π/N �c)σ1Tr φ(1). (58)

Since the ZN symmetry is broken, we have 〈σ1〉 �= 0 and
the low-energy representation of the singlet-pairing operator
is thus P

†
00 ∼ exp(i

√
2π/N �c). The gapless phase stems

from the competition of this singlet-pairing operator, which
cannot condense, and the CDW operator (57). The leading
asymptotics of their equal-time correlation functions can then
be straightforwardly determined:

〈P †
00(x)P00(0)〉 ∼ A x−1/NKc ,

(59)

〈n(x)n(0)〉 ∼ −NKc

π2x2
+ (−1)x/a0B x−NKc ,

where n(x) is the continuum limit of the lattice density operator
ni , and A,B are nonuniversal amplitudes. Since Kc > 1/N ,
the leading instability of this gapless phase is the BCS singlet-
pairing.

The quantum phase transition between the gapful CDW
phase and the gapless BCS phase occurs at Kc = 1/N , which
corresponds to the SU(2)c (V = NU < 0) line. On this line,
we observe that the exponents of the correlation functions of
Eq. (59) are identical. Using the pseudospin operator (11), we
deduce the following leading asymptotics from Eq. (59):

〈S†(x)S−(0)〉 ∼ x−1,
(60)

〈Sz(x)Sz(0)〉 ∼ (−1)x/a0 x−1.

The model with Kc = 1/N displays a quantum critical behav-
ior with central charge c = 1 for all odd N and corresponds
to the SU(2)1 universality class. This result is in perfect
agreement with the strong-coupling analysis of Sec. II along
the SU(2)c line, where the pseudospin operator (11) is a spin-
N/2, that is, half-integer, operator. The low-energy properties
of SU(2) half-integer Heisenberg spin chains are indeed known
to be governed by the SU(2)1 CFT.60 In the spin language, the
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FIG. 5. (Color online) Values of the coupling constants gi in the
IR limit, in the vicinity of the transition between the BCS (III) and SP
(I) phases, displaying the restoration of an SU(2) symmetry, denoted
˜SU(2)c, which is the dual of the lattice SU(2)c symmetry (V = NU ):
g2 = −g4 and g3 = −g5. We use the same notations as in Fig. 3.

CDW and BCS phases are, respectively, the analog of the Ising
and XY phases and the quantum phase transition occurs at the
SU(2) Heisenberg point.

When we deviate from the SU(2)c line in the gapless BCS
phase, Figs. 4 and 5 show that g3 decreases and then increases
as a function of the interaction. Using the naive estimate of the
Luttinger parameter (49), we deduce that Kc increases from
Kc = 1/N at the SU(2)c line and then decreases until one
reaches the SP phase of region (I). The resulting transition and
its properties can be deduced from the CDW/BCS transition
by the duality symmetry �1. Indeed, under the transformation
(45), the sign of gc of model (54) is changed and the
gapful insulating phase when Kc < 1/N is twofold degenerate
with 〈�c〉 = √

π/8N and 〈�c〉 = 3
√

π/8N . The SP order
parameter (57) acquires a nonzero expectation value in this
phase: 〈OSP〉 �= 0. As far as the GS properties are concerned,
this phase is the continuation of the SP phase of region (I).
The quantum phase transition between the BCS and SP phases
occurs at Kc = 1/N . Its position corresponds to an SU(2)
line with g2 = −g4 and g3 = −g5, which is obtained from the
lattice SU(2)c line V = NU < 0 (g2 = g4, g3 = g5) by the
application of the duality symmetry �1. The resulting SU(2)

line, noted ˜SU(2)c in Fig. 5, does not exist on the lattice: It is
an emergent SU(2) symmetry of the continuum limit.

As a summary, Fig. 6 shows the zero-temperature phase
diagram of model (2) in terms of the lattice parameters U,V

in the N odd case (N > 1), which results from the low-energy
approach.

FIG. 6. (Color online) Phase diagram obtained by the low-energy
approach in the N odd case (N > 1).

4. Phase diagram in the N even case (N > 2)

As in the N odd case, one has to consider higher orders
in perturbation theory to derive an effective theory for the
charge field �c since all the parafermionic operators in Eq. (46)
average to zero in the ZN broken phase. When N is even, one
needs the N/2th order of perturbation theory to cancel out the
Z̃N charge of μ2. The resulting low-energy Hamiltonian then
reads as follows:

Heven
c = vc

2

(
1

Kc

(∂x�c)2 + Kc(∂x�c)2

)
+ gc cos(

√
2πN �c). (61)

Alternatively, the effective Hamiltonian (61) can also be
obtained by considering the vertex operator in the charge sector
with the smallest scaling dimension which is compatible with
translational invariance (45) and the gauge redundancy (44).
The resulting low-energy Hamiltonian (61) takes the form of
a sine-Gordon model at β2 = 2πNKc so that a charge gap
opens when Kc < 4/N . One sees that, right on the SU(2)c line
where the Luttinger exponent is constrained (Kc = 1/N), the
sine-Gordon parameter takes the special value

√
2π , at which it

is known that a hidden SU(2) symmetry emerges.63 The lowest
energy modes are a massive triplet, the magnon of the integer
spin Heisenberg model. Turning back to the generic situation
Kc < 4/N where a charge gap opens, the charge bosonic field
is pinned into the following configurations:

〈�c〉 = p

√
2π

N
, if gc < 0,

(62)

〈�c〉 =
√

π

2N
+ p

√
2π

N
, if gc > 0,

p being an integer. The lowest massive excitations are the
soliton and antisoliton of the sine-Gordon model; they carry
charge

Q = ±
√

2N/π

∫
dx ∂x�c = ±2, (63)

which correspond to the Cooperon excitations. Using the
gauge redundancy (44), we find that, in sharp contrast to the
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CDW and SP phases, the insulating phase when Kc < 4/N is
nondegenerate, its GS being

〈�c〉 = 0, if gc < 0,
(64)

〈�c〉 =
√

π

2N
, if gc > 0.

Starting from the CDW phase of region (II), where the ZN

symmetry is unbroken, there is necessarily a quantum phase
transition to the nondegenerate Mott-insulating phase of region
(III) with broken ZN symmetry. In particular, the disorder
parameter μ1 of Eq. (51) cannot be compensated using higher
orders of perturbation theory as was the case for odd N . It
means that in region (III), 〈OCDW〉 = 〈OSP〉 = 0 when the
Sp(2N ) andZN degrees freedom are integrated out. It is natural
to expect that the nondegenerate insulating phases, described
by the pinning (64), signal the emergence of the HI and RS
phases that we have identified in the strong-coupling approach
(15). At this point, it is worth observing that the duality
symmetry �1 plays a subtle role in the even N case. Indeed,
under the transformation (45), the cosine term of Eq. (61)
transforms as

cos(
√

2πN �c) → (−1)N/2 cos(
√

2πN �c), (65)

so that there is room for an interesting N/2 even-odd effect.
N/2 even case. Let us first consider the N/2 even case.

