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Spiral-staircase photonic structures of metallic nanorods
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By employing the layer-multiple-scattering method, properly extended to periodic assemblies of arbitrarily
oriented axis-symmetric particles, we investigate the optical response of a three-dimensional spiral-staircase
structure of metallic nanorods. We show that the combination of plasmonic modes and helical arrangement
of the nanorods results in the formation of collective optical eigenmodes with a specific predominant circular
polarization character, sizable polarization gaps, and negative group velocity bands that lead to negative refraction.
Moreover, we demonstrate that multilayer slabs of the given crystal exhibit strong optical activity and circular
dichroism combined with reduced dissipative losses, which make the proposed structure potentially useful for
polarization control applications in miniaturized optoelectronic devices.
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I. INTRODUCTION

The fact that a chiral arrangement of the atomic/molecular
constituents (structural chirality) or an inherent chiral struc-
ture of the molecules themselves (molecular chirality) is
responsible for the observed optical activity in some natu-
rally occurring substances and materials (see, e.g., Ref. 1
and references therein) has long motivated microwave stud-
ies on model systems of macroscopic bodies with helical
symmetry.2–5

More recently, in the context of photonic crystals,6 three-
dimensional (3D) chiral dielectric structures were first pro-
posed as artificial composite media that exhibit strong optical
activity.7,8 Subsequently, such structures were found to possess
sizable omnidirectional photonic band gaps,9,10 as well as par-
tial band gaps for just one of the two circular polarizations11,12

that can give rise to strong circular dichroism.13–15 On the
other hand, it has been shown that chiral architectures of
metallic building units can exhibit a huge optical activity,
which exceeds by several orders of magnitude that of natural
chiral materials,16–26 thus opening new perspectives in the
design of subwavelength optical components for polarization
control applications.27

In recent years, these chiral metallodielectric architectures
attract growing interest also in relation to negative-index
metamaterials.28–43 In most of these studies, artificial gy-
rotropic structures are realized as one or two layers of
chiral resonators, and their exotic properties are interpreted
by a numerical approach assuming applicability of effective
medium theory and retrieving effective constitutive parameters
from transmission and reflection spectra at normal incidence.
However, these structures are strongly anisotropic and their
optical response cannot be always described by means of local
effective material parameters.44 Moreover, even assigning
effective wave parameters, such as a scalar refractive index
that refers to a specific mode and a particular direction of
propagation, may be problematic, especially in the strong-
coupling regime.45 In any case, the refractive properties of
the medium cannot be deduced from the refractive index and,
therefore, a direct demonstration of negative refraction in such
chiral metamaterials is necessary.

In this paper, we report a thorough investigation of the
optical properties of a 3D spiral-staircase structure of metallic
nanorods by means of rigorous full-electrodynamic calcula-
tions. We analyze the nature of the photonic eigenmodes of this
crystal in the light of group theory and explain their physical
origin. Moreover, we study the change in the polarization
state of a wave transmitted through a finite slab of the crystal
and reveal the occurrence of strong optical activity effects.
Finally, we provide a consistent interpretation of negative
refraction, which can occur within certain regions of frequency
and angles of incidence on a specific surface of the crystal,
by reference to relevant isofrequency contours obtained from
detailed photonic band-structure calculations. It is worth
noting that the structure under consideration does not support
purely left- and right-circularly polarized (LCP and RCP,
respectively) eigenmodes, in contrast to mostly studied chiral
metamaterials with, e.g., C4 symmetry.17–23,34–36,38–40,42,43,45,46

In this respect, our results and analysis apply to a broader
class of chiral structures of lower symmetry, made of resonant
plasmonic components in helical arrangement, and explain
aspects of their optical response to a degree that goes beyond
existing interpretation. On the other hand, our theoretical
method is ideally suited for the study of such multilayered
chiral metamaterials, combining computational efficiency with
physical clarity.

