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Proposal for detecting spin-chirality terms in Mott insulators via resonant inelastic x-ray scattering
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We consider the question of whether resonant inelastic x-ray scattering (RIXS) can be used to detect many-body
excitations that are coupled to the spin-chirality terms Si · (Sj × Sk) in a Mott insulator. We find that while the
spin-chirality terms are in general absent in the usual experimental setups of RIXS, there are prospects of realizing
such terms if one considers instead the scattering near a pre-edge. We then perform detailed analyses for the
square and the kagome lattices, and brief analyses for the triangular and the honeycomb lattices, in which we
show that the spin-chirality terms are indeed present in all the above lattices, but that they occur at a higher order
in our expansion for the kagome and the honeycomb lattices. The merit of using RIXS in addition to Raman
spectroscopy to detect excitations that are coupled to the spin-chirality terms is also briefly discussed in the
context of the emergent gauge boson in the U(1) Dirac spin liquid.
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I. INTRODUCTION

With its ability to probe generic many-body excitations,
Raman spectroscopy has become an important tool for un-
derstanding strongly correlated electronic systems, including
the Mott insulators.1 Unfortunately, in Raman spectroscopy
the photon momenta are generally negligible when compared
with the inverse lattice scale, thus making it essentially a
zero-momentum-transfer probe and limiting its usefulness in
certain cases.

In the specific context of the U(1) Dirac spin liquid state
in the spin-1/2 kagome lattice, in which the low-energy
effective theory is described by chargeless spin-1/2 fermions
(spinons) coupled to an emergent U(1) gauge field,2 we
previously proposed Raman spectroscopy as a way to detect
the spinon continuum and the fluctuations of the emergent
gauge field.3 The prospect of detecting the emergent gauge
field in experiments is particularly significant, given the role
such gauge fields have played in theories of quantum spin
liquids. Unfortunately, our calculations also reveal that the
signal coming from the emergent gauge field is suppressed
by a factor of q2, where q is the momentum transferred to
the system. Indeed, Raman spectroscopy on herbertsmithite
ZnCu3(OH)6Cl2, a possible material realization of the U(1)
Dirac spin liquid state, has found a broad continuum in the
spectrum that could be attributed to the spinon continuum, but
has shown no signs of the emergent gauge field.4

Given the large momentum carried by x-ray, one would
imagine that resonant inelastic x-ray scattering (RIXS)5 may
provide a better prospect of detecting the emergent gauge
field. However, in our derivation, the detection of the emergent
gauge field in Raman spectroscopy depends crucially on the
coupling of the external photons to the spin-chirality terms
Si · (Sj × Sk) in the system, which in turn relies crucially on
the link between the photon polarizations and the direction of
the virtual electron hops in the lattice induced by the virtual
absorption and emission of the photons. This link is in general
absent in the current theoretical discussions and experimental
setups of RIXS, in which the virtual absorption and emission
of the photons are accompanied by intrasite electron hops.

In this paper, we propose performing RIXS near a pre-edge,
in which case the usual virtual processes with intrasite photon-

induced electron hops are suppressed, thus allowing virtual
processes with intersite photon-induced electron hops to man-
ifest. Indeed, intersite dipolar contributions have previously
been identified in the absorption and Auger spectrum of TiO2

(Refs. 6–8) and La2CuO4.9,10 To analyze the contributions
by such intersite processes to the RIXS signals, we modify
the Shastry-Shraiman formalism11,12 used in deriving the
corresponding results in Raman spectroscopy, and show that
the spin-chirality terms indeed appear in both the square lattice
(cuprate) and the kagome lattice (herbertsmithite), but that the
first appearance of such terms occurs at a higher order in the
latter case.

This paper is organized as follows: in Sec. II the Shastry-
Shraiman formalism in Raman spectroscopy is reviewed to set
the stage for Sec. III, in which the modifications to this formal-
ism to the case of RIXS are discussed and illustrated. In Sec. IV
the possibility of detecting the spin-chirality terms in RIXS is
considered in this modified formalism and our new proposal is
presented, followed by detailed analyses for the square and the
kagome lattices, as well as brief discussions for the triangular
and the honeycomb lattices. Further discussions ensue in
Sec. V, in which our motivating example of the U(1) Dirac spin
liquid is considered again to put our proposal into perspective.