A naive estimate of the coupling constant gc in higher orders
of perturbation theory gives gc ∼ −g

N/2
4 . The RG flow close

to the SU(2)c line (V = NU < 0) in the N/2 even case is
similar to the one in Fig. 4. In this region, we have g4 < 0
so that the nondegenerate gapful phase is described by the
locking 〈�c〉 = 0 of Eq. (64). As seen in Fig. 4, this region
contains the SU(2)c line where the strong-coupling analysis
(15) predicts the emergence of the spin-N/2, that is, even
spin, SU(2) Heisenberg chain. The low-lying excitation of the
resulting Haldane phase is a gapped triplet state. From the
expression of the pseudospin operator (11), one observes that
it corresponds to a Cooperon excitation in full agreement with
the prediction (63). We thus conclude that the Mott-insulating
phase in the vicinity of the SU(2)c line (V = NU < 0), which
is described by the sine-Gordon model (61) with 〈�c〉 = 0, is
the HI phase.

The topological order of the Haldane phase with integer
spin S = N/2 > 1 has been less understood than the S =
1 case. This phase displays edge states with localized spin
N/4 when OBC are used.31 Unfortunately, we are not able to
describe these boundary edge excitations by means of our low-
energy approach except when N = 2.15,40,64 On top of these
end-chain states, the higher integer-spin Haldane phase should
exhibit a nonlocal string ordering.65–71 A very naive guess is
to use the generalization of the string-order parameter (28)
with spin-N/2 operator. In the low-energy limit, we find for
N/2 even

lim
|i−j |→∞

〈
Sz

i e
iπ

∑j−1
k=i+1 Sz

kSz
j

〉

 lim

|x−y|→∞
〈sin (

√
Nπ/2 �c(x)) sin (

√
Nπ/2 �c(y))〉

= 0, (66)

since the HI phase is described by the pinning 〈�c〉 = 0. This
result is in full agreement with what is known at the Affleck,
Kennedy, Lieb, Tasaki (AKLT) point72 of the integer-spin
Heisenberg chain,65,66 and also from DMRG studies of the
spin-2 Heisenberg chain.67–71 A simple nonzero string order
parameter in the HI phase, which we can estimate within our
low-energy approach, is

lim
|i−j |→∞

〈
cos

(
π

∑
k<i

Sz
k

)
cos

(
π

∑
k<j

Sz
k

)〉

 lim

|x−y|→∞
〈cos (

√
Nπ/2 �c(x)) cos (

√
Nπ/2 �c(y))〉

�= 0. (67)

This lattice order parameter turns out to be nonzero at the
AKLT point of even-spin Heisenberg chains.73

In summary, when N/2 is even, the HI phase is described
at low-energy by the sine-Gordon model (61) with Kc <

4/N and a nondegenerate GS 〈�c〉 = 0. The quantum phase
transition between the CDW and HI phases is difficult to
determine exactly. On general grounds, we expect an Ising
quantum phase transition or a first-order one due to the
difference of the GS degeneracies between the two phases.
In the CDW and HI phases, the charge bosonic field is locked
at 〈�c〉 = 0 so that the CDW/HI quantum phase transition is
governed by the ZN interacting field theory:

HZN

int = λ2 ε1 + λ4(μ2 + H.c.). (68)

Model (68) is a deformation of the ZN CFT perturbed by
two relevant operators with scaling dimensions 4/(N + 2) and
2(N − 2)/N (N + 2), respectively. When acting separately,
each perturbation yields a massive field theory, but the
interplay between them may give rise to a second-order phase
transition at intermediate coupling. In this respect, when
λ2 < 0, the first operator in Eq. (68) orders the ZN degrees
of freedom while the second one wants to disorder them. We
conjecture that this competition for λ2 < 0 leads to a massless
flow to a Z2 quantum critical point in the IR limit. The
quantum phase transition between the CDW and HI phases
thus belongs to the 2D Ising universality class with central
charge c = 1/2. In the simplest N = 4 case, we can show this
result explicitly by exploiting the fact that theZ4 parafermionic
CFT has central charge c = 1 and so it should be possible to
realize it with a single free Bose field. In fact, the correct
identification is quite subtle and the Z4 CFT turns out to be
equivalent to a Bose field living on the orbifold line at radius
R = √

3/2π .74 However, as shown in the Appendix of Ref. 75,
it is still possible to bosonize some fields of the Z4 CFT with
a simple (periodic) Bose field � defined on the circle with
radius R = √

3/2π : � ∼ � + 2πR. In this respect, the two
operators of Eq. (68), with scaling dimension 2/3 and 1/6,
take the form of vertex operators. The bosonized description
of the effective field theory (68) reads

HZ4

int = λ2 cos(
√

8π/3 �) + λ4 sin(
√

2π/3 �). (69)

This model is the so-called two-frequency sine-Gordon model
which, for instance, governs the transition from a band
insulator to a Mott insulator in the 1D ionic Hubbard model.76

When λ2 < 0 and for all signs of λ4, model (69) displays a Z2

quantum critical point in the IR limit which has been analyzed
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nonperturbatively in Refs. 76–78. We thus deduce that the
quantum phase transition between the CDW and HI phases for
N = 4 belongs to the 2D Ising universality class.

Let us now investigate the fate of the HI phase as one
deviates from the SU(2)c line. As in the N odd case, there is
a regime in region (III), away from the SU(2)c line, where the
coupling g3 that appears in the Luttinger parameter expression
(49) decreases and then increases as function of the interaction
(see Figs. 4 and 5). In the vicinity of the minimum of g3, we
expect the emergence of a gapless phase associated to the
sine-Gordon model (61) with Kc > 4/N . The existence of
this intermediate gapless phase will be confirmed numerically
in Sec. VI by means of DMRG calculations. In this respect,
the N = 2 case is very special since this phase shrinks to a line
which marks the phase transition between HI and RS phases
(see Fig. 2). This critical phase has only one gapless charge
mode and the singlet-pairing has the same low-energy behavior
as in the N odd case: P

†
00 ∼ exp(i

√
2π/N �c). However, this

phase is different from the gapless BCS phase of the N odd
case. Indeed, as already stressed, the disorder parameter μ1

of Eq. (51) cannot be compensated using higher orders of
perturbation theory which means that the alternating part of the
CDW operator is short ranged. We then deduce the following
leading asymptotics of the equal-time correlation functions:

〈P †
00(x)P00(0)〉 ∼ x−1/NKc ,

(70)

〈n(x)n(0)〉 ∼ −NKc

π2x2
,

where in the density correlator, only the uniform part has a
power-law decay. The leading instability is the singlet-pairing
one when Kc > 4/N . The main difference with the gapless
BCS phase of Fig. 6 stems from the fact that the alternating
part of the density correlator (70) has now an exponential
decay. The quantum phase transition between HI and BCS
phases belongs to the BKT universality class.