II. METHOD OF CALCULATION

Our calculations are carried out using the full-
electrodynamic layer-multiple-scattering (LMS) method,47–49

which is ideally suited for stratified structures consisting of
successive layers of nonoverlapping particles (scatterers) of
arbitrary shape, arranged with the same two-dimensional (2D)
periodicity in the x-y plane, while periodicity in the z direction
is not a prerequisite. In the spirit of the multiple-scattering
approach, the scattering properties of the whole composite
structure are obtained from those of the individual building
units. The main idea of the LMS method relies on the combined
optimal use of two distinct basis sets. (a) A spherical-wave
basis for the description of in-plane multiple scattering, which
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insures fast convergence for scatterers of not too large size
parameter and not too strong deviation from the spherical
shape. (b) A plane-wave basis for the description of interlayer
multiple scattering, which takes advantage of the common
2D periodicity of the different layers. The method solves
Maxwell equations in frequency domain and thus dispersion
and absorptive losses in the constituent materials can be readily
included. Besides the complex photonic band structure of
an infinite crystal, associated with a given crystallographic
plane, the LMS method can also provide the reflectance,
transmittance, and absorbance of a finite slab of the crystal
at any angle of incidence and, in this respect, it can describe
an actual transmission experiment.

The properties of the individual scatterers enter through
the corresponding scattering T matrix in a spherical-wave
representation P lm; P = 1,2 denotes magnetic and electric
multipoles, respectively, while l = 1,2, . . . and m = −l,

− l + 1, . . . ,l are the usual angular momentum indices. For
particles of cylindrical symmetry, in a coordinate system
defined by taking the z axis along the axis of revolution of
the particle, the elements of the T matrix, T 0

P lm;P ′l′m′ , are
identically zero if P + l + m and P ′ + l′ + m′ do not have
the same parity.49 This symmetry property, however, does
not hold in any coordinate system. If α,β,γ are the Euler
angles transforming an arbitrarily chosen coordinate system
into the particle coordinate system, the T matrix is given
by

TP lm;P ′l′m′ =
l∑

m1=−l

l′∑
m′

1=−l′
D(l)

mm1
(α,β,γ )T 0

P lm1;P ′l′m′
1

×D
(l′)
m′

1m
′(−γ, − β, − α), (1)

where T 0 refers to the particle coordinate system and
D(l) are the appropriate transformation matrices associated
with the l irreducible representation of the O(3) group.50

Therefore, starting from T 0, which is calculated efficiently
by the extended-boundary-condition method,51 we can ob-
tain the T matrix in a rotated coordinate system through
Eq. (1).

Within the LMS method,49 at a first step, in-plane multiple
scattering is evaluated in the specific spherical-wave basis
using the T matrix of the individual scatterers and appropriate
propagator functions. Subsequently, interlayer coupling is
fully taken into account by properly combining the trans-
mission and reflection matrices of the component layers,
such as the x-y layers of Fig. 1, so as to describe multiple
scattering between the layers to any order, in a plane-wave
representation defined as follows. We write the component
of the wave vector of the incident plane wave parallel to the
layers, q‖, as q‖ = k‖ + g′, where k‖, the reduced wave vector
in the surface Brillouin zone, is a conserved quantity in the
scattering process and g′ is a certain reciprocal vector of the
given 2D lattice. Therefore, the wave vector of the incident
wave has the form K±

g′ = k‖ + g′ ± [q2 − (k‖ + g′)2]1/2êz,
where q is the wave number, êz is the unit vector along
the z axis, and the + or − sign refers to incidence from
z < 0 or from z > 0, i.e., a wave propagating toward the
positive or negative z direction, respectively. Since k‖ and the
angular frequency ω are conserved quantities, the scattered
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FIG. 1. Spiral-staircase structure of metallic nanorods under
consideration.

field will consist of a series of plane waves with wave
vectors

K±
g = k‖ + g ± [q2 − (k‖ + g)2]1/2êz, ∀g, (2)

and polarizations along ê1 and ê2 (polar and azimuthal unit
vectors, respectively, associated with every Ks

g, s = ±). It
is worth noting that, though the scattered field consists, in
general, of a number of diffracted beams corresponding to
different 2D reciprocal lattice vectors g, only beams for which
Ks

gz is real constitute propagating waves. When (k‖ + g)2 >

q2, we have an evanescent beam and the corresponding unit
vectors ê1,ê2 become complex, but they are still orthonormal:
êp · êp′ = δpp′ , p(p′) = 1,2.