II. REVIEW OF THE SHASTRY-SHRAIMAN FORMALISM
IN RAMAN SPECTROSCOPY

In the Shastry-Shraiman formalism, the electron-photon in-
teraction HC is treated as a time-dependent perturbation on the
time-independent Hamiltonian Hind. The latter consists of the
Hubbard Hamiltonian HHb = ∑

ij,σ tij c
†
iσ cjσ + U

∑
i ni↑ni↓

and the free photon Hamiltonian Hγ = ∑
q,α ωqa

α†
q aα

q (here
α labels the photon polarizations). Applying Fermi’s golden
rule, the transition rate Wf i from an initial state |i〉 to a final
state |f 〉 is given by

Wf i = 2π |〈f |T |i〉|2δ(Ef − Ei), (1)

where T is the scattering T matrix. Keeping only terms that are
second order in the photon operators aα

q , the T matrix can be
decomposed as T = TR + TNR, with TR the resonant part and
TNR the nonresonant part, of which only the former is important
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in a Mott insulator. Next, the energy denominator that appears
in TR is further expanded by treating the hopping part Ht =∑

ij,σ tij c
†
iσ cjσ of the Hubbard Hamiltonian as a perturbation

on the remaining terms in Hind. To be more precise,

TR = H
(1)
C

1

Ei − (HHb + Hγ ) + iη
H

(1)
C (2)

= H
(1)
C

1

Ei − HU − Hγ + iη

×
∞∑

n=0

(
Ht

1

Ei − HU − Hγ + iη

)n

H
(1)
C , (3)

where Ei is the initial energy of the unperturbed system,
H

(1)
C consists of the terms in HC that are first order in the

photon operators aα
q , and HU = U

∑
i ni↑ni↓ is the on-site

Coulomb repulsion in the Hubbard Hamiltonian. In the context
of Raman scattering, H

(1)
C ∼ ∑

ij,σ itij c
†
iσ cjσ (gieαaα

k eik·x +
gf eβa

β
q e−iq·x), where gi (gf ) denotes the appropriate coupling

constants between the electron and the incoming (outgoing)
photon, x = (xi + xj )/2 is the midpoint between site i and
j , and eα (eβ) and k (q) denote the polarization vector and
momentum of the incoming (outgoing) photon, respectively.

In a Mott insulator, TR connects between two spin states
(i.e., states with zero double occupancy) and hence can in
principle be expressed in terms of spin operators. In the
Shastry-Shraiman formalism, this is achieved by inserting a
complete set of states (in the lattice occupation basis with
a fixed spin quantization axis) in between the operators in
Eq. (3), under which the energy denominators (Ei − HU −
Hγ + iη)−1 become c numbers.13 Moreover, once an initial
spin state (in that same basis) is specified and a particular
choice of individual term is chosen for each Ht and H

(1)
C in

Eq. (3), the intermediate states are uniquely determined and
thus can be trivially resummed. Hence the matrix elements
of TR with respect to spin states can be expressed as a sum
of chains of electronic operators. These chains of electronic
operators can be visualized as virtual processes in which
electrons hop around the lattice and can be converted into spin
operators by the identities χ̃σσ ′ ≡ c

†
σ ′cσ = 1

2δσσ ′ + S · τ σσ ′

and χσσ ′ ≡ cσ c
†
σ ′ = 1

2δσσ ′ − S · τ σσ ′ . For t 
 U and near
resonance (i.e., ωi ≈ U , in which ωi is the energy of the
incoming photon), the contributions to TR are dominated
by virtual processes in which all intermediate states have
exactly one hole and one doubly occupied site (also known as
a doublon). In such case (Ei − HU − Hγ + iη) ≈ (ωi − U ),
and the matrix elements of TR can thus be organized as an
expansion in t/(ωi − U ).