The last regime of region (III), which corresponds to the
transition between (III) and (I) of Fig. 5, can be identified by
means of the duality symmetry �1. Under this transformation
(45), the CDW phase is changed into the SP phase. In contrast,
from Eq. (65), we deduce that the sine-Gordon operator of the
low-energy Hamiltonian (61) remains invariant when N/2 is

even. The Mott-insulating phase in the vicinity of the ˜SU(2)c
line of Fig. 5 is thus described by the strong-coupling regime
of the sine-Gordon model (61) with Kc < 4/N and the pinning
〈�c〉 = 0. This phase is expected to be the RS phase, that is, the
so-called large D phase of the integer spin Heisenberg chain,45

which appears in the strong-coupling approach (15) for a
sufficiently strong positive D. Interestingly enough, within
our low-energy approach, this phase is described exactly
in the same way as the HI phase. Thus, the two phases
necessarily share the same order parameters, such as the string
orders (66, 67). However, they should have different edge
states but we could not, very unfortunately, investigate these
boundary end excitations in our CFT approach. Recently, it
has been argued that the edge-state structure of the even-spin
Heisenberg chain is not protected by symmetry, in contrast
to the odd case.33 In particular, the authors of Ref. 33 have
conjectured that there is an adiabatic continuity between the
Haldane and large D phases in the even-spin case. The Haldane

FIG. 7. (Color online) Phase diagram obtained by the low-energy
approach in the N even case (N > 2).

phase is thus equivalent to a topologically trivial insulating
phase in this case. This adiabatic continuity has been shown
numerically in the spin-2 XXZ Heisenberg chain with a
single-ion anisotropy by finding a path where the two phases
are connected without any phase transition.34 In our problem,
the HI and RS phases are separated by an intermediate gapless
BCS phase. However, within our low-energy approach, the
two nondegenerate Mott-insulating phases are described in the
same manner by the sine-Gordon model (61) with Kc < 4/N

and the pinning 〈�c〉 = 0. In this respect, our results strongly
support the conjecture put forward in Ref. 33.

Finally, the quantum phase transition between RS and SP
phases is obtained from the effective theory (68) by the appli-
cation of the duality symmetry �1. The latter transformation
changes the sign of the coupling constant λ4 of the μ2 operator.
However, this sign is irrelevant for the competition between
the two relevant operators in model (68). We thus expect that
the resulting quantum phase transition still belongs to the 2D
Ising universality class. In summary, Fig. 7 presents the phase
diagram, in terms of the lattice parameters U,V in the N/2
even case.

N/2 odd case. The last case to consider is the case where
N/2 is odd. In region (III), in the vicinity of the SU(2)c line,
the charge bosonic field �c of the sine-Gordon model (61) with
Kc < 4/N is now pinned at 〈�c〉 = √

π/2N since gc > 0. The
nondegenerate Mott-insulating phase is the HI phase. This
phase can be described by the generalization of the string-
order parameter (28) with spin-N/2 operator. Indeed, in the
low-energy limit and for the N/2 odd case, we find

lim
|i−j |→∞

〈
Sz

i e
iπ

∑j−1
k=i+1 Sz

kSz
j

〉

 lim

|x−y|→∞
〈sin (

√
Nπ/2 �c(x)) sin (

√
Nπ/2 �c(y))〉

�= 0 , (71)

in sharp contrast to the result (66) of the N/2 even case. For
general odd-spin Heisenberg chain, the order parameter (71)
is known to be nonzero contrarily to the even-spin case.65,66

In this respect, there is thus a clear dichotomy in the HI phase,
depending on the parity of N/2. For odd-spin Heisenberg
chains, the authors of Ref. 33 have predicted that the Haldane
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phase displays a topological order and is not equivalent to
the large D phase as in the even-spin case. This scenario is
in perfect agreement with our low-energy approach. Indeed,
according to Eq. (65), the duality symmetry �1 changes the
sign of the vertex operator of model (61) when N/2 is odd.
The physical properties of the RS phase are thus governed by
the sine-Gordon model (61) with Kc < 4/N and the pinning
〈�c〉 = 0. In the N/2 odd case, the HI and RS phases are
described by two different lockings of the charge bosonic field,
in sharp contrast to the N/2 even case. In particular, the RS
phase is described by the string-order parameter (67) and not
(71), as the HI phase is. The HI and RS phases are thus totally
distinct phases that cannot be adiabatically connected.

Finally, as in the N/2 even case, the transition between these
two nondegenerate phases is accompanied by the formation of
an intermediate gapless BCS phase with the properties (70).
Unfortunately, in the N/2 odd case, we do not have access to
a theory of the quantum phase transition between the CDW
(respectively, SP) phase and the HI (respectively, RS) phase.
We suspect, as in the N/2 even case, that the transition belongs
to the 2D Ising universality class, but it certainly requires a
proof. Figure 7 presents the phase diagram in the N/2 odd
case which, apart from the subtleties on the topological nature
of the HI phases, is identical to the N/2 even case. Last, we
would like to emphasize that the N = 2 case (see Fig. 2) is not
representative of the even family but turns out to be special.

IV. PHASE DIAGRAM OF HALF-FILLED SPIN-3/2
FERMIONS (N = 2)

In this section, we give the phase diagram of model (1)
when N = 2 in the (U/t,V/t) plane, obtained from numerical
calculations. Four phases are found and reported in Fig. 8:
two phases which break translational invariance, the SP and
CDW phases, and two with nondegenerate GS which can only
be distinguished through nonlocal string orders, the HI and
RS phases. These phases are separated by transition lines
determined numerically (solid lines), and compared to weak-
and strong-coupling predictions displayed as dashed lines. In
addition, three particular lines are plotted where the model has
an exact enlarged symmetry, which we discussed in Sec. II.