The ratio of the transmitted or reflected energy flux to
the energy flux associated with the incident wave defines
the transmittance, T , or reflectance, R, respectively, of a
multilayer slab. On the other hand, for a 3D crystal consisting
of an infinite periodic sequence of layers, stacked along the
z direction, applying the Bloch condition for the wave field
in the region between two consecutive unit slabs leads to
an eigenvalue equation, which gives the z component of the
Bloch wave vector, kz, for the given ω and k‖. The eigenvalues
kz(ω,k‖), looked upon as functions of real ω, define, for each
k‖, lines in the complex kz plane. Taken together they constitute
the complex band structure of the infinite crystal associated
with the given crystallographic plane. A line of given k‖ may
be real (in the sense that kz is real) over certain frequency
regions, and be complex (in the sense that kz is complex) for
ω outside these regions. It turns out that, for given k‖ and ω,
out of the eigenvalues kz(ω,k‖), none or, at best, a few are
real and the corresponding eigenvectors represent propagating
modes of the electromagnetic (EM) field in the given infinite
crystal. The remaining eigenvalues kz(ω,k‖) are complex and
the corresponding eigenvectors represent evanescent waves.
These have an amplitude that increases exponentially in the
positive or negative z direction and, unlike the propagating
waves, do not exist as physical entities in the infinite crystal.
However, they are an essential part of the physical solutions of
the EM field in a slab of finite thickness. A region of frequency
where propagating waves do not exist, for given k‖, constitutes
a frequency gap of the EM field for the given k‖. If, over a
frequency region, no propagating wave exists whatever the
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value of k‖, then this region constitutes an absolute frequency
gap.

III. RESULTS AND DISCUSSION

A. Photonic band structure

We consider a layer-by-layer structure of metallic nanorods
of length L, with a circular cross section of diameter D, stacked
along the z direction. In each layer, the nanorods are centered at
the sites of a square lattice, of lattice constant a, with their axes
aligned in a direction perpendicular to the z axis. The nanorods
in consecutive layers are mutually twisted through an angle of
60◦ and are separated by a distance h, equal to one-tenth of
their diameter, as shown in Fig. 1. Therefore, the period d

of the structure along the z direction comprises three layers
(d = 3.3D). With this particular choice of parameters, we
obtain strong effects with reduced computational effort, though
other choices for the twisting angle and interlayer spacing lead
to similar results. Obviously, the crystal under consideration
lacks invariance under space inversion because of the helical
arrangement of the nanorods and thus the appropriate point
symmetry group is D2, which consists of only proper rotations,
and not D2h that would be if all nanorods were aligned.50

We assume, to begin with, that the metallic material is
described by the Drude dielectric function,52

εm(ω) = 1 − ω2
p

ω(ω + iτ−1)
, (3)

where ωp is the bulk plasma frequency and τ the relaxation
time of the conduction band electrons, and we take D = c/ωp,
L = 2.5c/ωp, and a = 7.5c/ωp. We note that, assuming
h̄ωp

∼= 10 eV, the diameter of the nanorods, D, corresponds to
about 20 nm and their length, L, to about 50 nm.

In order to ensure adequate convergence of our calcula-
tions for the given structure, we truncate the spherical-wave
expansions at lmax = 8 and take into account 69 2D reciprocal
lattice vectors g in the relevant plane-wave expansions, while
the single-particle scattering T matrix is evaluated with
lcut = 15 and a Gaussian quadrature integration formula with
1024 points.49

In Fig. 2, we display the photonic band structure of the given
crystal along its [001] direction, calculated by deliberately
disregarding absorptive losses taking τ−1 = 0 in Eq. (3) in
order to ensure an unambiguous interpretation of the dispersion
diagram. The bands along this direction are nondegenerate
and have the symmetry of the irreducible representations
(A,B) of the C2 group, which is a subgroup of D2,50 i.e.,
the corresponding eigenmodes are even (A) or odd (B) upon
rotation through 180◦ about the z axis. Only the symmetry of
the B bands is appropriate for an EM wave incident normally
on the (001) surface of the crystal, thus allowing for light
transmission. The A bands (such bands do not exist in the
frequency region under consideration, but appear at higher
frequencies) cannot be excited by an externally incident EM
wave because they do not have the proper symmetry; they
correspond to bound states of the EM field in a finite (001)
slab of the crystal, which decrease exponentially outside the
slab on either side of it. It is worth noting that the C2 symmetry
does not allow for the existence of LCP and RCP eigenmodes,

(a)

(b)

(c)

A

B C

FIG. 2. (Color online) Photonic band structure of the crystal of
Fig. 1 along its [001] direction. The optical response of the metallic
nanorods is described by the Drude dielectric function of Eq. (3)
without dissipative losses (τ−1 = 0) and the geometric parameters
of the structure are D = c/ωp, L = 2.5c/ωp, and a = 7.5c/ωp . An
enlarged view of the dispersion diagram about the crossing points
(A, B, C) is shown in the margin.

as would be the case under, e.g., the fourfold rotation (C4)
symmetry.50 In our case, each optically active B band has a
different degree of LCP and RCP admixture that varies along
the band as shown in Fig. 2. However, since all bands in the
dispersion diagram of Fig. 2 have the same symmetry (B)
in terms of group theory, anticrossing interaction between
them always takes place and removes degeneracies to a
major or minor degree depending on the shape of the modes
involved.