To the lowest nontrivial order in t/(ωi − U ), the T

matrix obtained in the Shastry-Shraiman formalism repro-

duces the Fleury-Loudon Hamiltonian HFL = ∑
r,r′

2t2
rr′

U−ωi

(ei · μ)(ef · μ)(1/4 − Sr · Sr′),14 and is contributed by virtual
processes of the form shown in Fig. 1(a). At the t4/(ωi − U )3

order, individual processes that contribute to the spin-chirality
terms, such as the ones shown in Figs. 1(b) and 1(c), start
to appear. However, in the case where only nearest-neighbor
hoppings are included, the sum of their contributions is found

i ji

ii

(a)

i
j

i

ii
iv

iii

(b)

i j

i

ii
iv

iii

(c)

FIG. 1. (Color online) Virtual processes that contribute to the
resonant Raman scattering T matrix TR. The process depicted in (a)
contributes to the Fleury-Loudon term while the ones depicted in (b)
and (c) contribute (among others) to the spin-chirality terms at the
leading order. Here and henceforth thick (blue) arrows denote electron
hops that are accompanied by virtual absorptions or emissions of
photons, thin (magenta) unbroken arrows denote movements of
electrons in non-photon-induced internal hops, and thin (magenta)
broken arrows denote movement of holes in non-photon-induced
internal hops. The order of hops is indicated by lowercase roman
letters next to the corresponding arrows.

to vanish in the square and the triangular lattices, while it
remains nonzero in the honeycomb and the kagome lattices.3 It
is worth noting that the spin-chirality terms appear exclusively
in the (ex

f e
y

i − e
y

f ex
i ) polarization channel in the scattering T

matrix.

III. MODIFICATION OF THE SHASTRY-SHRAIMAN
FORMALISM TO RIXS

Since both Raman scattering and RIXS are resonant
two-photon processes, it should be possible to modify the
Shastry-Shraiman formalism to the case of RIXS. Indeed,
similar expansion of TR had been made by van den Brink and
van Veenendaal.15 However, in that work the denominator in
Eq. (2) was expanded by treating the (appropriately modified,
see below) Hubbard Hamiltonian as a perturbation on the free
photon and the atomic (see below) Hamiltonians. In practice,
the Hubbard Hamiltonian is then expanded in the usual way
one derives the Heisenberg Hamiltonian.16,17 For the present
work, we follow instead the spirit of the Shastry-Shraiman
formalism and take the terms in Hind in which site indices
change as perturbations on the free photon and the on-site
terms in Hind. Since the main purpose of this paper is to identify
virtual processes that may give rise to the spin-chirality terms,
of which the two expansion schemes agree except that the
prefactors coming from the energy denominators are organized
differently, we shall not dwell on the relative merit of these two
expansions, which may depend on one’s identification of the
resonant energy. Instead, we simply state here the necessary
modifications to the Shastry-Shraiman formalism in the case of
RIXS.

First, H
(1)
C now corresponds to virtual transitions in which

an electron hops from a core state to a valence state while
a photon is absorbed, or in which an electron hops from
a valence state to the core state while a photon is emitted.
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Hence we may write H
(1)
C = ∑

c,v igieαc†vJ
α
vccca

α
k eik·r +

igf eβc
†
c(J †)βcvcva

β
q eiq·r′

, where the subscript c (v) labels a core
(valence) state and J is a (possibly polarization-dependent)
matrix that accounts for the matrix elements of the atomic
transitions.18 As usual it is necessary to include only the core
and valence states that are near resonance in H

(1)
C .