The numerical calculations are performed with DMRG on
chains, each site containing the 16 states of the onsite basis
(for N > 2, since the local Hilbert space is too large, we must
use other strategies as discussed below). We fix three quan-
tum numbers: the spin part Sz = 1

2

∑
α,i(−1)α+1nα,i , T z =

1
2

∑
i(n1,i + n2,i − n3,i − n4,i), as well as the total number of

particles Nf = 2L, that is, the total charge. The GS lies in
the Sz = T z = 0 sector. The number of kept states is typically
m = 2000 and OBC are used if not stated otherwise. Denoting
by L the length of the chain, the local order parameters are
computed numerically by taking their value in the bulk of the
chain (we choose to work with an even number of sites):

OCDW(L) = nL/2 − nL/2−1, (72)

OSP(L) = tL/2 − tL/2−1, (73)

where nj = ∑
α nα,j is the total onsite density and

tj = ∑
α c

†
α,j+1cα,j + H.c. the local kinetic energy on

bond (j,j + 1).
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FIG. 8. (Color online) Phase diagram of the N = 2 case. Solid
lines are DMRG results (see text for discussion) and dashed lines are
results from solving numerically the RG flow in the weak-coupling
limit. c stands for the expected central charge on the transition line.
Lines with higher symmetries are indicated in black dashed lines.
Boundaries of the HI phase obtained by the strong-coupling are shown
in dotted lines. As a rule of thumb, DMRG results can be trusted
if |U |,|V | � t , while weak-coupling predictions are exact close to
the free fermions limit at the origin. (Inset) Zoom on the region of
the HI phase where the x axis (2U − V )/t is perpendicular to the
SU(2)c × SO(5) line.

A. The HI phase

We start a more detailed discussion of the phase diagram
from the V = 2U line which shows the remarkable SU(2)c
symmetry, leading to the effective spin-1 Heisenberg model
(15) in terms of charge degrees of freedom. We have recently
demonstrated15 that the gapped HI phase is realized for a given
value of V/t and that its extension is rather small. We here
refine the description of the boundaries of the Haldane phase
and discuss the nature of the transition lines to, respectively,
the CDW and RS phases. In order to find the transition line
from CDW to HI, we use OCDW which vanishes in the HI
phase and which is straightforward to compute. The transition
from HI and RS is more difficult to determine as no local
order parameter can discriminate between the two phases. In
Ref. 15, we gave several signatures of the transition which can
be used to locate it: nonlocal charge string order parameters
and the presence of edges states, which are observed here
by considering a charge excited state with two additional
fermions; for OBC, this state has a vanishing gap to the
GS. The simplest way to determine the transition with our
numerical scheme is to look at the distribution of the charge in
the excited state with Nf = 2L + 2: An excess Nf = 1 charge
will be stuck at each edge in the HI phase (equivalent to the
spin-1/2 edge state of the spin-1 Haldane phase), while an
Nf = 2 excitation lies in the bulk of the RS phase (equivalent
to the S = 1 magnon of the Heisenberg ladder). We thus
use this change in the density profile of the charge excited
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state (benchmarked with other signals of the transition for
V = −2t) to give the estimate of the transition line in Fig. 8.

In the weak-coupling regime, |U |,|V | � t , DMRG calcu-
lations become hard due to the relevance of many low-energy
onsite states. In the strong-coupling limit (large U,V ), onsite
energy scales are well-separated so that DMRG efficiently
eliminates high-energy irrelevant states. The numerical pre-
dictions of the RG flow provides a better prediction for the
transition lines in this weak-coupling regime: These estimates
are V 
 3.33U for RS-HI and V = 1.56U for CDW-HI.

The two transition lines in Fig. 8 are also compared
to the strong-coupling predictions of Sec. II B. For large
|U |/t and |V |/t , the effective Hamiltonian around the SU(2)c
line is a spin-1 model with antiferromagnetic coupling J =
2t2/5|U | and anisotropy D = 2U − V [see Eqs. (15) and
(16)]. The phase diagram of this model has been extensively
studied4,45,79–81 and shows that a Haldane-Néel transition
(equivalent to the HI-CDW one) occurs for D/J 
 −0.5 while
a Haldane-large-D transition (equivalent to the HI-RS one) is
obtained for D/J 
 1. This gives the two curves, VHI-CDW =
2U + t2/|U | and VHI-RS = 2U − 2t2/|U |, explaining both the
shrinking and the asymmetry of the extension of the HI phase
in the strong-coupling regime.

Although the Haldane gap decreases in the strong-coupling
regime simply because J decreases, the agreement between the
fermionic spin-3/2 Hubbard model under study and the spin-1
effective model improves as irrelevant degrees of freedom are
pushed to high energies. This can be illustrated numerically
by the behavior of the Haldane gap along the SU(2)c line as
a function of U/t . The Haldane gap is computed using OBC
from the following gaps:

�ab = E0(2L + 2b) − E0(2L + 2a), (74)

where E0(Nf ) stands for the GS energy with Nf fermions.
As evoked previously, the presence of edge states with OBC
makes the first excited state collapse onto the GS, so that �01

vanishes in the thermodynamical limit. Still, both �02 and
�12 must remain finite and tend to the bulk Haldane gap for
sufficiently large sizes. These behaviors, together with finite-
size extrapolations of the gaps using the ansatz

�ab(L) = �ab(∞) + const e−L/ξ /L, (75)

are clearly shown by the numerical results of Fig. 9(a).
Figures 9(b) and 9(c) display the extrapolated gaps as a
function of U/t in units of, respectively, t and J . While the
weak-coupling opening of the gap cannot be reliably studied
here, we observe that the gap passes through a maximum
around U/t 
 −1, which is close to value U/t 
 −1.5 for
which the width of the HI phase is maximal. In the strong-
coupling regime, the gap in units of t decreases as expected
[see Fig. 9(b)], while, put in units of J [see Fig. 9(c)], it
eventually reaches the value �S=1 
 0.41J known17 for the
spin-1 Heisenberg chain: U 
 −4t is already deep in the
strong-coupling regime along this SU(2)c line.

Last, we investigate the nature of the critical points at the
two boundary lines of the HI phase. From the low-energy
results of Sec. III B, we expect that the HI-CDW is an Ising
transition with a central charge c = 1/2, while the HI-RS
transition belongs to the BKT type, associated with a central
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FIG. 9. (Color online) Behavior of the Haldane gap � along the
SU(2)c line V = 2U < 0 of Fig. 8. (a) Gaps and finite-size scalings
(see text for discussion). (b),(c) The Haldane gap as a function of
U/t in units of, respectively, t and the effective antiferromagnetic
coupling J . The �S=1 line indicates the value of the gap known for a
Heisenberg spin-one chain.

charge c = 1. In the strong-coupling limit, this has been
observed numerically for the spin-1 chain with single-ion
anisotropy.80 To check these predictions from the DMRG data,
we use the universal scaling of the entanglement entropy (EE)
in a critical phase, which gives a direct access to the central
charge. We obtained the most convincing results using periodic
boundary conditions (PBC) at the price of keeping a much
larger number of states and using small system sizes. Similar
calculations have been performed in the context of the SU(N )
generalization of Haldane’s conjecture.82 The results of the EE
on a finite chain of length L = 48 along the V = −2t around
the HI phase are given in Fig. 10. The central charge is obtained
from the data using the universal formula83

S(x) = c

3
ln d(x|L + 1) + const, (76)

with d(x|L) = L
π

ln(πx
L

) the cord function and S(x) the EE
of a block of size x with the rest of the chain. The values
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FIG. 10. (Color online) Fitting the entanglement entropy close
to the critical lines surrounding the Haldane phase provides central
charges c close to the expected values c = 1/2 (for HI-CDW) and
c = 1 (for HI-RS). The best agreement is found using PBC with
DMRG and keeping a large number of kept states m.
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obtained for c are in good agreement with the expected values
considering the large number of local degrees of freedom.
There is an uncertainty on the location of the critical points
but, on a finite system, as long as L � ξ , with ξ the correlation
length associated to the closing gap, the physics will be
effectively that of the critical point.