A careful analysis of the dispersion diagram of Fig. 2
reveals the existence of (a) two extended bands, one of LCP
and one of RCP predominant character, associated with wave
propagation in an underlying effective medium and (b) three
narrow bands, i.e., as many as the number of nanorods per
primitive cell, originating from the fundamental longitudinal
dipole-like plasmon modes of the individual nanorods at
0.30ωp,53 weakly interacting between them. The lowest of
these narrow bands, about 0.25ωp, has a mixed LCP-RCP
character and interacts weakly with the other bands, giving
rise to very small hybridization gaps about the crossing points,
which are hardly discernible [see insets (b) and (c) in Fig. 2].
The other two narrow bands, one of LCP and one of RCP
predominant character extending from 0.25ωp to 0.30ωp,
interact strongly with the corresponding effective-medium
bands leading to the occurrence of considerable hybridization
gaps for a specific polarization. The (weak) anticrossing
interaction between these two narrow bands at the Brillouin
zone center reverses the predominant polarization character
of the resulting dispersion curves about kz = 0 in an abrupt
but continuous manner, as shown in the corresponding inset
(a) to Fig. 2. The photonic band structure of the crystal under
consideration is very similar to that of the metallic helix arrays
studied by Wu et al.41 Therefore, our rigorous group-theory
analysis is applicable to a wide class of chiral metamaterials
and explains salient features of their dispersion diagrams to a
degree that goes beyond existing interpretation.
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FIG. 3. (Color online) Photonic band structure of Fig. 2 for
positive values of kz (left-hand diagram) and the extinction of LCP
and RCP light incident along the positive z direction on a (001)
slab of the crystal consisting of 24 layers of nanorods (middle
diagram). The corresponding extinction spectra if the slab is made
of silver nanorods described by the experimental dielectric function
of bulk silver54 and the geometric parameters of the structure are
D = 20 nm, L = 50 nm, and a = 150 nm are displayed in the
right-hand diagram.

The above eigenmode analysis is consistent with corre-
sponding extinction spectra of finite slabs of the given crystal.
The extinction is defined, as usual, as − ln T , with T being the
transmittance of the slab. Modes with a certain predominant
circular-polarization character and positive (negative) group
velocity couple predominantly to a plane EM wave with
the same polarization, incident along the positive (negative)
z direction on a (001) slab of the crystal. As shown in
Fig. 3, over the frequency range of a polarization gap, only
incident waves of opposite handedness are allowed to pass
through. Such regions of polarization-selective transmission
have also been observed in metallic helix arrays.26,41

B. Optical activity

The polarization state of a wave transmitted through a finite
slab of the crystal under consideration is directly obtained from
the corresponding transmission matrix. It is worth noting that,
in the frequency region under consideration, we are below
the diffraction limit for light incident normally on the (001)
surface of the crystal: ω/c < gmin = 2π/a. Therefore, only
the zero-order diffraction channel yields a propagating beam
and the (electric-field) amplitude of the transmitted wave is
obtained from that of the incident wave through a 2 × 2
complex transmission matrix, t, as follows:

Etr
p =

∑
p′

tpp′Ein
p′ , (4)

where p(p′) = 1,2 refers to the linearly polarized waves with
the electric field oscillating in or perpendicular to the plane
of incidence, respectively, in accordance with the plane-wave
basis employed in the LMS method (see Sec. II). We note
that, at normal incidence on the (001) surface of the crystal,

these polarization directions coincide with the x and y axes,
respectively. In the basis of circular-polarization states, the
transmission matrix takes the form

t =
(

tLL tLR

tRL tRR

)

= 1
2

(
t11 + t22 + i(t21 − t12) t11 − t22 + i(t21 + t12)

t11 − t22 − i(t21 + t12) t11 + t22 − i(t21 − t12)

)
, (5)

where p(p′) = L,R denotes LCP and RCP states, respectively.
An incoming plane wave of amplitude E0, propagating along
the positive z direction, linearly polarized at an angle φ0

with respect to the x axis, can be decomposed into LCP and
RCP waves of amplitudes Ein

