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Collective excitations and low-temperature transport properties of bismuth
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We examine the influence of collective excitations on the transport properties (resistivity and magneto-optical
conductivity) for semimetals, focusing on the case of bismuth. We show, using a random-phase approximation
(RPA), that the properties of the system are drastically affected by the presence of an acoustic-plasmon mode,
which is a consequence of the presence of two types of carriers (electrons and holes) in this system. We find a
crossover temperature T ∗ separating two different regimes of transport. At high temperatures where T > T ∗, we
show that Baber scattering explains quantitatively the dc resistivity experiments, while at low temperatures where
T < T ∗, the interactions of the carriers with this collective mode lead to a T 5 behavior of the resistivity. We
examine other consequences of the presence of this mode, and in particular predict a two-plasmon edge feature in
the magneto-optical conductivity. We compare our results with the experimental findings on bismuth. We discuss
the limitations and extensions of our results beyond the RPA, and examine the case of other semimetals such as
graphite or 1T-TiSe2.
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I. INTRODUCTION

Bismuth is a material which plays an important role in solid-
state physics. Due to an extremely small Fermi surface, this
material provides the remarkable possibility to observe strong
effects induced by the presence of external fields, i.e., pressure
and temperature, even if these external forces are of moderate
amplitude. Several important phenomena, i.e., the Shubnikov-
de Haas1 and de Haas-van Alphen2 effects, have been observed
in bismuth. In the last few years, a series of experiments
has once again drawn the attention of the community to
elemental bismuth and challenged our understanding of this
material. High-pressure optical spectroscopy measurements
indicate that the mechanism of semimetal-to-semiconductor
decay is not fully understood.3 Reflectivity measurements4

showed large changes in the plasmon frequency and anoma-
lous midinfrared features, indicating strong scattering of the
electronic degrees of freedom by a plasmon collective mode.
An extremely strong Nernst signal with unusual temperature
dependence (both at low5 and high6,7 fields) was also reported.

These recent experiments clearly indicated that the question
of transport in bismuth was still not understood. In fact, similar
questions still existed for the standard resistivity as well. The
majority of the resistivity experiments had been done in the
late 1970s, including the works of Hartmann,8 Kukkonen,9

and later studies,10 which showed that down to 4 K, the Fermi-
liquid theory (with components of very different masses)
works quite well. The T 2 resistivity behavior at lowest
temperatures was explained within this theory.9,11 However,
the discussion was not closed because one year later more
detailed, lower-temperature data by Uher12 was published,
which showed a significant deviation from expectations: the
T 2 behavior changes smoothly into a T 5 behavior at the lowest
temperatures. A quite complex theory involving coupling to a
particular group of phonons was proposed as an explanation
for this result.13 We will briefly describe it in the beginning of
Sec. III.

The purpose of this work is to reexamine the theory
of transport in semimetals. We show that these anomalous
transport properties have a simple explanation. They come

from the fact that the coupling between electrons and holes
with very different masses induces many-body corrections
to the Fermi-liquid picture. In fact, the above-mentioned
change in the resistivity was an overlooked example of how
interactions in semimetals modify the simple Fermi-liquid
picture. Although our study is mostly focused on bismuth,
we also examine other materials which have recently been
the subject of intensive studies, such as graphite14,15 and
1T-TiSe2.16,17

The structure of this paper is as follows. In Sec. II, we
introduce the model of interaction between the electrons and
holes. We show that at low temperatures, a collective acoustic-
plasmon mode exists18 and plays a central role in the properties
of the material. The existence of acoustic plasmon was studied
before in the context of semimetals,19–21 but not including the
possible consequences of its existence. We discuss also the
high-temperature regime of conductivity and show that the
Baber mechanism22 is the dominant source of resistivity in
this regime. We then examine, in Sec. III, the low-temperature
regime for the resistivity. We develop an effective theory for
this regime and derive a new ρ(T ) dependence, which is a
direct consequence of the existence of a collective acoustic-
plasmon mode. We examine the magneto-transport in Sec. IV.
We show, in particular, that a double-plasma edge must exist.
A discussion of the validity of the approximations used to
derive the above-mentioned results is indicated in Sec. V, and
conclusions are given in Sec. VI. Some technical details can
be found in the appendices.

II. MECHANISM OF RESISTIVITY

A. Band structure and Hamiltonian

The peculiarity of bismuth comes from the very small
characteristic energy scales of its Fermi liquid (see Fig. 1).

This stems from a slightly distorted, cubic crystal structure
(the distortion angle is smaller than 3◦). In the absence of
distortion, bismuth would be a band insulator, but instead it is
a quite rare rhombohedral space group A7 (without inversion
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symmetry). Bismuth becomes a semimetal with very small
amounts of fermions active at accessible energies.

The Hamiltonian of those carriers close to Fermi energy in
bismuth reads, in general,

H = Hh
0 +

3∑
ν=1

Heν
0 + Hh−h

int + He−e
int + He−h

int . (1)

In the above, h denotes a hole pocket, while there are three
electron pockets denoted by eν. The first two terms are the free
fermion kinetic energies. We approximate the kinetic energy
of each type of carrier by a free dispersion relation,

ξα(k) =
3∑

i=1

h̄2k2
i

2mα
i

− Eα
F , (2)

where α denotes the species, the index i are the three principal
axes of the energy ellipsoid (see Fig. 1), mα

i is the mass tensor,
the k are the momenta centered on the corresponding pocket,
and Eα

F is the Fermi energy of the corresponding species. The
values of the parameters are summarized in Table I. The huge
mass ratio between different carriers (and along different axes)

FIG. 1. (Color online) A sketch of the band structure of bismuth:
three electron pockets and a central hole pocket. Top: the energy
dispersion. Energies are in meV. Bottom: the four pockets. The scale
is grossly exaggerated. In fact, kF are 104 smaller than intrapocket
distances. The electron pockets are slightly tilted out of the bisectrix-
binary plane C1-C2 perpendicular to the trigonal axis C3. Figure
modeled after Ref. 23.

TABLE I. The band parameters of bismuth, according to Ref. 24.
Masses are in units of the mass of the electron, and wave vectors are
in units of reciprocal length 1.386 Å−1. The values are given along
the principal axes of the ellipsoids, as defined in Fig. 1.

m1 kF1 m2 kF2 m3 kF3

Holes 0.067 0.01 0.067 0.01 0.612 0.03
Electrons 0.198 0.06 0.0015 0.005 0.0021 0.005

enables us to define, in general, rapid and slow carriers, which
is a notion that will be used frequently in this work. We want
to emphasize that this peculiar band structure was computed
quite accurately and this result was later confirmed by many
experimental probes.

The latter terms in (1) are interactions whose influence is
the subject of this study. We divided the interactions into three
groups: hole-hole, electron-electron, and electron-hole. Each
one of these terms has the form

H
α−β

int =
∑

q

V αβ(q)ρα(q)ρβ(−q), (3)

where α,β runs among the species. The density operators ρα(q)
are given by

ρα(q) =
∑

k

c
†
α,k+qcα,k, (4)

where the c†,c are the standard fermionic creation and de-
struction operators, and a summation overs the spin degrees of
freedom is implicit. The interaction potential is the long-range
Coulomb potential

V
αβ

Coul(q) = eαeβ

ε∞q2
, (5)

where the hole charge is the opposite of the electronic one,
eh = −ee, and ε∞ is the dielectric constant due to the rest of
the material. Because of the very small size of the pockets
and the large distance in momentum space among them all,
interactions which imply a transfer of particle from one pocket
to the other must occur with a large momentum transfer. These
terms are thus potentially strongly suppressed compared to
the intrapocket interactions given the long-range nature of the
Coulomb potential (5).

B. Screened Coulomb interaction: Acoustic plasmon

The smallness of the bismuth Fermi surface shown in
Fig. 1 and incorporated in the first two terms of the
Hamiltonian (1) has certain nontrivial implications for the
transport properties. When k−1

F ≈ 104 Å, the interaction with
angstrom size impurities is strongly reduced. The probability
of intrapocket umklapp scattering is also very low. Since the
Debye temperature for Bi is around 150 K, it implies that at
T ∼ 1 K, phonon influence will be rather weak. Moreover,
thermal transport is proven experimentally to be ballistic.
No evidence of any additional order parameter generating
quasiparticles on which carriers could scatter has been found
in the many decades of careful study of this element. Thus,
in order to understand the transport properties, we can restrict
ourselves to the Fermi-liquid part of the problem described by
the Hamiltonian (1).
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Given the above points, the main type of scattering entering
resistivity should be the so-called Baber scattering,22 coming
from the presence of several types of carriers of different
masses. In such a case, the conservation of momentum
does not necessarily lead to the conservation of current,
thus carrier collisions can produce a finite resistivity, even
without umklapp processes. In contrast, with all of the above-
mentioned scattering processes, Baber scattering is strongly
favored by the band structure of Bi, with the ratio of electrons
and holes masses being, in some directions, more than a factor
of 10. The resistivity in bismuth is thus linked directly to the
electron-hole interaction term in (1).

Although the bare form of such a term is given by
(3), the presence of the two species of carriers leads to a
strong renormalization of the bare Coulomb interaction due
to dynamical screening. We thus need to examine the effects
of screening on the interaction potential V αβ(q). Normally
we have a tensor structure for the screened interaction (or
alternatively the dielectric constant), but if we assume that the
longitudinal and transverse modes do not mix,25 then we can
use the standard random phase approximation (RPA) for the
Coulomb potential. In the presence of two types of carriers,
the RPA equations are indicated in Fig. 2.