B. The RS-SP transition

We now turn to the discussion of the RS-SP transition in
the right-down quadrant of Fig. 8. The two phases RS and
SP can be simply distinguished by the local spin-Peierls order
parameter OSP, which is finite in SP, while it is zero in RS. The
vanishing of the order as the system size increases provides a
good estimate of the transition line.

We further try to give evidence for the nature of the
transition and check whether it lies in the Ising universality
class. A possible approach is to use the EE again and look
for c = 1/2. However, the OSP order parameter appears as
the leading corrections to the EE with OBC and gives strong
oscillations in the signals, particularly in the SP phase and up
to the critical point. These oscillations render the fits difficult,
and the value of c is not reliably extracted for the accessible
system sizes. Using PBC improves a bit the situation, but the
oscillating parts of the EE could not be suppressed (as expected
for the GS) with DMRG, even by increasing the number of kept
states and sweeps.

Consequently, we use another strategy to identify the Ising
universality class. We know that the correlation function of
the order parameter has a universal exponent 1/4 at the critical
point. Then, Friedel oscillations of the order parameter gives
the scaling OSP(L) ∝ L−1/8 on the critical point. In the SP
phase, OSP(L) reaches a constant in the thermodynamic limit,
while it decreases exponentially in the RS phase. Thus, by
looking at the scaling of OSP(L) for different parameters, we
are able to give both a precise estimate of the critical point and
to check that the exponent is indeed close to 1/8. The results
along two cuts at U = 4t and U = t are reported in Fig. 11.
In the strong-coupling regime U = 4t , we do observe a very
good agreement with an exponent 1/8, typical of the Ising
universality class. However, in the weak-coupling regime,

FIG. 11. (Color online) Scaling of the order parameter OSP at the
RS-SP transition. (a) For U/t = 4, the exponent is quite close to 1/8;
(b) for U/t = 1, it is closer to 0.8.

a much larger exponent of 0.78 
 6/8 fits well the scaling
curves. We understand this discrepancy in the following way:
In the weak-coupling regime, the gaps to higher excited states
are too small to be thrown away in the low-energy regime of a
finite system. In other words, the correlation lengths associated
with theses gaps become too large and we could not reach
sizes sufficiently large to freeze them. A speculative picture
can account for the observed number: At weak coupling,
the transition line gets very close to the SO(6) line, which
has the equivalent of six gapped Ising degrees of freedom,
but with an exponentially small gap of the order t/U .37 In
this weak-coupling regime, the numerics cannot resolve these
gaps and the Ising degrees of freedom appear critical, each
contributing to 1/8 in the exponent, which then should be
close to 6/8.

This comment brings us to the discussion of effect of the
proximity of the SO(6) line (an exact enlarged symmetry) to
the RS-SP transition line. The V = 0 and U > 0 line has been
studied analytically and numerically in Ref. 37: The charge and
spin gaps open slowly with U/t and are numerically negligible
below U 
 2t . In the weak-coupling regime, the low-energy
physics has an emerging enlarged SO(8) symmetry. In the
strong coupling regime, the spin gap decreases after passing
through a maximum around U 
 6t . The data shows that
the RS-SP transition line has a nonmonotonic behavior, first
following the weak-coupling RG predictions and then being
attracted by the SO(6) line at large interactions (see Fig. 8).
This attraction can be qualitatively understood by the behavior
of the spin gap as U increases. Considering V as a perturbation
which closes the spin gap �S , the line should typically behave
as Vc(U ) ∼ −�S(U ) which is nonmonotonous and stick to the
SO(6) line in the strong-coupling limit. In the weak-coupling
limit U � t , the RG prediction V = −0.10U is more reliable
than the numerics.

C. The CDW-SP transition

Last, we briefly discuss the CDW-SP transition between
these two phases which breaks translational symmetry. Numer-
ically, the precise determination of the transition with OSP and
OCDW using DMRG turns out to be difficult due to formation
of domains of each kind of orders close to the transition line.
Changing the number of kept states, the number of sweeps
and the size, slightly moves the transition point determined
by the order parameter at the center of the chain. This leads
to error bars in the phase diagram which are relatively small
compared to the parameter scales of Fig. 11, but are too large
to focus on the critical features of the transition line. We could
not check the c = 1 expectation of this transition, due to both
the difficulty in locating the transition point, and because of
strong SP oscillations in the EE. Notice that on the critical line,
the correlations of the quartet operator c

†
1,ic

†
2,ic

†
3,ic

†
4,i become

critical which is qualitatively in agreement with numerical
observations.

Here again, we see that the transition line is rather close to
a high symmetry line of the phase diagram, namely, the SO(7)
line V = −2U .21 In the weak-coupling regime, the numerical
solution of the RG Eqs. (30) for N = 2 gives V = −1.61U but,
for larger |U |, DMRG calculations indicate that the transition is
attracted to the vicinity of the SO(7) line. An argument similar
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FIG. 12. (Color online) Charge and spin gaps and their ratio along
the SO(7) line V = −2U of Fig. 8.

to the one used for the RS-SP transition can be drawn: We see
that SO(7) line is in a SP gapped phase. The strong-coupling
spin-model along this line is an SO(7) Heisenberg model where
the spins belong to the vectorial representation of SO(7)21 and
our analysis predicts a SP bond ordering. Numerically, we
compute the spin gap �s and charge gap �c defined as follows:

�s = E0(N,1) + E0(N, − 1) − 2E0(N,0),
(77)

�c = E0(N + 2,0) + E0(N − 2,0) − 2E0(N,0),

where E0(Nf ,Sz) is the GS energy with Nf fermions in the
Sz sector with T z = 0 and N = 2L is the reference number
of particle at half filling. The results extrapolated in the
thermodynamic limit are given in Fig. 12 for a wide range
of U/t values. The gaps open slowly in the weak-coupling
regime and then reach a maximum around U 
 −7t , before
decreasing in the strong-coupling regime. The ratio of the
gaps �c/�s is very close to 2, everywhere but in the weak-
coupling limit where the numerics are challenging for accurate
predictions.