L = E0 exp (−iφ0)/
√

2 and Ein
R =

E0 exp (iφ0)/
√

2, respectively. The corresponding transmitted
fields have amplitudes

Etr
L = E0√

2
[tLL exp (−iφ0) + tLR exp (iφ0)], (6)

Etr
R = E0√

2
[tRL exp (−iφ0) + tRR exp (iφ0)], (7)

which correspond to an, in general, elliptically polarized wave
with the long axis of the ellipse forming an angle

φ = 1

2

[
arg

(
Etr

R

) − arg
(
Etr

L

)]
(8)

with the x axis and with ellipticity angle

χ = arctan

∣∣Etr
R

∣∣ − ∣∣Etr
L

∣∣∣∣Etr
R

∣∣ + ∣∣Etr
L

∣∣ , (9)

as shown in Fig. 4. We adopt the polarization azimuth rotation
angle, �φ = φ − φ0, as a measure of circular birefringence
and the ellipticity angle χ as a measure of circular dichroism.
It is worth noting that, under the C2 symmetry, circular
polarization conversion takes place through the nondiagonal
elements tLR and tRL that do not vanish identically. Therefore,

χ

φ
x

y

y

x

k

FIG. 4. (Color online) (a) Transmission spectra associated with
different circular polarization channels at normal incidence on a
(001) unit slab of the crystal of Fig. 1 consisting of three layers
of silver nanorods (D = 20 nm, L = 50 nm, and a = 150 nm).
(b) Corresponding polarization azimuth rotation (solid line) and
ellipticity (dotted line) angles of the transmitted wave for incident
wave linearly polarized along the x axis, as shown in the margin, vs
frequency.
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�φ and χ depend on the polarization angle of the incident
wave, φ0.

Figure 4(a) shows the transmission properties of a (001) unit
slab of the crystal of Fig. 1 consisting of three layers of silver
nanorods with geometric parameters D = 20 nm, L = 50 nm,
and a = 150 nm, at normal incidence. For the dielectric
function of silver, we interpolated to the bulk values measured
by Johnson and Christy54 that include dissipative losses. It can
be seen that the transmission spectra associated with the LCP
and RCP channels exhibit pronounced differences, while the
occurrence of cross-coupling transmission from LCP to RCP
and vice versa implies a non-negligible circular polarization
conversion. Therefore, circular birefringence and dichroism
cannot be deduced solely from the LL and RR transmission
channels and both properties vary in an oscillatory manner
with the polarization angle of the incident wave. In Fig. 4(b),
we depict the calculated polarization azimuth rotation and
ellipticity angles of the transmitted wave for an incident wave
linearly polarized along the x axis, in the spectral region
of interest. At 2.38 eV the ellipticity angle vanishes, which
indicates a pure optical activity effect. At this frequency, for the
given linearly polarized incident wave, the transmitted wave is
also linearly polarized with its plane of polarization forming an
angle φ = −26◦ with the x axis. In terms of rotatory power per
sample thickness equal to one wavelength, the optical activity
of the considered three-layers slab, φ/λ = −205◦, is many
orders of magnitude larger than that of naturally occurring
optically active materials and comparable with that of other
chiral metamaterials.34 Stronger optical activity effects are
obtained for thicker slabs (see Supplemental Material55), while
the spectral response can be tuned in a controllable manner by
choosing the rod length so as to appropriately shift its plasmon
resonance.53 Moreover, transmission losses are quite low,
typically a few dB. This can be inferred from the right-hand
diagram of Fig. 3, where transmission losses even in gap
regions and for relatively thick slabs do not exceed ∼ 10 dB.
Therefore, multilayer slabs of the given crystal may be useful
for practical applications as ultrathin circular polarizers and
polarization rotators.

C. Isofrequency contours and negative refraction

The proposal that negative refraction and related effects
could be easier to achieve in chiral media for one circular
polarization28–30 fueled extensive research on the design of
artificial gyrotropic structures. In most of the recent studies,
the negative refractive behavior of these structures was
deduced by retrieving effective constitutive parameters from
the transmission and reflection spectra at normal incidence on a
finite slab of the metamaterial, one or two layers thick.34–40,42,43

However, also because such chiral structures are strongly
anisotropic, a direct demonstration of negative refraction of
light incident at a specific angle on a given surface of the
semi-infinite metamaterial is highly desirable.41 Here, we
provide evidence for the occurrence of negative refraction
in the chiral crystal under consideration by examining the
direction of the relevant group velocities, obtained from
the exact form of the calculated isofrequency surfaces. The
optical response of the metallic nanorods is described by the
Drude dielectric function of Eq. (3) without dissipative losses

FIG. 5. (Color online) Isofrequency contours in the kx-kz plane
(ky = 0) for the crystal of Fig. 1. The optical response of the metallic
nanorods is described by the Drude dielectric function of Eq. (3)
without dissipative losses (τ−1 = 0) and the geometric parameters
of the structure are D = c/ωp, L = 2.5c/ωp, and a = 7.5c/ωp . The
shaded rectangle shows the projection of the Brillouin zone on this
plane.