The equation of Fig. 2 can be solved by first doing the
resummation on one of the species:

Ṽ ee(q,ω) = V ee
Coul(q)

1 − V ee
Coul(q)	hh(q,ω)

, (6)

where 	hh(q,ω) is the retarded density-density correlation
function for the holes, including the interactions that are not
already present in the RPA chain of bubbles of Fig. 2. The
simplest and usual approximation for 	hh consists of taking
the free correlation 	0

hh(q,ω). Using the Hamiltonian (1), one
has

	0
hh(q,ω) = 1




∑
k

f (ξ (k)) − f (ξ (k + q))
ω + ξ (k) − ξ (k + q) + iδ

, (7)

FIG. 2. (Color online) The RPA series for effective interactions
for the case of a two-component system. We denote generically these
components by r (rapid or fast) and s (slow). In the above diagram,
the thick coil is the screened effective interaction Veff (q,ω), the solid
blue line denotes using the standard diagrammatic convention of a
fast particle, while the dotted red line is a slow particle. The black
coil is the bare Coulomb potential (5).

where 
 is the volume of the system, f are the Fermi factors,
and δ = 0+. Using this expression, one can get the screening
of the electron-electron potential,

V ee
eff (q,ω) = Ṽ ee(q)

1 − Ṽ ee(q,ω)	ee(q,ω)
, (8)

where 	ee(q,ω) denotes the sum over the three electron
pockets of the corresponding retarded density-density correla-
tion 	ee(q,ω) = ∑3

ν=1 	ee,ν(q,ω). The expression (8) can be
rewritten as

V ee
eff (q,ω) = V ee

Coul(q)

1 − V ee
Coul(q)[	hh(q,ω) + 	ee(q,ω)]

, (9)

where, in a similar way to that for the holes, one can
approximate the correlation function by its free (or Fermi-
liquid) value.

As can be seen from (9), a strong resonance in V ee
eff (q,ω)

exists when the denominator is small, which indicates the
presence of a collective mode. As usual, the dispersion relation
of the mode is given by

1 = V ee
Coul(q)Re[	hh(q,ω) + 	ee(q,ω)], (10)

where Re denotes the real part. The imaginary part gives the
damping of the mode. As is well known18–20 for the case of
a two-component system, Eq. (10) has two solutions. One is
the standard optical plasmon, but a second one is an acoustic
mode,

ωac = uq = (cac − ıτ−1)q,

where Re[u] = u′ = cac is the acoustic-plasmon velocity and
Im[u] = u′′ = −τ−1 is the damping of the mode. For the
case of isotropic Fermi surfaces with the same Fermi wave
vector for the two species (neutrality condition), and one
heavy ms and light masses mr (for slow and rapid carriers,
respectively), such that (VFs/VFr )2 � 1 � ms/mr , where the
VFi (i = r,s) are the respective Fermi velocities kFi/mi with
Ei

F = k2
Fi/(2mi) in the zeroth-order approximation (extreme

mass difference), one has

c0
ac =

√
VFrVFs/3, (11)

and

(τ 0)−1 = πVFs/12. (12)

Physically, such an acoustic plasmon comes from the fact that
for two different velocities, one of the species (the light one)
will have a much larger Fermi velocity than the acoustic-
plasmon mode. In that case, the corresponding 	rr (q,ω)
essentially tends to a constant 	rr (q → 0,ω = 0), which is the
density of states at the Fermi level. This mode is fast enough
to screen the Coulomb interaction. Equation (6) would just
become

Ṽ rr (ω = cacq → 0) = 1

−	rr (ω = cacq → 0)
, (13)

transforming the original long-range interaction into a short-
range one. Using the well-known result for the Lindhard
function, one gets

−	rr (ω = cacq → 0) = mrkFr

π2
+ ı

m2
r cac

2π
. (14)
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For the heavy mode, one is in the opposite limit, cac 
 VFs ,
for which the Lindhard function is approximately

−	ss(ω = cacq → 0) = mskFs

π2

k2
Fs

3c2
acm

2
s

. (15)

Substituting (13) into (8), one gets the results (11) and (12).
Such collective excitation has been already investigated in

several systems,18,19,21 but is normally very elusive. It exists
usually very close to the single-particle excitation spectrum, so
it can be easily Landau overdamped. There were proposals26

suggesting its measurability in artificial one-dimensional (1D)
systems (quantum wires), but even then its intensity was shown
to be much weaker than the optical plasmon and was easily
suppressed by disorder. However, we claim in the present
paper that such a collective mode plays an important role in
bismuth. The precise calculation of its parameters cac and τ

is singularly complicated, given the complexity of the Fermi
surface and the presence of the various masses. Nevertheless,
we give, in Appendix A, arguments for the existence of such a
mode. Mostly we will proceed along the lines that such a mode
exists and explore the consequences for the various transport
properties.

Note that the mode never exists as a perfectly sharp mode
because of the damping (12), which always gives a finite
width of the order of τ−1 to this acoustic-plasmon resonance.
In addition, the mode will completely disappear when its
dispersion relation will enter the particle-hole continuum of
excitations of the heavy (slow) species. Beyond this point, the
mode is severely damped and does not exist as a collective
excitation anymore. The corresponding wave vector q∗ can be
determined by matching the energy of the acoustic plasmon
ω = cacq, taking into account a width of order τ−1q with
the edge of the particle-hole spectrum q(q + 2kFh)/2mh. An
estimate of this wave vector is thus

q∗ � 2mh[cac − VFh − τ−1]. (16)

This condition is essentially similar to the one for kc in Ref. 21
(where VFsq and 2kFs were taken as energy and momentum
units).

Correspondingly, q∗ defines an energy and temperature
scale,

T ∗ ∼ cacq
∗. (17)

This temperature plays a role similar to the Debye temperature
for acoustic phonons: there are no bosonic states to be occupied
beyond. On the other hand, below this temperature, the physics
of the system is affected by the existence of the extra collective
mode—there are plasmon states whose occupation fluctuations
can affect carrier mobilities. Based on the above, we see that
we can potentially distinguish two very different temperature
regimes:

(a) T > T ∗. This is the high-temperature (HT) regime. In
this regime, there is no collective mode and we can treat
bismuth as a double Fermi liquid. We can thus deal with
the electron-hole scattering in the usual way, for example, by
solving the Boltzmann transport equation, or equivalent ap-
proximations. We will briefly discuss this rather conventional
regime in Sec. II C.

(b) T < T ∗. This is the low-temperature (LT) regime. In
this regime, the presence of the acoustic plasmon plays a
central role in the interactions among the particle. It will thus
affect strongly the scattering between electrons and holes and
lead to very different transport properties. The study of the
consequences of such a mode is at the heart of the present
paper and will be done for the resistivity in Sec. III, and in the
subsequent sections for other transport coefficients.

C. High-temperature regime: Baber resistivity

Let us now examine the resistivity itself. As discussed
above, we have to distinguish two different regimes of
temperature. We examine in this section the high-temperature
one, which shows relatively conventional transport properties,
and will concentrate on the low-temperature regime in the next
section.

At high temperature, no collective mode is present and
thus we have two well-defined Fermi liquids. The resistivity is
coming from the electron-hole interaction, since this is the only
term that does not conserve the total current. Indeed, given the
quadratic dispersion relation, the current is proportional to the
momentum and thus the intraspecies interactions conserve the
total current. The main source of resistivity in this regime is the
Baber scattering,11 which leads within a standard Boltzmann
approximation to

ρ =
(

memhkB

3πeh̄3√n

)2

WT 2 = AT 2, (18)

where W is the electron-hole scattering rate, and n is the den-
sity of particles of a given species. This gives an approximation
for the coefficient A of the T 2 term in the resistivity ρ = AT 2,
which is usually the quantity extracted from experimental
data. Thus, provided that one is able to compute W , we
have a parameter-free fit for the experiment. The prefactor
W was computed using a Thomas-Fermi approximation for
the Coulomb interaction,11 leading to

W = 2π

h̄

∫ 2kFs

0

dq

2kFs

VTF(q)2[3(q/2kFs)
2], (19)

where kFs is the Fermi wave vector of the slower component.
VTF(q) is the Thomas-Fermi screened Coulomb interaction,

Veff(q) = 4πe2

ε∞q2 + κe2
T −F + κh2

T −F

. (20)

Reference11 estimated the above terms using ε∞ = 100,
κi

T −F = 3(4m2
i kF i/πh̄2), where me = 0.03, mh = 0.15, which

were known from previous independent measurements. This
led to A = 8n
 cm K−2, in good agreement with the
experimental data of that time including 8n
 cm K−2 (reported
in Ref. 27), 14.5n
 cm K−2 (in Ref. 8), and also the more
recent ones6,12 such as 12n
 cm K−2 for measurements along
the binary axis. With the same formulas, an even better value
of A = 14n
 cm K−2 can be found if we use more recent
values of parameters: ε∞ = 88, me = 0.04, and mh = 0.14.
The Bi1−xSbx compound, with x = 0.037 (nx=0.037 ≈ nx=0/3)
was also measured,7 and the experimental A = 33n
 cm K−2

is in agreement with the expectations from (18), showing
that the Baber scattering is indeed the good description of
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the transport in this regime of parameters. However, low-
temperature deviation from this simplistic picture was reported
already in early works (see Ref. 9 for a detailed discussion).

Within the framework of the Baber scattering, one can go
beyond the traditional Baber formula (18) in two ways. First,
the large-temperature behavior can be computed as well.28

At high enough temperature, the T 2 behavior of (18) crosses
over, at a temperature of the order of Tl ∼ 0.2

√
TFeTFh,

to a linear temperature dependence. Experimental data in
bismuth show that, indeed, above T = 3 K, there is a clear T 2

dependence, which becomes linear above T = 25 K. This is
in reasonable agreement with the estimate given by the above
formula, which for bismuth would be T1 ∼ 35 K. Second,
one can refine the calculation of the coefficient A by taking
into account the ellipsoidal character of the Fermi surface,
rather than using the best fit for a spherical Fermi surface
approximation (me = 0.04, mh = 0.14). The procedure is
given in Appendix B for the simplified case of two pockets
only. The ratio of resistivities in different directions x and z is
proportional to

ρx

ρz

=
[ |mex − mhx |/(mex + mhx)

|mez − mhz|/(mez + mhz)

]2

. (21)

Given the masses of Table I, we expect that resistivity will be
largest along the trigonal axis of the crystal. The asymmetry
value of ≈1.4 that the above formula gives is slightly larger
than the experimentally8 found one of ≈1.15. However, one
has to remember that due to highly anisotropic ellipsoids
constituting the Fermi surface, the experiment requires a very
precise monocrystal orientation.