V. PHASE DIAGRAM IN THE N = 3 CASE

In this section, we investigate the phase diagram of model
(1) when N = 3 and in the (U/t,V/t) plane using extensive
DMRG simulations. Since the local Hilbert space on each
site contains 26 = 64 states and is quite large, we have
implemented the following strategy: We use a mapping to
a three-leg Hubbard ladder where the chains correspond to
fermionic states with Sz equal to ±1/2, ±3/2, and ±5/2,
respectively. Then, after some algebra, we can rewrite all hop-
pings and interaction terms in this language, which introduce,
for instance, rung interactions and rung pair-hopping terms.
This mapping to a ladder allows us to converge faster to the
GS, but we have checked that the symmetry between chains is
preserved in the SU(3) case, for instance. Typically, we keep
between 1600 and 2000 states in our simulations for measuring
local quantities and up to 3000 for correlations, and we use
OBC.

FIG. 13. (Color online) Numerical phase diagram obtained by
DMRG in the N = 3 case.

Since no topological phase is expected, we can rely on
measuring local quantities such as local density and kinetic
energy, as well as density and pairing correlations that will
characterize the critical phase that has been shown to exist
along the SU(2)c line V = 3U in Ref. 15. The following phase
diagram can thus be obtained in Fig. 13 and it contains only
three phases: SP, gapless BCS, and CDW.

Data points on this plot correspond to simulations done
on system length L = 72, while phase boundaries were also
obtained from scaling different system sizes (see below).

A. Properties along the SU(2)c line

We start by considering the SU(2)c line V = 3U . For large
enough |U |/t , the strong coupling argument of Sec. II B tells us
that the chain will behave effectively as an antiferromagnetic
Heisenberg spin-3/2 chain, which is known to be critical.
In Fig. 14(a), we show how pairing and density correlations
behave along this SU(2)c line. Their long-distance form has
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FIG. 14. (Color online) Pairing and density correlations obtained
by DMRG in the N = 3 case for various interactions corresponding
(a) to the exact SU(2)c symmetry and (b) to the emergent SU(2)

symmetry ˜SU(2)c. Note that correlations are measured starting from
the middle of the chain.

125123-18



COMPETING ORDERS IN ONE-DIMENSIONAL HALF- . . . PHYSICAL REVIEW B 84, 125123 (2011)

0 50 100

0

2

4

6

lo
ca

l d
en

si
tie

s

FIG. 15. (Color online) Local densities obtained by DMRG in
the N = 3 case for U/t = −2, V = 3U , and L = 108. From bottom
to top, data correspond to adding two, four, or six particles to the
half-filled system. Data for adding four and six particles are shifted by
two and four, respectively for clarity, and in these cases 〈n(i)〉Nf =3L+2

has been substracted in order to get the bulk contribution.

been determined in Eq. (59) and, measured from the middle of
the chain, reads

P(x) = 〈P †
00(L/2 + x)P00(L/2)〉 ∼ A

x1/(NKc)

N (x) = 〈n(L/2 + x)n(L/2)〉 − 〈n(L/2 + x)〉〈n(L/2)〉
∼ −NKc

π2x2
+ (−1)xB

xNKc
. (78)

Using the definition of the pseudospin operator (11), we
observe that the two correlations match perfectly, as expected
of course for an exact SU(2)c symmetry. Both correlations
are algebraic and expected to decay as

√
ln x/x,84 but it is

known that checking accurately logarithmic corrections is
a challenging numerical problem85 that we will not further
investigate.

Another peculiar property of spin-3/2 chain with OBC was
conjectured by Ng31 and confirmed later numerically:32 Even
though the system is critical, one can observe “edge states”
with OBC, in the sense that the magnetization profile will
exhibit an excess close to the edges, although there are no
finite correlation lengths (i.e., the magnetization profile decays
algebraically away from the edges). Here we investigate a
similar situation, namely, with a charge SU(2)c symmetry
where it is the local density that plays the role of the
magnetization for actual spin-3/2 chain. When adding two,
four, or six particles (with respect to half filling), as shown
in Fig. 15, we do observe modulations in the local densities
reflecting these edge states. Physically, it means that the first
excitation (adding two particles) is an edge excitation, but the
next ones correspond to making a bulk excitation.

B. The transition from critical BCS to SP

As can be seen from the phase diagram shown in Fig. 13, the
critical phase that exists along the SU(2)c line has a rather large
extension. As is shown below, this critical phase has dominant
BCS pairing correlations; thus its name. For fixed negative V ,
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FIG. 16. (Color online) Pair and density correlations in the N = 3
case for V/t = −6 and L = 72 and various U/t . (Inset) Fitting these
data gives an estimate of the Luttinger parameter Kc vs U/t (using a
log scale starting at U/t = −2).

we observe the transition to the SP phase for large-enough
U > 0. This is in agreement with the low-energy prediction
and the RG phase diagram (see Fig. 6).

In order to characterize the critical phase, we can compute
its Luttinger parameter Kc from the behavior of either pairing
or density correlations, using Eq. (78). In Fig. 16, we plot both
correlations at V = −6t and for various values of U . Let us
start with the discussion of P(x) (which corresponds up to a
factor 2/3 to the transverse pseudospin correlation function).
In order to be able to fit over the whole range,86 data are plotted
vs x ′ = d(x|L + 1)/

√
cos[πx/(L + 1)], where d(x|L + 1) is

the cord function, defined in Eq. (76). We observe a very
smooth behavior, which makes it possible to extract the
behavior of Kc vs U (see inset). Due to the logarithmic
corrections which are known to exist along the SU(2)c line,
it is very hard to recover that Kc → 1/3 when U → −2t

as expected from the exact SU(2)c symmetry. Moving away
from the SU(2)c line, our data indicate that Kc rapidly reaches
a maximum, before going down again. The transition to SP
corresponds to pairing correlations that become exponential
(not shown) and occurs when Kc = 1/3 in agreement with the
low-energy approach.

Another way to compute Kc consists of using Eq. (78)
for density correlations. In principle, one can use either the
uniform or the alternating part to extract it. However, in the
regime where Kc < 2/3, the alternating part is dominant,
whereas in the opposite case, the uniform part decays more
slowly. Therefore, we have fitted either the uniform part or the
staggered part to extract the value of Kc shown in the inset.

Overall, we have an excellent agreement between the
estimates of Kc obtained from both correlations, which gives
confidence in the validity of the Luttinger liquid description
of this critical phase. Moreover, the behavior of Kc vs U

is compatible with our expectation (see Sec. III D 3): Kc

exceeds 1/3 in the BCS phase (giving rise to dominant BCS
correlations) and the transitions to SP and CDW occur when
Kc reaches 1/3.

In the critical phase, the von Neumann block entropy gives
access to the central charge c, and is consistent with a c = 1
Luttinger liquid, as expected (data not shown). In the gapped
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FIG. 17. (Color online) Bond kinetic energy modulation at the
center of a chain of length L for various V at fixed U/t = 3.