(τ−1 = 0) and the geometric parameters of the structure are
D = c/ωp, L = 2.5c/ωp, and a = 7.5c/ωp.

Figure 5 displays isofrequency contours, ω(k) = const, in
the kx-kz plane (ky = 0), in the frequency region of interest,
which are appropriate for the description of the refractive
properties of the crystal when the plane of incidence is the
x-z plane. This corresponds to the cases of incidence on the
x-y and on the y-z crystallographic surfaces, with ky = 0.
If a plane EM wave of angular frequency ω impinges on
the x-y surface of the crystal with q‖ = k‖ = (kx,0), the
wave-vector component parallel to the surface, kx , is conserved
and thus the points of the corresponding isofrequency curve
with the same specific value of their kx coordinate provide all
possible wave vectors for the transmitted waves. The actual
transmitted waves are determined from the proper direction of
the corresponding group velocity, v = ∇kω(k), which must be
pointing inside the crystal. For example, if the crystal occupies
the z > 0 half-space, vz must be positive. A careful inspection
of Fig. 5 indicates that, for any value of ω and kz within the
given frequency region, the group velocities of the transmitted
waves are such that vxkx > 0, i.e., we always have regular
(positive) refraction. On the contrary, if we consider incidence
on the y-z surface of the crystal with q‖ = k‖ = (0,kz), the
conserved wave-vector component parallel to the surface is
kz and then we can have vzkz < 0, i.e., negative refraction, as
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FIG. 6. (Color online) Isofrequency-contour analysis of the re-
fraction of light of angular frequency ω = 0.303ωp incident from
air on the y-z surface of the crystal of Fig. 1 with k‖ = (0,kz).
The optical response of the metallic nanorods is described by
the Drude dielectric function of Eq. (3) without dissipative losses
(τ−1 = 0) and the geometric parameters of the structure are D =
c/ωp, L = 2.5c/ωp, and a = 7.5c/ωp . The wave vectors and the
group velocities of the incident (i), reflected (r), and transmitted
(t) waves are indicated by long and short arrows, respectively. The
dotted horizontal line in the upper diagrams is the kz-conservation
line. The lower diagram shows negative refraction in real space, in
the case considered.

shown in Fig. 6 for light of angular frequency ω = 0.303ωp

incident from air. In this case, we obtain negative refraction
for kzd/π < 0.1, i.e., for angles of incidence less than ∼ 9◦.

Considering kzd/π = 0.07, the kz-conservation line crosses
the proper isofrequency contour of the crystal at two points,
P and P′. The Bloch wave defined at point P′ is backward
propagating with respect to the interface and thus it is not a
physically acceptable transmitted wave. Therefore, we obtain
a single negatively refracted beam from point P, as shown in
Fig. 6. Its origin traces to the negative slope of the dispersion
curve about point A in Fig. 2 (vzkz < 0), which also persists
for other values of kx besides kx = 0. It is worth noting
that, at smaller angles of incidence, the kz-conservation line
also crosses the second branches of the specific isofrequency
contour in the crystal (at larger values of kx) and thus a second
negatively refracted beam is excited (see Fig. 6).

IV. CONCLUSIONS

In summary, we reported a comprehensive study of the opti-
cal properties of a 3D helical structure of metallic nanorods by
means of rigorous full-electrodynamic calculations using the
LMS method, properly extended to describe axis-symmetric
scatterers with arbitrary orientation. We analyzed the photonic
band structure of the crystal in conjunction with relevant
polarization-resolved transmission spectra and explained the
nature of the different eigenmodes in the light of group
theory to a degree that goes beyond existing interpretation.
We demonstrated the occurrence of negative refraction in
certain frequency regions and angles of incidence on a specific
crystallographic surface by reference to relevant isofrequency
contours and showed that multilayer slabs of the crystal exhibit
strong optical activity and circular dichroism with relatively
low dissipative losses.
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