However, the Baber scattering does not allow one to
understand the low-temperature regime, which in bismuth
corresponds to T < 3 K. For this regime, one has to invoke
the existence of the acoustic plasmon. This is the regime that
we consider now.

III. LOW-TEMPERATURE REGIME

As we mentioned in Sec. I, a previous attempt to describe
the low-temperature regime invoked a coupling to a certain
subspace of phonons.13 To be precise, the authors took into
account a cylindrical shape of Fermi (surface) pockets, and
proposed a modified version of Bloch theory, where this
strong anisotropy is taken into account while evaluating the
momentum integrals. They were able to find a good fit of
a resistivity in the range 0.4–1.5 K using reasonable values
of three free parameters, although the necessary value of the
electron-phonon interaction was two times bigger than now
commonly approved in the literature.29 There are, however,
some other issues which give more substantial reason for
doubts. First, phonons in this range have been proven to
be ballistic by a thermal transport experiment.6 Second,
within the model, it is impossible to find a proper fit above
1.5 K, or more generally, to understand how low- and high-
temperature regimes can be smoothly joined (as seen in all
experiments).8,9,12,27 Third, it is difficult to account for the
anisotropy of resistivity.

We thus think that it is important to account for the low-
temperature behavior of the resistivity to take into account the
effects of interactions, and, in particular, the existence of the

FIG. 3. The self-energy of a fermion (an electron or hole)
experiencing a Veff (q,ω) interaction (a double coil, as in Fig. 2) during
its propagation; as explained in the text, the effective interaction
Veff (q,ω) is of the resonance form.

acoustic-plasmon mode discussed previously. This is what we
examine now.

A. Effective Hamiltonian for lowest temperatures

As we determined in the previous section, at low enough
temperature, an acoustic-plasmon mode exists. The very
existence of this mode implies that for some values of the
frequency and momenta, the effective interaction Veff(q,ω)
between the carriers will have a pole. One can thus expect this
pole to dominate the low-temperature transport.

In order to analyze the consequences of such a pole, we
derive an effective low-energy Hamiltonian for which we
consider this collective mode as a particle. This can be done
by replacing the term corresponding to Veff(q,ω) (as shown in
Fig. 3) by the propagator of a particle representing the bosonic
fluctuations of the plasma, and ensuring that terms such as
the self-energy terms, like the ones of Fig. 3, are correctly
reproduced. Such a model is given by the coupling of electrons
and holes to phononlike excitations,

H = Hh
0 + He

0 +
∑

q

ωqb
†
qbq

+ 1√



∑
α=e,h

∑
q

Mα
q [b†−q + bq]ρα(q). (22)

With such a Hamiltonian, the electron self-energy of Fig. 3
would be

�e(q,iνn) = − 1

β


∑
ωn,q

(
Me

q

)2
D(q,iωn)

× 1

iνn + iωn − ξe(k + q)
, (23)

where the νn and ωn are the usual Matsubara frequencies, and
D(q,iωn) is the phonon propagator:

D(q,iωn) = − 2ωq

ω2
n + ω2

q

. (24)

The corresponding term for the original Hamiltonian is shown
in Fig. 3 and is given by

�e(q,iνn) = − 1

β


∑
ωn,q

Veff(q,iωn)
1

iνn + iωn − ξe(k + q)
.

(25)

One can show with this term, and the other diagrams,
that the expansion is essentially identical, provided one
identifies the proper “phonon” propagator and interaction
vertex Mq . This can be done on the spectral function A(q,ω) =
− 1

π
ImD(q,iωn → ω + iδ). We only consider ω > 0, since

125105-5



P. CHUDZINSKI AND T. GIAMARCHI PHYSICAL REVIEW B 84, 125105 (2011)

ω < 0 can be deduced from it. The “phonon” spectral function
is

Aph(q,ω > 0) = δ(ω − ωq). (26)

The effective potential Veff(q,ω) of (9) is more difficult to
evaluate fully. However, using the simple case of two types of
particles (fast and slow) as discussed in Sec. II B, one has

Veff(q,ω) =
(

3π2mr

k3
Fr

)
1

c2
ac

1 − c2
acq

2/ω2 + ıπcac/2. (27)

There is a finite lifetime due to the imaginary part (12), leading
to a Lorentzian spectral function. If for the moment we ignore
this finite width and assimilate the resonance to a δ-function
peak, we have, for the spectral function,

Aplasmon(q,ω > 0) =
(

3π2mr

k3
Fr

)
c3
ac|q|
2

δ(ω − cac|q|). (28)

One can thus directly identify the two processes with

ωq = cac|q|, Me0
q =

(
3π2mrc

3
ac

2k3
Fr

)1/2

|q|1/2, (29)

where Me0
q is the zeroth-order approximation for the strength

of electron-plasmon interaction [as introduced in Eq. (22)].
The above identification allows us to replace the problem of
the screened Coulomb potential with a problem of electrons
and holes interacting with a bosonic particle. This particle
represents the quantization of the acoustic plasmon.

Let us make some comments on the validity of the
identification (29). Obviously, the real calculation of the term
Veff(q,ω) or Me

q , especially at finite temperature, would be
more complex, and will certainly affect the quantitative aspects
of the identification. However, we expect the qualitative
features of the mode identification to be robust. In particular,
the frequency of the acoustic plasmon will of course be linear
in u ∼ q at small q, and in the same way, the matrix element
describing the coupling to the particles will be Me

q ∼ q1/2.
Note that this specific dependence of the coupling constant
is what makes the difference between the coupling to this
acoustic-plasma mode and the coupling to normal acoustic
phonons. This will have consequences for the temperature
dependence of the resistivity that we will explore in the next
section. The most drastic approximation that we made was to
ignore the finite lifetime of the mode and to concentrate the
full spectral weight in a δ-function peak. This approximation
is not essential, and the finite lifetime can in principle be
taken into account. It would simply correspond to a damping
of the phonon mode. It simplifies, however, the subsequent
calculations and allows one to extract the physics in a more
transparent way, so we consistently use it in the remainder
of this paper. On a quantitative level, both the broadening of
the level u′′q and the average energy u′q are proportional
to q, as discussed in the previous section. For bismuth,
a typical order of the ratio u′′/u′ is u′′/u′ ≈ 0.25, so we
expect such an approximation to be reasonably quantitative
as well.

We can now use the standard diagrammatic analysis of
electron-phonon interaction, keeping in mind the difference in
the matrix elements, to obtain the various physical quantities

when the acoustic plasmon is playing a major role. In partic-
ular, the self-energy (23) is simply given, after summation on
the Matsubara frequencies, by

�e(q,iνn) = 1




∑
q

(
Me

q

)2
[
b(ωq) + f (ξ (k + q))
iνn + ωq − ξ (k + q)

− b(−ωq) + f (ξ (k + q))
iνn − ωq − ξ (k + q)

. (30)

Since we are interested in the low-energy dissipation, we
perform the analytical continuation iνn → ν + ıδ+, then the
limit ν → 0, and finally extract the imaginary part of �e.
This last step leads to a δ function, which corresponds to a
constraint, implemented to account for energy conservation
[see, e.g., (40)]. This equation gives us a 2D surface 
0 of
solutions q0 for q. However, the above sum on q in (30)
should be limited to the values for which the acoustic plasmon
exists. We should thus only look at values of q lower than q∗,
which was defined in (16). For small angles, only one of the
masses dominates [see Eq. (B5)]. Combining this with (11)
and the fact that we work in the ω → 0 limit, we deduce
that in a limit of small angles (nearby direction of high
symmetry), cac(θ ) ∼ cos(θ ), which implies q0(θ ) = q∗ cos(θ ).
Thus, one has always q0(θ ) � q∗. Although potentially this
criterion can depend on the direction of q, based on the above
considerations, we can assume here that the directions of q,
where q∗(θ ) drops to extraordinarily small values, are rare. In
particular, this means that the surface 
0 is well defined. To
obtain numerical responses, we will take an isotropic criterion
for the upper cutoff.

B. New ρ(T ) dependence

In the low-temperature regime, the transport of the system,
which is now dominated by the presence of the acoustic
plasmon, can thus be described by the effective Hamiltonian
(22). One has, to keep in mind that because of the unusual q

dependence of the coupling to this bosonic degree of freedom
(29), the temperature dependence of the resistivity is not
necessarily the same as for the usual electron-phonon problem.

To compute the resistivity, we use the Kubo formula
and express the resistivity as the current-current correlation
function,

Re[σxx(ω → 0)]

= limω→0
ne2

ω
Im[〈jx(Q = 0,ω)jx(−Q = 0,0)〉]. (31)

We are interested in the uniform response, so we set Q = 0;
we will omit the x index in the following. The current is simply
given by

J =
∑
k,α

eα

kx

mxα

c
†
kαckα, (32)

where α is the particle species, and eα and mxα are the
corresponding charge and mass in the direction of movement,
respectively. The corresponding diagram is shown in Fig. 4(a),
where the thick line and shaded triangle indicate that both prop-
agator and interaction vertex are renormalized by Veff(q,ω).
The average in (31) will be computed with the effective
Hamiltonian of the problem given by (22). It is important to
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FIG. 4. (Color online) (top) The diagrammatic form of the
current-current correlation function. The double line is the full
Green’s function for the electrons or holes, while the shaded box
denotes the vertex correction that is shown in the bottom part.
(bottom) The ladder series for vertex correction. The irreducible part
consists of a single plasmon exchange (purple coil line) between
the fermions (electrons or holes). For normal phonons, given the
momentum dependence of the coupling constant Mq and propagator,
it is crucial to include the vertex correction to get the proper
temperature dependence.

note that given the topology of the diagrams entering the vertex
corrections, there is indeed no double counting of diagrams if
one replaces the thick coil of Fig. 4 by the bosonic excitation,
as done in (22).