Second, Hind must now include extra terms that account for
the single-particle energies of the core states and possibly of the
high-energy valence states, as well as their interactions with
the low-energy valence states. Schematically, we can write
Hind = Hγ + Hatomic + H ′

Hb, in which the atomic Hamiltonian
Hatomic accounts for the energy difference between the core
state and the valence state excited from it, while the modified
Hubbard Hamiltonian H ′

Hb accounts for the interactions of the
valence electrons among themselves, with the lattice potential,
and with the core hole. In particular, since HU captures
only the low-energy effective Coulomb repulsion among the
low-energy valence electrons, in principle it is necessary to
include in H ′

Hb generic Coulomb interactions uαβγ δc
†
αc

†
βcγ cδ

in which at least one of the electron operators corresponds to
a core or high-energy valence state. However, on physical
ground it may be argued that the dominant effect of the
core or high-energy valence state on the low-energy valence
states would be modifications to the hopping parameters and
the on-site potentials, i.e., uαβγ δc

†
αc

†
βcγ cδ ∼ c

†
cccVc,ij c

†
i cj and

c
†
eceVe,ij c

†
i cj , where the subscript c (e) labels a core (high-

energy valence) state while i,j are site labels of low-energy
valence states. In practice, the effect of the core hole may be
well captured by an on-site potential Uc localized at the site
where the core hole is present.17

Third, unlike in Raman scattering, the core hole in RIXS
has a very short lifetime and can decay via Auger processes.
This introduces an uncertainty to the core-hole energy, which
can be captured by replacing the infinitesimal η in Eqs. (2) and
(3) by a finite energy broadening �.

To illustrate the modified Shastry-Shraiman formalism,
we briefly outline the virtual processes that contribute to
the single-magnon excitation in 2p → 3d RIXS and to the
two-magnon excitation in 1s → 4p RIXS in cuprates, both of
which have previously been proposed17,18 and experimentally
studied.19,20

For the 2p → 3d RIXS, the lowest-order processes that
contribute to the single-magnon excitations are purely atomic
in nature and involve simply the photon-induced virtual
transitions of a 2p core electron to and from the 3d valence
states (see Fig. 2 for illustration). Since the 2p states are
spin-orbit coupled, spin is not a good quantum number,
and a spin flip of the 3d electrons can occur, as long as
it is accompanied by an appropriate change in the photon
polarization. In the modified Shastry-Shraiman formalism, the
chain of electron operators that is associated with the process
depicted in Fig. 2 is

T1-magnon ∝
∑

p,p′,σ,σ ′

(
c†p(J †)βpσ cσ

)
(c†σ ′J

α
σ ′p′cp′ )

= tr{Mαβχ}
= m

αβ

0 − 2mαβ · S, (4)

3d

2p3/2

2p1/2

i
ii

FIG. 2. (Color online) The lowest-order virtual processes that
contribute to the one-magnon excitation in 2p → 3d RIXS.

where the subscript p labels the 2p states while the subscript
σ labels the spin of the valence 3d states. Also, χσσ ′ ≡
cσ c

†
σ ′ = 1

2δσσ ′ − S · τ σσ ′ as before while M
αβ

σ ′σ = m
αβ

0 δσ ′σ +
mαβ · τ σ ′σ = ∑

p J α
σ ′p(J †)βpσ . Note that we have adopted a

matrix convention for spin indices in the second line (which
will be similarly adopted henceforth). From Eq. (4) it can
be seen that the spin-flip term arises from structure of the
2p → 3d transition matrix elements.

For the 1s → 4p RIXS, two-magnon excitation occurs
when the core hole and 4p valence electron “shake up” the
low-energy valence electrons and induce a pair exchange. Two
such processes are depicted in Fig. 3. The chains of electron
operators that are associated with the processes depicted in
Figs. 3(a) and 3(b) are, respectively,

T
(a)

2-magnon ∝ (
c
†
is(J

†)βspcip

)
(tij c

†
i cj )(tj ic

†
j ci)

(
c
†
ip′J

α
p′s ′cis ′

)
= tr{J α(J †)β}tij tj i tr{χj χ̃i}
= Nαβtij tj i

(
1
2 − Si · Sj

)
, (5)

T
(b)

2-magnon ∝ (
c
†
is(J

†)βspcip

)
(tj ic

†
j ci)(tij c

†
i cj )