SP phase, the EE scaling is consistent with a saturation for
large blocks.

The transition from the critical BCS to the SP phase can be
located when P(x) becomes exponential, or by looking at the
bond kinetic modulation scaling. In Fig. 17, we plot the bond
kinetic energy difference at the center of the chain as a function
of the chain length L. We can clearly see a finite value in the SP
phase for V/t = −1.5 and U/t = 3, for instance, while our
data are compatible with an algebraic power-law with exponent
0.66 for larger |V |. Locating precisely the transition is difficult
since we expect a BKT behavior at the transition, and a weakly
opening gap when entering the SP phase; this results in some
uncertainty on this transition line in the phase diagram. Using
this procedure, we have determined approximately the phase
transition line shown in Fig. 13. Although our data are not
very accurate, our numerical findings are in agreement with
the low-energy approach: The BCS to SP transition occurs for
a finite negative V for fixed U > 0.

Note that the low-energy approach predicts that the tran-
sition occurs when Kc reaches 1/3. According to our fitting
procedure (see Fig. 16), this gives a similar estimate for its
location. According to this value, the bond kinetic energy
modulation should scale as 1/

√
L at the transition, while

we have measured a different exponent. In fact, it is known
that logarithmic corrections are expected at this transition, and
indeed our data can as well be fitted with a 1/

√
L log L law.

Moreover, along this transition line and from the low-energy

approach, we expect an emergent SU(2) symmetry [˜SU(2)c]
that should be reflected in identical exponents for P(x) and
N (x). Fig. 14(b) displays our data in this region, and we
do confirm a good agreement between the two exponents
(compatible with Kc = 1/3).

Concerning the transition from the critical BCS to the CDW
phase, our data are compatible with a gap opening as soon as
V > NU , in perfect agreement with the low-energy prediction
(see Sec. III D 3). Finally, for the same reasons as in the N = 2
case (see Sec. IV C), we could not investigate the nature of the
quantum phase transition between SP and CDW phases. We
found that this transition is located in the vicinity of the V =
−9U/2 line (see Fig. 13). Unfortunately, as already stressed in

Sec. II, we were not able to determine the symmetry contents
of this line.

As a final remark about the BCS phase, while quasiedge
states can be observed along the SU(2)c line or close to it (see
previous section), they no longer exist deep in the BCS phase
(for instance U/t = 0 and V/t = −6, data not shown). This
might be understood from the strong-coupling regime using the
mapping to a spin-3/2 chain with single-ion anisotropy: For
large enough D > 0, the relevant low-energy states consist of
Sz

i = ±1/2 on each site, thus leading to an effective spin-1/2
chain in its critical phase. In this region, we do not expect
any edge physics as is observed numerically. We have not
investigated in details the crossover between both regimes, but
it could be easily answered by studying directly a spin-3/2
anisotropic chain.

VI. PHASE DIAGRAM IN THE N = 4 CASE

In this section, we investigate the phase diagram of model
(1) when N = 4 and in the (U/t,V/t) plane.

From a technical point of view, since the local Hilbert space
is quite large, we map the 1D model onto a generalized four-leg
Hubbard ladder with generalized rung interactions. Thus, we
reduce the complexity of the DMRG algorithm, but we have
to use a 1D path going along the ladder. We have checked that
the symmetry between the chains is always restored during the
simulations. Typically, we keep 2000 states in our simulations
and use OBC.

Figure 18 shows the phase diagram for N = 4, obtained on
a L = 30 chain. As expected, five phases are present: On the
SU(2)c line in the attractive part of the phase diagram, there is
the HI phase and, close to it, the critical BCS one arises. As
expected from the strong-coupling argument [see Eq. (15)], it
is followed by the RS phase and, on the other side of the HI
phase, a CDW phase is stabilized. On the repulsive side, we
detect a SP phase that was predicted in Sec. III C. We observe
a good agreement with the low-energy prediction (see Fig. 7).

A. Properties along the SU(2)c line

We start by looking at the SU(2)c line V = 4U on the
attractive side. As expected from the strong-coupling argument
and from the low-energy analysis, the model should behave as

-4 -2 0 2 4
-12

-8

-4

0

4

8

12
RS
CDW
HI
SP
BCS

FIG. 18. (Color online) Numerical phase diagram obtained by
DMRG in the N = 4 case with L = 30.
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(a) (b)

FIG. 19. (Color online) Pairing correlations for N = 4 at fixed
V/t = −8 and L = 64. (a) Critical correlations are observed close to
the HI phase represented by U/t = −2 on the SU(2)c line. (b) Both
in HI and in RS phase, the pairing correlations are short ranged.

an effective antiferromagnetic spin-2 Heisenberg chain, that
is, be in a Haldane phase.

We have some evidence for such a HI phase thanks to
the presence of (charge) edge states when OBC are used.
Concerning the charge gap, in order to get the bulk result
(and avoid edge states effect), one needs to compute E0(Nf =
4L + 6) − E0(Nf = 4L + 4). Extrapolating our data on L =
16 and L = 32 chains for U = −2t and V = −8t , we obtain an
estimate of 0.0038t , which is extremely small. Nevertheless,
using the strong-coupling expression of the effective exchange
Jeff = 1/18t and the known Haldane gap87 � 
 0.089Jeff 

0.0049t , we get a finite gap of the same magnitude.

Moreover, the pairing correlations (which correspond to
the transverse spin correlations in the spin language) shown in
Fig. 19 exhibit a short-range behavior compatible with a finite
correlation length and a finite gap.

However, since the correlation length of the spin-2 chain
is known to be very large87 (ξ ∼ 50), we will not try to
characterize further this HI phase (by measuring its string
order, for instance), but the strong-coupling argument ensures
that HI phase exists in some finite region of the phase diagram
around the SU(2)c line.

B. Critical BCS phase

In Sec. II B, we have argued why, for fixed V/t , increasing
U/t gives an effective single-ion anisotropy denoted D. For
the spin-2 chain, it is known68 that such a D term leads to
an extended critical XY phase with central charge c = 1 for
0.04 < D/Jeff < 2.4. Using our strong-coupling estimate and
assuming a fixed effective Jeff , this would predict an extended
XY phase for −1.996 < U/t < −1.82 for fixed V/t = −8.

Figure 19 shows numerical data for the pairing correlations
obtained for a chain with L = 64. Indeed, algebraic behavior is
observed close to the Haldane phase, in a region corresponding
to −1.99 � U/t � −1.9 for V = −8t , in agreement with our
strong-coupling estimate.