The procedure based on a development in power of the
interaction in terms of diagrams is standard,30 and follows
closely the one for phonons. The vertex correction makes it
cumbersome, so we give here a derivation based on the memory
function that has the advantage of directly taking the vertex
correction into account in a simpler way. The conductivity can
be, in general, expressed as

σ (ω) = iχ0

ω + M(ω)
, (33)

where χ0 is the diamagnetic term, and M(ω) is defined as

M(ω) = 〈F ; F 〉ω − 〈F ; F 〉0

−χ (0)ω
, (34)

where the force F is F = [j,H ], and the 〈F ; F 〉ω denotes
the standard retarded correlation function at frequency ω. The
averages are computed with the the part of the Hamiltonian that
commutes with the current. Given that M = 0, if the current
commutes with H , one recovers immediately in that case from
(33) that the system is a perfect conductor. In particular, in the
high-temperature regime, it shows immediately that the sole
source of resistivity is the electron-hole interaction and the
difference of masses between the two species.

FIG. 5. (Color online) The force-force (F-F) correlation diagram.
The solid blue line indicates the propagator of fermion (one, for
example, slower component of the Fermi liquid), while the purple
coil is the plasmon propagator.

On the contrary, the last term of Eq. (22) enters into the
force F and thus leads to a finite resistivity. Evaluation of finite
temperature averages (for independent fermions and bosons)
will enable us to give the temperature dependence of this new
resistivity component.

For low temperatures, in the case of the Hamiltonian (22)
and using the definition of the current one (32), we obtain for
F (for simplicity, we only kept two species, e and h),

F =
∑
q,k,α

eαMqα

qx

mα

c
†
k+q,αck,α[b†−q + bq]. (35)

Each species gives thus a contribution to the force-force
(F-F) correlation, which is shown in Fig. 5, and for Matsubara
frequencies equal to

〈F ; F 〉ωn
= 1

β2
2

∑
ν1,ν2,k,q

M2
q q2

x

m2
G(ν1,k)G(ν2,k + q)

×D(ωn + ν1 − ν2,q). (36)

The frequency summation can be performed, which gives

〈F ; F 〉ωn
= 1


2

∑
k,q

M2
q q2

x

m2

× [f (ξ (k + q)) + b(−ωq)][f (ξ (k)) − f (ξ (k + q) + ωq)]
iωn + ξ (k) − ξ (k + q) − ωq

− (ωq → −ωq). (37)

After the analytic continuation, one gets, for the imaginary
part of the function M(ω),

ImM(ω → 0) = π


2

∑
k,q

M2
q q2

x

m2

∂f

∂ξ (k)
[f (ξ (k + q))+b(−ωq )]

× δ[ξ (k) − ξ (k + q) − ωq] − (ωq → −ωq).

(38)

We are interested in the temperature dependence of the
resistivity. We can thus, for simplicity, assume an averaged
mass over the Fermi surface, which would affect the prefactor
but not the temperature dependence. This allows one to replace
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q2
x → q2/3. The term ∂f/∂ξ (k) constrains, at low temperature,

to have k on the Fermi surface. One thus gets

ImM(ω → 0) = −kF

6π


∑
q

M2
q q2

m
[f (ξ (kF + q)) + b(−ωq)]

× δ[ξ (kF + q) + ωq] − (ωq → −ωq)

= kF

6π


∑
q

M2
q q2

m
[f (ωq) + b(ωq)]

×{δ[ξ (kF + q)+ωq ]+δ[ξ (kF + q)−ωq ]}.
(39)

If the temperature is small, the Fermi and Bose factors impose
qcac ∼ T , and thus the argument of the δ function simplifies
to

δ[ξ (kF + q) + ωq] = kF

m
q cos(θ ) ± cac(θ )q, (40)

leading to

ImM(ω → 0) = 1

6π

∫

0

dq
M2

q q3

2π2
[f (ωq) + b(ωq)], (41)

where we applied the same reasoning as for the self-energy
(30). The temperature can be rescaled out of the above integral,
leading to

ImM(ω → 0) = T 5
∫ βq∗

0
dq

M2
q q3

12π3
[f̃ (ωq) + b̃(ωq)], (42)

where the f̃ and b̃ are the Fermi and Bose factors, respectively,
with β = 1, and we took the isotropic case. At low temperature,
the integral tends to a constant, which can be evaluated in the
isotropic case, so the resistivity has a temperature dependence
given by

ρ(T ) ∝ T 5. (43)

We thus see that the same electronic mechanism, which
at higher temperature was giving the conventional Baber
T 2 behavior, will smoothly lead to a T 5 behavior when
acoustic plasmons begin to govern screening. The new T 5

behavior comes essentially from two approximations: the
linear dispersion of bosons and Mq ∼ √

q. The upper limit
of the integrals in (41) is the largest possible value of plasmon
momentum. This critical wave vector q∗, at which Landau
damping suppresses the plasmon as a well-defined particle,
plays a role similar to the Brillouin zone boundary for acoustic
phonons. As we discussed in Sec. I, one can also define a
corresponding temperature T ∗ [see (17)], which is the analog
of the Debye temperature and plays a similar role in the
resistivity.

If we take a zeroth-order approximation for the interaction
M0

q [see (29)] and T ∗ ≈ 1 K, we can estimate the A coefficient
in the Debye law [as defined in Eq. (1) of Ref. 12]. Along
the trigonal axis, we get A ≈ 0.25μ
 cm [in general, A ∈
(0.25,0.6)μ
 cm], which is not far from the experimental
value A ≈ 0.15μ
 cm. The zeroth-order approximation is
overestimated because c0

ac (and also cRPA
ac ) is known to be

overestimated, plus, as we explained, while evaluating the
integral (41), the 2D surface of the solutions 
0 (for q) is
not a full ellipsoid.

FIG. 6. The temperature dependence of resistivity in bismuth.
Three power laws are distinguished: ∼T 5, ∼T 2, and ∼T . The lowest-
temperature regime is due to the presence of the collective acoustic-
plasmon mode. The two high-temperature power laws are either due
to the conventional Baber scattering mechanism or (in the highest
temperatures, above the Debye temperature TD) due to scattering
on phonons. On the additional temperature axis, the explicit values
for bismuth are given. Both experimentally measured (upper) and
theoretically evaluated (lower) values are indicated. The reason why
the theoretical T ∗ is slightly overestimated is explained in the text.

A full temperature dependence of the resistivity is shown
in Fig. 6. Note that the measured T ∗ will always be slightly
smaller than the RPA value T ∗

RPA, due to many plasmon
processes (which are not accounted for in RPA) enhancing
the Landau damping around T ∗. In fact, one can expect that
the RPA prediction T ∗

RPA works better for polycrystal, where
acoustic plasmons have more decay channels (for example,
they can scatter on surface waves) as an alternative to Landau
damping. This was indeed observed experimentally.12

Let us finally make a comment on the anisotropy of the
resistivity to argue that the low-temperature conductivity is not
strongly affected by a particular choice of q direction. In order
to estimate the effect, we propose a zeroth-order approximation
in which ρq ∼ (M0

q )q〈b†qbq〉, where an average is taken at a
given low temperature. The direction dependence comes from
the mass anisotropy and, in this respect, we know that two
factors behave in different ways due to the following:

(i) From the reasoning given in Sec. III A, in particular (29),
(
M0

q

)
q ∼ (

c3
ac

)
q,

while at the lowest order, c0
ac ∼ VFs ∼ (ms q)−1/2, which

implies
(
M0

q

)
q ∼ (ms q)−3/4.

We expect this dependence to be stronger when we reach q∗.
(ii) The average density of plasmons 〈b†qbq〉 at the lowest

temperatures will be determined by the Taylor expansion of the
Bose-Einstein distribution b[cac(q)q], which means 〈b†qbq〉 ∼
ms q , while at the higher temperatures (around T ≈ T ∗), the
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density of available slow fermions (necessary to build up a
collective excitation) sets the limit, which is also ∼ms q .

Both contributions to ρq scale in an opposite way with the
mass, thus we expect the overall direction dependence to be
rather weak (especially because a more refined approximation
for ρq would need to contain some average over the whole
Fermi surface).

We expect a stronger influence of anisotropy on q∗ because
this quantity depends only on the plasmon velocity u =
cac − ıτ−1. The problem is rather complex and we present a
discussion of it in Appendix A. Considering the anisotropy of
q∗ brings us to an approximation we have made while deriving
(42): we assumed that the plasmons propagate equally well in
all directions. As shown in Appendix A, when more refined
approximations for the polarizability 	(k,ω) are used, one gets
more isotropic q∗ values. Indeed, the measured anisotropy
of T ∗ is quite weak.12 This makes the derivation of (42)
self-consistent.

C. Electron-plasmon coupling nonperturbative theory

As we saw in the previous sections, the presence of a
collective mode has a drastic influence on transport properties.
The mapping to the effective Hamiltonian (22) allows one to
describe these effects. In the previous section, we looked at
the consequences of such a coupling to the collective bosonic
mode, in a lowest-order calculation in the self-energy.