(
c
†
ip′J

α
p′s ′cis ′

)
= tr{J α(J †)β}tj i tij tr{χiχ̃j }
= Nαβtij tj i

(
1
2 − Si · Sj

)
, (6)

where Nαβ ≡ tr{J α(J †)β}, the subscript s (p) labels the 1s

(4p) states, and the electron operators with no orbital labels
are assumed to be that of the valence 3d states. For brevity here
and henceforth we omit the spin indices in virtual hops that
involve only the 3d electrons, assuming that they are appro-
priately summed within parentheses. Thus, e.g., (tij c

†
i cj ) ≡∑

σ tij c
†
iσ cjσ . Similarly, here and henceforth the sums over

the spin and (for core hole and high-energy valence electrons)
the orbital indices are assumed in the two photon-induced

i j

i

ii

iiiiv

4p

3d

1s

(a)

i j

i

ii

iiiiv

4p

3d

1s

(b)

FIG. 3. (Color online) The lowest-order virtual processes that
contribute to the two-magnon excitation in 1s → 4p RIXS.
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3d
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ii

iiiiv

i
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i v
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iiiii

i

j
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FIG. 4. (Color online) Two processes whose contributions to the
spin-chirality terms cancel out each other.

hops, such that, e.g., (c†ip′J
α
p′s ′cis ′ ) ≡ ∑

p′,s ′ c
†
ip′J

α
p′s ′cis ′ . Note

also that the matrix notation in the second line of Eqs. (5) and
(6) is now extended to include the orbital indices of the core
and the 4p electrons.

Under the assumption that the only effect of the 1s core
hole and the 4p valence electron is to introduce an additional
potential Uc at the site i of which the atomic transition occurs,
the coefficients of T

(a)
2-magnon and T

(b)
2-magnon that come from the

energy denominators are, respectively,

C
(a)
2-magnon =

(
1

δω + i�

)2 1

δω − (U + Uc) + i�
, (7)

C
(b)
2-magnon =

(
1

δω + i�

)2 1

δω − (U − Uc) + i�
. (8)

Here δω = ωi − (E4p − E1s) is the detuning from the atomic
transition. We remark that one must subtract from C2-magnon

the corresponding coefficients with Uc = 0 to obtain the
actual contributions of these two processes to the two-magnon
transition, since the contributions of these two processes with
Uc set to 0, together with other virtual processes in which
the intermediate virtual exchange does not involve the site i,
constitute a part of the T matrix that is proportional to the
Heisenberg Hamiltonian and thus is not responsible for any
actual transitions.

IV. SPIN-CHIRALITY TERMS IN RIXS

To obtain the spin-chirality terms, at least three lattice sites
must be involved in the virtual processes. For example, one
might consider the higher-order processes in the 1s → 4p

RIXS shown in Figs. 4(a) and 4(b). From the modified
Shastry-Shraiman formalism, the associated chains of electron
operators are, respectively,

T
(a)

3-sites ∝ (
c
†
is(J

†)βspcip

)
(ti�c

†
i c�)(t�j c

†
�cj )(tj ic

†
j ci)

(
c
†
ip′J

α
p′s ′cis ′

)
= tr{J α(J †)β}ti�t�j tji tr{χ�χj χ̃i}
= Nαβti�t�j tji[2iS� · (Sj × Si) + · · · ], (9)

T
(b)

3-sites ∝ (
c
†
is(J

†)βspcip

)
(tij c

†
i cj )(tj�c

†
j c�)(t�ic

†
�ci)

(
c
†
ip′J

α
p′s ′cis ′

)
= tr{J α(J †)β}tij tj�t�i tr{χjχ�χ̃i}
= Nαβti�t�j tji[2iSj · (S� × Si) + · · · ]. (10)

Moreover, it can be seen that the coefficient coming from
the energy denominators is C3-sites = (δω + i�)−2[δω − (U −
Uc) + i�]−2 for both processes. Hence while each process
by itself contributes to the spin-chirality terms, the sum of
their contributions vanishes. [Note, however, that the sum of
their contributions to the S · S terms (omitted in the · · · ) does
not vanish.] Similar calculations show that the cancellation
also occurs in the two analogous virtual processes in which
electrons hop around the four-site loop in the square lattice.
Furthermore, it can be shown that such cancellations also occur
for similar virtual processes in the 2p → 3d RIXS.