(a) (b)

FIG. 20. (Color online) (a) Density correlations for N = 4 at
fixed V/t = −8 and L = 64 in the BCS phase. (b) Luttinger liquid
parameter Kc vs U for fixed V/t = −8. BCS phase is delimited by
Kc � 1.

In order to be more quantitative about this Luttinger liquid
phase, and make a connection with the low-energy analysis,
we use the asymptotics from Eq. (70),

P(x) = 〈P †
00(L/2 + x)P00(L/2)〉 ∼ x−1/NKc

N (x) = 〈n(L/2 + x)n(L/2)〉 − 〈n(L/2 + x)〉〈n(L/2)〉
∼ −NKc

π2x2
+ (−1)xA exp(−x/ξ ), (79)

and use it to extract the behavior of Kc in the c = 1 gapless
phase. Note that we have measured the correlations from
the center of the chain in order to minimize size effects
due to OBC, and in the critical phase, we plot our data vs
x ′ = d(x|L + 1)/

√
cos[πx/(L + 1)] in order to be able to fit

over the whole range.86

Density correlations are shown in Fig. 20(a) in the critical
phase, and they exhibit an algebraic decay. The anomalies
are due to the subleading short-range staggered contributions
since we plot the absolute values of N (x), so that density
correlations become difficult to fit close to the HI phase. We
have fitted both correlations using the expressions above in
Eqs. (79) and the resulting Luttinger parameter Kc is plotted
in Fig. 20(b). We have an overall good agreement between the
two independent fits, and we confirm the expected behavior
that, starting from the HI phase, Kc first increases rapidly,
and then diminishes when U/t increases. The gapless phase is
characterized by Kc � 1, which corresponds for V/t = −8 to
−1.999 � U/t � −1.93. Thus, we conclude, from Eqs. (79),
that the leading instability is the BCS singlet-pairing. The
extended gapless phase is thus a BCS phase which differs
from the one in the N = 3 case by the fact that the staggered
part of the density is short-ranged.

For the choice of V/t = −8, we see that both pairing and
density correlations become short-range when U/t � −1.9,
where a RS (large-D) phase starts. As can be seen from the
behavior of Kc, this corresponds to Kc = 1 = 4/N , which is
the criterion for the opening of the gap in the bosonization
analysis done in Sec. III D 4.
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C. Quantum phase transitions

Once we have determined the five phases in the phase
diagram, we would like to clarify the nature of the quantum
phase transitions.

Starting from the SU(2)c line with V < 0 and decreasing U

leads to a CDW phase. According to the low-energy approach,
and as confirmed numerically for N = 2, we expect a c =
1/2 second-order Ising phase transition. However, due to the
large correlation length in the HI phase, we cannot get reliable
results. It would be much easier to check this criticality, as
well as locate the critical D/J , by studying directly the spin-2
chain with single-ion anisotropy.

On the other side of the HI phase, that is, increasing U ,
the phase transition to BCS critical phase was predicted to be
in the BKT universality class with c = 1. Scaling of EE for
L = 64 with V/t = −4.0 and U/t = −0.9 leads to c = 0.93
(when keeping m = 4000 states in the DMRG simulation).
From the BCS phase and increasing U/t at fixed V/t < 0,
our correlation functions in Figs. 19 and 20 are compatible
with a transition to a fully gapped RS phase when Kc becomes
smaller than 1, as expected.

The transition from RS to SP is difficult to characterize due
to finite-size oscillations in the quantities (including EE), but
we have determined that it is located at a finite negative V for
fixed U > 0 as found in the low-energy section (see Fig. 7). A
similar conclusion can be made for the transition from SP to
CDW, which is located in the opposite quadrant, as expected.

VII. CONCLUSION

We have established the zero temperature phase diagram
of multicomponent (2N -component) fermionic cold atoms,
loaded in a 1D optical lattice, at half filling. This entire work
was done under the hypothesis that only contact interactions
matter and that the interactions channels can be reduced to two:
one singlet channel and one nonzero spin channel. The former
hypothesis is very reasonable in the context of optical lattices
and could be relaxed without affecting our main conclusions.
The latter hypothesis requires N − 2 independent fine-tunings,
and is therefore quite restrictive for large N . However, it
requires no fine tuning for N � 2, and should not be out of
reach for moderate N � 4.

As soon as N > 1, we found that the phase diagram has a
rich structure due to the degeneracy of the atomic states and
the absence of spin-charge separation at half filling. Several
nonequivalent Mott-insulating phases emerge. Two phases
are present irrespective of the value of N > 1: the SP and
CDW phases, which both break translational invariance and

are twofold degenerate. We exhibited a hidden pseudospin
SU(2) structure, involving spin-singlet, charged degrees of
freedom, that generalizes a structure noticed long ago for the
N = 1 case in the context of the Hubbard model.28 When
specialized to one space dimension, this structure yields
a Haldane conjecture for attractive interactions: We show
that such a system realizes a Heisenberg antiferromagnet
of magnitude S = N/2, and, as a consequence, displays
an alternating gapped (insulating)/critical (BCS superfluid)
behavior according to the even/odd parity of N . We have
found that this parity effect has an influence on large portions
of the phase diagram, and that ultracold fermions with N

even can disclose two more insulating states: the HI and RS
phases which are nondegenerate and display nonlocal string
orderings. The N = 1,2 cases turn out not to be the generic
cases of the odd/even families. Precisely, whereas for N = 2,
only a critical quantum phase transition occurs between the
two nondegenerate insulating phases, for even N > 2, an
intermediate gapless BCS phase arises between them.

On top of the even-odd scenario, and within the low-energy
approach, we found a subtle effect depending on the parity
of N/2. When N/2 is odd, the HI and RS phases correspond
to different phases and can be distinguished by string-order
parameters. In particular, the HI phase with odd N/2, that is,
odd spin, is an exemple of a topological ordered phase with
N/4 edge states. In contrast, when N/2 is even, the HI and RS
phases are related at low-energy by a duality symmetry and
share the same GS properties. In this respect, the HI phase with
N/2 even, that is, for even spin, is not topologically protected
by its edge-state structure but is equivalent to a topological
trivial insulating phase, that is, the RS phase. Thus, within
the low-energy approach presented in this paper, our findings
confirm the recent conjecture of Ref. 33.

In the light of the recent experimental achievements where
cold fermionic gases with several components could be
stabilized as highly symmetry systems,88 we hope that it will
be possible in the future to unveil part of the richness that we
highlighted in this work. In particular, the disclosure of the
HI phase would be extremely important, as it displays exotic
characteristics that have attracted a lot of attention in the past
years and still does nowadays.
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U. Schollwöck, O. Golinelli, and Th. Jolicoeur, Phys. Rev. B 54,
4038 (1996).

69Y. Nishiyama, K. Totsuka, N. Hatano, and M. Suzuki, J. Phys. Soc.
Jpn. 64, 414 (1995).
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