However, it is well known for the case of electron-phonon
coupling that the combination of the electrons and the phonon
degrees of freedom can be carried out beyond this lowest
order and leads to a new composite quasiparticle, the polaron.
For the case of an acoustic plasmon, a similar phenomenon
occurs.31 In our case, the corresponding quasiparticle would
be a plasmaron (electron accompanied by plasmons). The
creation operator of a plasmaron can be written using a variant
of the Lang-Firsov unitary transformation,

c̃k
† = c

†
k exp(−Ŝ), (44)

where

S =
∑

q

αq

eh̄ωq∗
nq(b†q + b−q), (45)

in which αq ∼ Mq/EF measures the strength of the boson-
fermion coupling [in (45), we assumed it is real]. The shift of
fermion energy (∼Re[�boson]) and mass (∼∂kRe[�boson]) are
known as

|�E| = (α + 0.0123α2 + 0.00064α3 + · · ·)ωq∗ , (46)

�m(q) = (α/6 + 0.024α2 + · · ·)m(q), (47)

where m(q) indicates the mass in the q direction. The above
formulas were obtained in the so-called large plasmaron
picture. In the case of bismuth, the plasma is not rigid enough
(contrary to the ionic lattice) to sustain self-localization, so a
small plasmaron picture is unphysical.

Naturally, when α → 0, all the above effects disappear, but
the question about the strength of the full Mq (not M0

q ) is open
and quite difficult to access theoretically. We can only give an
upper and lower limit for α. First, Mq must be smaller than the
bare Coulomb interaction in order to make the plasmon a well-
defined particle. The ratio of bare interaction to kinetic energy

is given by rs and, as discussed in detail in Sec. V A, rs � 1,
which implies α < 1. The lower bound of α can be obtained
experimentally: a recent optical spectroscopy measurement4

showed the existence of an (optical) plasmaron in bismuth,
which shows that the α coupling is sufficiently strong (α ∼
10−1) to give observable effects.

The notion of plasmaron allows for some developments of
the theory beyond RPA. The numerical evaluation is left for
future investigations. We will discuss some of these effects at
the end of Sec. V A. However, a brief inspection of formulas
(44)–(47) has several consequences:

(i) The dominance of the linear term in (46) and (47)
confirms the accuracy of the first-order approximation for the
electron-boson coupling, even for α ∼ 1, which validates our
perturbative approach in Mq .

(ii) A plasmaron remains a well-defined fermionic particle,
so the low-energy model (22) remains valid, but with renor-
malized parameters. We can thus expect the T 5 behavior of the
resistivity to still be obeyed, even in an intermediate coupling
regime.

(iii) From (47), we see that in the presence of a plasmon
cloud, the mass of the heavier fermions further increases
by �ms , which should give rise to a q∗ increase. More
importantly, the ratio of the geometric series that determines
�mr is proportional to

√
mr/mr , which means that the effect

is the strongest in the direction where q∗ was smaller. Higher-
order effects thus tend to stabilize the acoustic plasmon.

(iv) By definition (45), a fermion is mostly accompanied
by plasmons propagating in the same direction (qferm ‖ qboson);
these plasmons are also mediating the effective interaction
between electron and holes, and thus the part of interaction ‖
qferm is enhanced. This goes toward the unidirectional scenario
advocated in Appendix A.

IV. OPTICAL SPECTROSCOPY: MAGNETOPLASMON

An obvious question is whether this new quasiparticle is
responsible for the lowest-temperature resistivity data, and
can be probed by other measurements.

Let us consider the consequences of the existence of the
plasmon mode when there is a magnetic field acting on the
system. We assume that the plasmon propagation direction
is perpendicular to the external magnetic field, which is the
geometry that is usually used in optical spectroscopy. We also
assume that in this plane, electrons are heavier than holes (this
can change depending upon the bismuth sample orientation).
As we will see, the low-energy collective excitation can be
probed by measuring the optical conductivity of the system.

A. Dispersion relation

The inconvenience of studying the acoustic plasmons with
optical methods comes from the fact that in the limit q → 0,
which is the resonance condition with photons, by definition
we have ω → 0. The way to overcome this difficulty is to
introduce a magnetic field. In the case of a standard (optical)
plasmon, the frequency of collective excitation (propagating
perpendicular to the magnetic field) is increased by the
magnetic field as ω =√

ω2
p+ω2

c . This phenomenon can be
explained intuitively: the movement of a charge under a
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magnetic field requires an extra kinetic energy (to overcome
the magnetic field vector potential). This result was found in
several different ways: using RPA polarizability, the equation
of motion technique, or from a simple hydrodynamic picture of
fluctuations. The reason that such a remarkably simple relation
holds comes from Kohn’s theorem where, in a translationally
invariant system for q → 0, the magnetic field does not
affect the interelectron interactions encoded in ωp. Upon a
detailed inspection of Kohn’s derivation,32 we see that in
multicomponent plasmas, even embedded in a crystal lattice,
the theorem holds approximately. In particular, in the case
of bismuth, the deviations of cyclotron frequencies would
be caused by electron-hole scattering with large momentum
exchange. As we indicate in Sec. V A, due to the particular
band structure of Bi, these contributions are suppressed
and the theorem holds. It is thus still possible to provide
a simple relation which links the (magneto)plasmon edge
frequency with the plasma frequencies at zero field and the
cyclotron frequencies (these last ones are known from the
Kohn theorem).

Indeed, for the two-component plasma problem under a
magnetic field, the following relation, valid for any value of
the magnetic field in the q → 0 limit, was found:33

ω2
± = 1

2

[(
ωe2

p + ωh2
p + ωe2

c + ωh2
c

) ±

×
√(−ωe2

p + ωh2
p − ωe2

c + ωh2
c

)2 + 4ωe2
p ωh2

p

]
. (48)

When |ωe
c − ωh

c | is small, we find the intuitive relations ω2
+ ≈

ωe2
p + ωe2

c + ωh2
p + ωh2

c and ω2
− ≈ |ωe

cω
h
c | + O(q), which al-

lows for a clear identification of optical and acoustic plasmon
when B → 0. We see that the acoustic mode develops a
gap, which should be observable in optics as a second,
lower-frequency plasmon edge. In the limit when |ωe

c −
ωh

c | 
 |ωe
p|,|ωh

p|, the ω± modes in (48) become holelike and
electronlike, respectively. It is relatively simple to reach this
limit (when the second term under the square root is small) in
bismuth. The reason is that we always have mr � ms , which
implies that |ωe

c − ωh
c | ∼ |ωe

c|,|ωh
c |. We thus expect ω− to have

an electronlike (in general, heavier particlelike) magnetic field
dependence.

From (48), we can deduce how the frequency of the
lower plasmon edge evolves with the magnetic field. The
temperature dependence of ω± is also frequently studied in
optical experiments. The temperature dependence enters (48)
via ωe,h

p ∼ ne,h. The density of carriers ne,h can change with
temperature due to thermal excitation from the valence band.
Because of the very small gap at the bottom of electron pockets,
� ≈ 13.7 meV (see Fig. 1), this effect is particularly important
for bismuth. Then a second type of holes as light as electrons
will emerge, and due to the global compensation of electrons
and holes, ne = nh + nlh, the total number of carriers will
increase. In the low-field limit, only the standard (high-energy)
optical plasmon frequency ω+(T ) will be affected.

In the high-field limit, the ω− will acquire a rather strong
temperature dependence, since ω2

−(T ) ≈ [ωe
p(T )]2 + (ωe

c)2

(assuming that the electrons are heavier). From the charge

neutrality condition, the approximate formula for ωe
p(T ) can

be given34 by

(
ωe

p

)2 = 4e2

√
2πh̄

m̄
3/2
e

me
x

Li1/2{exp[β(−EFe − μ)]}(kBT )3/2,

(49)

where e is the electron charge, m̄e is the geometrical average
of electron masses, and me

x is a mass in a given direction (all
masses in electron mass unit). Li1/2{exp[β(−EFe − μ)]} is the
value of the incomplete polylogarithm function of the order
1/2:

Li1/2(a) =
∫ ∞

0
dx

√
x

a exp(x) + 1
. (50)

This gives the temperature dependence of the ω− for a very
large magnetic field when this mode merges with the electron
mode (in general, the heavier carrier mode).

B. Longitudinal f-sum rule

The third quantity accessible from optical measurements
is the relative intensity of two-plasmon edges. This can be
studied quantitatively using the longitudinal f-sum rule.

In a one-component plasma, it can be proven that the optical
plasmon is the only collective excitation as q → 0. It comes
from an exact sum rule (see Ref. 30):∫ ∞

0
dωωIm[ε(q,ω)−1] = −π

2
ω2

p. (51)

An analog sum rule was derived for a multicomponent plasma
(see, for example, Ref. 35). It was also shown36 that in the
presence of a nonlocal (q-dependent) potential, the right-
hand side of (51) can change. This is particularly important
for a two-component plasma when the nonlocal part might
differentiate between intra- and intercomponent interactions
[defined as V

αβ

eff (q) in (9)]. (Strictly speaking, in Bi, this is the
case for q �= 0, but arbitrarily small.) Then the sum rule is
not completely exhausted by the ω+ mode and there is some
spectral weight left for the ω− plasmon. [See also Ref. 26,
where the acoustic-plasmon intensity increases for d �= 0,
a condition which in their case implies V11(q) �= V12(q).]
These findings prove that the finite spectral weight of acoustic
plasmon does not violate the longitudinal f-sum rule.

One can quantify this last statement by computing the
strength of each plasmon, which in fact corresponds to
Im[�e(q)] evaluated in Sec. III A:

W±(q) = π

|∂Re[ε(q,ω)]/∂ω|ω=ω±
, (52)

where ε(q,ω) is a dielectric function defined as the denomina-
tor of Eq. (9), ε(q,ω) = 1 − V ee

Coul(q)[	hh(q,ω) + 	ee(q,ω)].
By using the formulas given in Sec. II and the Lindhard
approximation for polarizability, we find (in the q → 0 limit)

∂Re[ε(q → 0,ω)]/∂ω|ω=ω− ≈ (rv − R) ln

(
ω− − VFsq

ω− + VFsq

)
,

(53)

where rv and R are characteristic, constant parameters of
the two-component plasma (they are of the order of 1; for
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precise definitions, see Appendix A). By taking into account
limB→0 ω− = cacq (neglecting Im[u]), we deduce that the
numerator of the logarithm limits W−(q) as

lim
B→0

W−(q) ∼ {(rv − R) ln[(cac − VFs)q]}−1. (54)

From (54), one recovers the Landau damping formula: when
cac → VFs , W− → 0. The larger cac is with respect to VFs ,
the larger spectral weight the acoustic plasmon will contain.
From (54), we also see that when cac �= VFs , the W−(q) is an
increasing function of q; it is difficult to expand this formula in
the q → 0 limit, but using l’Hospital rules [for the derivative
of ln(q)], one can confirm our argument given in Sec.III A that
V ac

0 ∼ q.
The other implication of (52) is that inducing any gap

in the ω−(q = 0) spectrum will increase W−(q = 0). This is
precisely what the magnetic field does, as shown in (48). In
particular, in a strong magnetic field, ω− → ωe

c + ωe
p, which

means that the acoustic mode becomes a mode of heavier
(electron in our example) plasma component. Then, there
must be also a redistribution of the relative spectral weights
of the two-plasmon edges ω±; the ω− mode will be more
and more pronounced. To be more precise in Eq. (52), to get
the intensity of ω− mode, we substitute ε(q,ω) of the heavier
component plasma. The Re{ε[q → 0,ω−(q)]} → q2, so the
denominator of (52) gradually approaches zero in the same
way as Re{ε[q → 0,ω+(q)]}. This resembles the fact that
the spectral weight W−(q → 0) must become as significant
as W+(q → 0). As the magnetic field increases, W−(q → 0)
gradually acquires all the density fluctuations of the heavier
carriers.

C. Summary of the expected effects

The findings of two previous sections are summarized
in Table II. In order to define the border between low B
and large B, we define the ultraquantum (UQ) limit for
which the magnetic field freezes the motion of carriers in
a plane perpendicular to it. Then ωc dominates over ωp.
Due to the particular band structure of bismuth and the field
dependence of the chemical potential, electrons and holes
enter the UQ regime at nearly the same field (≈10T ). Thus
the above-mentioned condition |ωe

c − ωh
c | � ωp is valid up to

quite high fields. The limit of validity of this condition is for
smaller fields, but of the order of the ones of the UQ regime.
The value will change depending upon whether one works
with pure Bi or Bi1−xSbx (x < 0.07), where the UQ limit is
reduced.

TABLE II. Summary of the expected field dependence of the
two-plasmon edges. We present the magnetic and temperature
dependencies of the lower-energy plasmon edge and the magnetic
field dependence of its amplitude. The low- and high-field regimes
are distinguished.

Property Low B Large B

ω−(B) ∼√|ωe
cω

h
c | ∼√

(ωe
c )2+(ωe

p )2

ω−(T ) T independent ∼ωe
p(T )

W−(B) = 1/ε(ω−) W+ 
 W− ∼ B W− → W+

There are effects not included in the above analysis. First,
we observe that because of the charge neutrality requirement
and the small value of the gap below the electron pocket, the
chemical potential μ does depend on the magnetic field. Thus
we expect

μ(B) ⇒ n(B) ⇒ �ωe,h
p (B), (55)

but this extra dependence is significant only for fields above
the UQ regime. In the same regime, one may also expect
an anomalous Zeeman splitting and large magnetostriction,
which in principle can change the band parameters (masses).
A large spin-orbit coupling in bismuth is responsible for these
effects. They are beyond the scope of this paper, which is
dedicated rather to low-field effects, and we leave them for
future investigations.

The other source of finite gap in the spectrum of acoustic
plasmon at q = 0 is the finite tunneling probability ϒ⊥
between two types of carriers (electrons and holes in our
case). According to Ref. 26, the additional gap �SAS (using the
notations of this paper) will be proportional to the tunneling
(or scattering) probability [see Eq. (26) in Ref. 26], �SAS ∼√

V (q = 0)ϒ⊥.
Due to Bi band structure, the energy-momentum con-

servation strictly forbids such a scattering, thus T = 0 ⇒
ϒ⊥ = 0 ⇒ �SAS = 0. The situation could be slightly more
complicated at finite temperature for which we can find a
combination of energy-conserving states, but the conservation
of k is still never fulfilled (electron and hole pockets are very
far in momentum space). We conclude that these types of
recombination processes, even in the higher-order scattering
events, should not affect the zeroth-order prediction for
ω−(B → 0,T ) → 0 given before.

V. DISCUSSION

In this section, we want to discuss the limits of validity of
our theory and the physics that can be expected when we reach
those limits. The experimental relevance of these effects will
be presented.

A. Validity of RPA

In order to assert the validity of analysis of the previous
sections, which is mostly based on an the RPA of the interaction
terms, it is important to estimate first the strength of these
interactions in the case of bismuth. At ambient pressure,
the ratio rs of the potential energy to kinetic energy are,
respectively, re

s ≈ 0.2 and rh
s ≈ 1.5 for the electrons and

the holes. These rather low values are due mostly due to
very high dielectric constant of the background ε∞ = 88.
It is also important to note that a part of the Coulomb
interaction, namely, the Hartree-Fock terms with exchange
interaction VCoul(q)/εT F (q) with Thomas-Fermi screening,
was already taken into account during self-consistent band-
structure calculations, leading to renormalized dispersions
εe,h(k).24

Although this question is difficult to address quantitatively,
it is useful to estimate if for the particular case of bismuth we
could trust the RPA. Usually the following arguments are used
to justify the RPA resummation shown in Fig. 3: (i) The small
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number of carriers implies that the long-range character of
interactions plays a major role [V (q) large for q → 0]. Then
the diagrams with the largest divergence number (RPA series)
are the most important. This is the case in bismuth despite the
simultaneous validity of the “dense plasma” regime rs < 1.
(ii) We are primarily interested in the limit of long-wavelength
excitations (below q∗), thus the influence of local-field effects
is moderate.

In addition to these two arguments that support the RPA,
the particular combination of band-structure parameters of
bismuth contributes to a further suppression of the diagrams
outside the RPA series. Indeed, in bismuth, the Fermi surface
consists of distant pockets for electrons and for holes. A
significant part of the exchange diagrams (the interpocket
ones) requires quite large momentum exchange, so in the limit
of small momenta as discussed above, [Veff(q → ∞) → 0],
their contribution must be very small. In addition, such
processes are irrelevant in the Renormalization Group (RG)
sense.37 Another contributing factor comes from the fact that
electrons along the trigonal axis can be considered as Dirac
particles, while holes are very light in the perpendicular plane.
If one takes a (one-component) gas of spinless fermions with
linear dispersion, then the bubble approximation (each bubble
with only two external interaction lines) works quite well. In
particular, in one dimension, for such a Dirac (Tomonaga)
spectrum, the RPA for interaction line would be exact. In
particular, in one dimension, for such a Dirac spectrum, the
RPA would be exact. In higher dimensions, one can thus
expect that the amplitude of nonbubble diagrams should
at least be reduced when m → 0. Finally, both the large
mass anisotropy (on the surface of each pocket) and the
strong spin-orbit coupling [lowering the orbital momentum ĵe

quantum number (ĵe = l̂e + ŝe)] contribute to the weakening
of the electron-electron exchange processes. Although none of
these arguments are, of course, rigorous or final, they suggests
that the RPA in bismuth is indeed a very good starting point to
understand the properties of this material.

Improvement above the RPA is, of course, a very difficult
proposal. Among the diagrams one would have to consider,
are multiple acoustic-plasmon processes (optical plasmon has
a high energy, so we can safely exclude it). Some of them
are clearly suppressed. First, Mq = 0, which implies that
tadpolelike diagrams mediated by acoustic plasmons give no
contribution. Second, a multiplasmon scattering process has
a natural cutoff q∗, above which they are strongly Landau
damped. This mechanism of q∗

eff reduction was invoked in
the context of Fig. 6. In fact, given the acoustic nature of
plasmon excitation, one might be tempted to introduce a
variant of the Migdal theorem in order to exclude processes
with crossed plasmon lines. The Migdal theorem in our case
has the following form: if we compare the available momentum
phase space, we find that n-crossed multiplasmon lines will
generate corrections proportional to λnωq/EF , where λ � Mq .
In order to estimate the value of the interaction, we note
that the electron-plasmon coupling cannot be larger than the
bare Coulomb interactions λ < e2kF ∼ EF . Similarly, the
energy transferred by the acoustic plasmons is of the order
of ωq � T ∗ < EF . Given the hierarchy of energies between
T ∗ and EF , we see that even without the large mass ratio
that exists in the case of the electron-phonon coupling, here

we have a justification of a Migdal-like theorem to drop the
higher-order crossed plasmon diagrams.

Of course, even after excluding all of the above-mentioned
processes, we are still left with many diagrams, which can be
constructed around a dominating RPA series. The first class of
multiplasmon diagrams which are left are the rainbow ones.
Usually diagrams of this type are responsible for renormaliza-
tion of particles’ bare dispersion, which we have accounted
for during the discussion of the plasmaron in Sec. III C. The
second class of diagrams is the vertex corrections inside a
single electronic bubble. The third class, which would make
the problem highly nontrivial, corresponds to interactions
between several electronic bubbles, which would lead to an
interaction between the plasmon modes or interactions among
several bubbles of the ladder series. The determination of how
to take into account all of these terms is, of course, going
well beyond the scope of the present study. Based on various
arguments, one can expect, on a phenomenological level, a
renormalization of the plasmon velocity. A phenomenological
model that could account for those extra contributions would
be to add an interaction term between the plasmons in our
low-energy Hamiltonian (22) of the form

Hpl−int = 1




∑
k1,k2,q

g(q)b†k1+qb
†
k2−qbk1bk2 . (56)

The interaction between plasmon term g(q) can in principle be
estimated from the above-mentioned diagrams, and this is left
for a a future study. This phenomenological term could thus
open the route to tackle the situation of rs > 1.

B. Pressure-induced semimetal decay

One way to control the physics of the acoustic plasmon
could be to consider the effect of pressure on these materials.
Indeed, the tiny Fermi surface in bismuth is quite fragile
versus Sb doping or pressure—the pockets empty and the
material becomes a semiconductor. These dependencies are
well established both on the theoretical (DFT pseudopotentials
method in Ref. 38) and the experimental39,40 side. Obviously,
the collective excitations such as the plasmon will be affected
by such a semimetal-semiconductor (SM-SC) transition.

At the first naive level, the change of carrier density affects
only optical plasmon. The velocity cac (see Appendix A)
depends on the ratio of masses and Fermi velocities of the
two types of carriers. These crucial parameters, me,h or V e′h

F ,
seem to be constant up to very low carrier concentrations.38

However, when n → 0, the screening of the interaction is
drastically affected and rs → ∞. The corrections beyond RPA,
discussed in the previous section, start to be important. On the
other hand, we know that at least for Sb doping, the gap (at
L points) is being closed, thus ε∞ increases, extending the
validity of the “high-density plasma” regime. It means that it
should still be possible to define plasmons as quasiparticles
of the system, and the physics, which we described in the
previous sections, should still be applicable.

Nontrivial effects may arise only near the critical doping
δc or pressure pc, for which rs → ∞. Two elements will play
a role: (i) As described in the previous section (and at the
end of Sec. III A), the most important effect emerging with
an increasing rs is the appearance of strong plasmon-plasmon
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interactions. The interaction term (56) could potentially lead
to an instability with a new minimum of the energy at a
finite q. In that case, the corresponding energy gain would
favor a semimetal (correlated liquid) versus a semiconductor.
(ii) Contrary to ωac(q) = cacq, the frequency of the optical
plasmon ωp ∼ n is decreasing when n → 0. At some point,
the two collective excitations will merge. This should change
both their dispersion as well as the physics of the system.

On the experimental side, the regime we are discussing
above was recently studied by means of optical spectroscopy.3

A transfer of the spectral weight to the plasmaron peak was
observed. This implies that, as we expect, plasmons are able
to survive (or can even be enhanced). In these experiments,
a deviation from the Fermi liquid theory was found, with
an abnormal rigidity of the metallic phase near pc. What
was observed can be interpreted as an abnormal increase of
the collective-mode frequency (deviation from a single-mode
RPA at the lowest temperatures). The extension of the theory
proposed in the previous section, given by (56), can perhaps
be used in such a regime to explain these effects.

C. Comparison with other multivalley semimetals

As already mentioned in Sec. I, a few other examples of
the multivalley semimetals are known, with a band structure
similar to bismuth. These other systems are thus potentially
described by a similar theory to the one that we have introduced
in this paper.

The most intensively studied material in this category is
graphite. In this case, electrons and hole pockets are placed
alongside, and are quite similar in shape, thus the carriers
mass (and velocities) ratio is close to �1. In that case (see
Appendix A), q∗ shall be very small and the acoustic plasmons
are always overdamped. The plasmonic regime predicted in
this work does not apply in this case. We expect a standard
Baber T 2 resistivity down to the lowest temperatures. This is
indeed what is observed experimentally.41

The second material, which has been recently investigated,
is 1T-TiSe2. The band structure resembles strongly that of
bismuth. It consists of three electrons and one hole pocket
with large mass differences,16 mh = 0.23, mex = 5.5, mey =
2.2, and ε∞ = 44 (due to the large Se polarizability).42 This
suggests that we can have another family of materials where
acoustic plasmons play a major role. The band structure gives a
finite amount of acoustic plasmons in the system (k∗ �= 0), but
also a quite large rs , which resembles the situation described
in Sec. V B more than the one of pure bismuth. This is most
likely the reason why experimentally the low-energy physics
of 1T-TiSe2 is different than in Bi.

At TDW , an electron liquid undergoes a density wave
transition (accompanied by structural reconstruction). A su-
perconducting transition subsequently takes place at TSC if
high pressure is applied or upon Cu intercalation. At the
optimal pressure pc = 3 GPa, TSC = 1.8 K. The TDW is
quite susceptible to applied pressure, and drops from TDW =
200 K (at p = 0) to TDW < 70 K (at p = pc). The density
wave (DW) transition has a significant electron component,
as revealed by angle-resolved photoemission spectroscopy
(ARPES) measurements16 (at T = 63 K), showing related
reconstruction of the Fermi surface. Interestingly, the unusual

increase of resistivity43 which begins just above the TDW

seems to be similar to what was observed in Bi very close to
the critical pressure pc (both were attributed to an increase
of the electron-hole scattering rate at the transition). The
formation of an excitonic liquid was suggested to explain the
transition at TDW . Whether one can relate such an excitonic
liquid description with the interacting plasmon theory that we
described in the previous section is a challenging theoretical
question that we leave for future studies.

VI. CONCLUSION

We have presented in this paper a theory of transport in
semimetals, concentrating specifically on the case of bismuth.
We have shown that the physical properties of these systems
are dominated by the presence of an acoustic-plasmon mode
at low temperatures. This mode that we derived in an RPA
of the interactions leads to a drastic change of the transport
properties, in particular their temperature dependence, com-
pared to the standard Baber mechanism, which is normally
invoked for such materials. We showed, in particular, that
it would lead to a T 5 behavior of the resistivity below a
certain energy scale T ∗, dependent on the interactions that we
computed. Above this energy scale, a normal T 2-like behavior
is recovered for the resistivity. Our results are in agreement
with the observed resistivity in bismuth. We examined several
other consequences of the existence of such a mode and
showed that it would lead to a double-plasma edge in optical
magnetotransport experiments. Recent measurements of the
optical conductivity agree well with our predictions.

The main contribution of our paper is thus to show the
importance of such a plasmon mode in these systems. This
opens the way to many lines of work centered around the
existence and role of such collective modes. First it is important
to explore the consequences of these collective modes for
other transport properties. One of the most important is, of
course, the Nernst effect, which in bismuth is one of the largest
reported. Analysis on how the plasmon modes can modify the
Nernst transport is a nontrivial question that we plan to analyze
in detail. Another important direction is to go beyond the RPA
analysis. This is necessary to investigate other semimetals such
as Sn-doped bismuth or 1T-TiSe2, or to take into account the
effects of pressure on bismuth. In those cases, the interactions
between the plasmons play a more important role. We have
suggested a phenomenological model, which can potentially
be used to tackle these effects. However, its analysis is highly
nontrivial and this will provide certainly an exciting line of
investigation for the future.

APPENDIX A: ACOUSTIC PLASMONS IN BISMUTH

We give here some arguments and energy scales for the
acoustic plasmons in bismuth.

The existence of acoustic plasmons was initially investi-
gated for bismuth21 by means of a simple spherical Fermi
surface model with ms = mh = 0.14 and mr = me = 0.047.
Based on this approximation, it was concluded that the acoustic
plasmon was very weak (kc = 0.02kFs), although the authors
also mentioned in their conclusion the issue of Fermi-surface
elipticity.
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Solving this issue, while taking into account the full
elipticity, is a formidable, albeit necessary, task, as is obvious
when looking at the parameters given in Table I. The dispersion
relation of the collective mode is given by (9), in which the
full masses should be inserted in the 	(q,ω) functions. Since
the dispersion is quadratic, one can in principle rescale the
integration over k in (7). One thus has

	0
αα(q,ω) = (mα1mα2mα3)1/2	̃0

× (q1/
√

mα1,q2/
√

mα1,q3/
√

mα3,ω), (A1)

where 	̃0 is the normal Lindhard function with all the masses
set to 1. For the case where ω/q̃ = c constant and q̃ → 0, the
Lindhard function becomes particularly simple:

	̃0(q̃ → 0,ω = cq̃)

= k̃F

π2

[
− 1 + s

2
log

∣∣∣∣1 + s

1 − s

∣∣∣∣
]

− ı
k̃F s

2π
θ (1 − s), (A2)

where k̃2
F /2 = EF , which is the Fermi energy of the corre-

sponding species. Note that the two Fermi energies are not
necessarily the same for the two species of particles and must
be determined by the neutrality condition. When going to
higher-order diagrams (vertex corrections), one realizes that
not all scattering directions are equally probable. This means
that the coefficient in front of 	̃ in Eq. (A1) will change
because it depends on the anisotropic mass tensor. However,
the form of the Lindhard function should not be affected by
this procedure, thus the functional dependence of the plasmon
dispersion relations should remain unchanged.

One can thus try to simplify such an equation. An extension
of RPA (eRPA), taking into account the ellipsoidal shape,44

gives the approximation to compute cac by averaging the faster
component on a spherical Fermi surface, while retaining the
ellipsoidal shape of the heavier (slower) component. If one
follows this procedure, for example, on the trigonal axis, for
which the electrons are faster than holes, then we need to sub-
stitute ms = mh3 = 0.63, which is already significantly larger
than ms = 0.14. In the direction perpendicular to trigonal, the
situation is even more complex. Holes are quite heavy along the
trigonal axis direction, which gives large spherical mass and
suggests that they are always the slower component. However,
they are very light in the perpendicular direction (see Table I).
It is then easy to forget that electrons, while extremely light
along the trigonal axis, are (even in average) significantly
heavier than holes in any perpendicular direction. Therefore,
to be able to do the average, a spherical approximation (even
the eRPA) would thus need to assume an opposite mass order
than it is in reality. This suggests that a different approach is
necessary.

A simple average over a spherical Fermi surface comes
from the summation over k present in 	0

ν(q,ω) and the
assumption that all scattering directions are equally probable.
This is directly connected to neglecting interactions between
electrons and holes within a bubble, and, in particular, the
vertex correction within the bubble coming from the Coulomb
interaction. Given the long-range nature of the interaction, it is
natural to expect that such corrections would enhance the small
q scattering. We can thus expect that the weighted mass that
enters our expression for the dispersion relation is closer to the

TABLE III. The parameters R and rv (see text for definition) of
acoustic plasmon along the trigonal axis in the limit q → 0. eRPA is
an average taking partially into account the ellipsoidal shape of the
Fermi surface, while UD is a purely unidirectional approximation.
The good agreement between these two extreme cases suggests
that the corresponding results are probably representative of the
experimental values in bismuth.

R rv cac τ−1 k∗

eRPA 11 0.2 1.8 0.4 0.25
UD 17 0.14 2.1 0.45 0.3

mass along the direction of q, rather than the mass averaged
equally over all angles.

Although a full calculation is difficult and clearly beyond
the scope of the present paper, we can have an idea of the
importance of such effects by comparing to limiting situations,
for the case of q along the trigonal axis. We take, on one
hand, the averaging of the eRPA44 and, on the other hand, the
unidirectional (UD) approximation where we simply retain
the mass along q while computing full polarizability. For an
isotropic case, the expressions (9) considerably simplify and
allow one to define two important parameters for the equation,
namely, the relative weight between the two terms R =
(κs

T −F /κr
T −F )2 = (mskFs)/(mrkFr ) [where κi

T −F was defined
in the context of Eq. (20)] and rv = VFs/VFr , which is
the ratio of the two velocities. The results are given in
Table III.

We see that two extreme approximations give rather similar
values. The correct values for bismuth should, therefore, be
between these two extremes. This suggests that k∗ is far from
being negligible. Taking such values for k∗ gives an energy of
T ∗ ≈ 6 K for the characteristic temperature below which the
acoustic plasmon becomes strongly coherent.

In the perpendicular plane, the situation is significantly
more complex. In fact, we have to work with a multiplasma
problem given the three electron pockets so we can only give
qualitative arguments. Let us stay within the UD approxi-
mation, remembering that it tends to slightly overestimate
k∗. From Fig. 1, we immediately see that by changing the
q direction, we are facing the following situation:

(i) There is one central hole pocket with an angle indepen-
dent mass, m

1,2
h = 0.067.

(ii) The mass of each electron pocket can vary drastically,
from very light (m2

e = 0.0015) up to the heaviest of all (m1
e =

0.198).
(iii) The electron pockets are situated with a relative

orientation of π/3 and thus for every q direction, there are
combinations with both very light and very heavy electrons
present. This opens up the possibility for several plasmons
to emerge, but most of them are strongly Landau damped. A
rough estimation (for q not far from the bisectrix between two
pockets) gives the following: for light hole-heavy electron,
R ≈ 1.15 ⇒ k∗ ≈ 0.07; for light electron-heavy hole, R ≈
1.2 ⇒ k∗ ≈ 0.1; and for light electron-heavy electron, R ≈
13 ⇒ k∗ ≈ 0.22. For another intermediate orientation (π/6
angle with the bisectrix), both electron masses will be smaller.
A more precise evaluation of k∗ would be quite difficult
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and probably also susceptible to a significant error. Let us
only emphasize that for the Fermi energies, Ee

F ≈ 2Eh
F , thus

a smaller value of k∗ in the perpendicular plane does not
immediately imply a smaller T ∗ in this plane.

Finally let us make two comments for plasmons far from
the trigonal axis:

(1) If we had taken the eRPA approximation, we would
have found rather low values of k∗ along the bisec-
trix axis, which would imply a notable trigonal-bisectrix
anisotropy of the observed T ∗. This is not the case found
experimentally.

(2) Due to the particular positioning of Fermi surface
pockets, it is practically always possible to find carriers with
rather different masses. Thus we expect that a drop of k∗ for
some directions is the exception rather than the rule. These rare
cases should not affect significantly the q momentum integrals,
such as the one in (41).

Note that in the above estimation of the T ∗ values, we have
neglected local-field corrections. These always tend to reduce
T ∗.45 To be precise, the larger k∗, the larger the influence
of local-field corrections. This accounts for experimentally
observed isotropy of T ∗ and explains why the “Debye”
temperatures found by resistivity fits by Uher12 are lower
than the RPA expectations (a discrepancy that was already
discussed in Sec. III B).

APPENDIX B: ANISOTROPY OF THE BABER
RESISTIVITY

In order to compute the anisotropy of the resistivity due
to the Baber scattering, we start from the formula obtained in
Ref. 28 [Eq. (2.14) in that paper] and apply it to our problem
with slow and rapid carriers:

ρx = ρx
0 β

∑
k,p,q

ν2
pkqf (ξs(k))[1 − f (ξs(k) + �q)]f (ξr (p))

× [1 − f (ξr (p) − �q)], (B1)

where �q is the energy exchanged in the scattering pro-
cess (determined by the exchanged momenta q) and ρx

0 =
πJ 2/(
Dx), with Dx being the density of carriers in a
given direction and J being the strength of the carrier’s
interaction. In our model, instead of the J of Eq. (B1), included
in ρ0, the averaged scattering rate W must be substituted.
Following the derivation of Ref. 28, we take the carriers
velocity along the resistivity axis as the variational parameter
�ki = Vx . According to textbook procedure,46 νpkq is then
equal to the total change of �ki during the scattering event,
which in our case means νpkq = �Vx . When one derives
the relation �Vx(q), one needs to take the masses along
the x axis. The momentum along a given direction must be
conserved, which implies that |�Vx(q)| ∼ qx |m−1

ex − m−1
hx |,

where qx is the momentum exchanged along the resistivity
axis.

The summation in (B1) is taken over vectors of incoming
and outgoing carriers. The detailed, all-T treatment of (B1)
would be quite complicated, but we are interested only in
the lowest temperatures, where the energy exchanged during
scattering goes to zero, � → 0 (we always stay on the Fermi
surface), and the density of both electrons and holes is constant

(the chemical potential in semimetal is rather stable). We also
know from band structure that there is no nesting, ke �= kh, and
these Fermi wave vectors are also constant.

Note that the derivation in Ref. 28 was done for a two-
dimensional system. Working in three dimensions requires
one extra angle ϑ to complete the spherical coordinates. It
is an angle between incoming momenta of light and heavy
carriers between � (k, p), which was obviously equal to zero
for the 2D case. As long as we are interested in the resistivity
along the high symmetry directions (which is the one usually
measured) and in the limit of small �, we may assume
that the functional relations �(θkq,θ pq) and |q|(θkq,θ pq),
originating from energy conservation, do not depend on the
new angle ϑ . One integrates out this extra variable, but this
does not change the low-energy T dependence (because the
condition � → 0 allows one to give a unique relation between
θkq,θ pq).

With the above remarks, we can evaluate the momentum
sums, transposed into integral over the angles θkq,θ pq , ϑ .
The masses ms(θkq) and mr (θ pq), entering into the formulas
accounting for energy conservation (during the scattering
event), �(θkq,θ pq) and |q|(θkq,θ pq), are averaged over all
angles on the Fermi surface when integration over all possible
orientations is taken. This brings us to an analog of Eq. (3.4)
in Ref. 28 with the anisotropy factor extracted:

ρx = (�Vx/qx)2

Dx

∫
dθkqdθ pqdϑq2 cos2(ϑ)[cos(θkq)

− cos(θ pq)]2 (�qβ)2

4 sinh2(�qβ/2)
, (B2)

where an integral is angle averaged, which also means
averaged over all momenta on the Fermi surface. The integral
is rather complicated in 3D. We can safely assume that the
anisotropy of the resistivity is caused only by the two factors
in front: a change of carriers velocity �Vx (along the resistivity
direction) during the scattering event, which we already
discussed above, and the denominator Dx . The denominator
Dx is constant when μ(T ) = cste and it introduces the
probability of such a scattering event, which is proportional
to the carrier density determined along the given direction
by Dx ∼ (m−1

ex + m−1
hx )2. The resistivity can be expressed as

ρx ∼ |�Vx |/Dx . This implies that, in the low temperatures
(when ρ ∼ T 2), the main contribution to the anisotropy of
resistivity is accounted for by the factor |�Vx |/Dx , which
after straightforward simplification gives

ρi(mei,mhi) =
[ |mei − mhi |

(mei + mhi)

]2

I, (B3)

where I is the angle-averaged integral. In the case of a two-
pocket Fermi surface, this immediately leads to

ρx

ρz

=
[ |mex − mhx |/(mex + mhx)

|mez − mhz|/(mez + mhz)

]2

, (B4)

where me and mh are second-rank tensors with values (along
the main axis) given in Table I. A reminder is necessary:
the masses which are substituted into (21) are not the ones
given in Table I. Indeed, the masses in (21) are the ones
along the external directions, while Table I gives the ellipsoid
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parameters. This point is particularly important for electrons
along the trigonal axis: there is very small m3e, but (due to
out-of-bisectrix plane tilt ϑ of the electron ellipsoid) mez

contains an admixture of relatively large m1e,

m−1
ez = m−1

3e cos(ϑ)2 + m−1
1e sin(ϑ)2. (B5)

There is one extra complication, which is present except when
the selected direction is the trigonal one. It comes from the fact
that in bismuth, we have more than two families of carriers. In
the particular case of the bisectrix axis (along which resistivity

is frequently measured), we have to deal with three different
types of carriers (holes, light electrons, and heavy electrons)
with certain probabilities for each type of scattering event.
This leads to

ρx = 3
11ρ1eh(me1,mh1) + 6

11ρ2eh(me2,mh1)

+ 2
11ρee(me1,me2), (B6)

which one can compare with ρz measured along the trigonal
axis; this is precisely what we did in Sec. II C.
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