In Raman scattering, the analogous processes, in which
the hops i and v in Fig. 4 do not exist and which the hops
ii and iv are photon induced, do not cancel out each other.
Instead, the anticlockwise loop in Fig. 4(a) contributes to the
e
y

f ex
i photon polarization channel while the clockwise loop

in Fig. 4(b) contributes to the ex
f e

y

i channel, resulting in a
nonvanishing contribution to the (ex

f e
y

i − e
y

f ex
i ) channel when

summed. This suggests that in order for the spin-chirality
terms to be realized in the scattering T matrix, it is crucial
for the photon polarizations to be coupled with the directions
of intersite electron hops—a link that does not appear in the
usual RIXS setups.

That said, one should also note that the dipole moment
between a core orbital at one site and a valence orbital at
one of its nearest-neighbor site is in general nonvanishing.
Thus, in principle, a photon from the incident x-ray beam
can also induce a core-to-valence excitation across the two
sites. Such an intersite transition is in general suppressed by
the reduced wave-function overlap and is thus masked by the
corresponding intrasite transition. Moreover, for hard x ray
the distance between two nearest-neighbor sites may also be
equal to many wavelengths of the incident x ray, which further
reduces the transition amplitude for such an intersite transition
at near-horizontal incidence (relative to the two-dimensional
lattice plane) as a result of the rapid oscillation of the electric
field across the two sites.

However, if the frequency of the incident x ray is tuned
to that of a forbidden atomic transition (e.g., the 1s → 3d

transition in the Cu2+ materials), then the near-resonant dipole
intersite transition needs only to compete with a near-resonant
quadruple intrasite transition and a detuned dipole intrasite
transition. With adequate luminosity, this may allow the signals
from the intersite transition to manifest in the spectrum.
Indeed, contributions from such intersite transitions have
previously been identified in the x-ray absorption and Auger
spectroscopy of TiO2 (Refs. 6–8) and La2CuO4.9,10

Moreover, for nearly two-dimensional materials such as
cuprates and herbertsmithite, the rapid oscillation of the
electric field between two lattice sites can be alleviated by
arranging the x ray to be at near-normal incidence relative to the
two-dimensional lattice plane. Generally, by tuning the angle
of incidence, the electric field across two nearest-neighbor
sites can be made relatively uniform while a sufficiently large
in-plane momentum of the photon is maintained, such that
a significant portion of the Brillouin zone can be explored.
Furthermore, one may also consider resonances induced by
soft x-ray (e.g., the 2s → 3d and the 3s → 3d resonances in
cuprates), which have larger wave-function overlaps between
the core orbitals and their nearest-neighbor valence orbitals.
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For the rest of this section we shall assume that the signals
from such intersite transitions can indeed be detected and
consider in detail whether the spin-chirality terms can indeed
arise from such a case. Specifically, we shall focus on s → 3d

intersite transitions in Cu2+ materials with the square and
the kagome lattice geometries, having in mind the realistic
materials of cuprates and herbertsmithite. We shall also briefly
comment on the cases of the triangular and the honeycomb
lattices, in which the derivations of the spin-chirality terms are
closely related to that of the square and the kagome lattices,
respectively, and in which the former may be relevant to the
new spin liquid candidate21 Ba3CuSb2O9. For brevity we shall
drop the factors gi and gf that are common to all virtual
processes.

In such virtual processes with photon-induced intersite
hopping, it is easy to check that the intermediate state obtained
after a photon-induced hop has an energy denominator of
ED = δω − (U − Uc) + i�, where δω = ωi − (E3d − Ecore) is
again the detuning from the atomic transition. The resonant
condition is thus given by ωi ≈ (E3d − Ecore) + (U − Uc),
under which ED ≈ i�. For cuprates, U ≈ 8.8 eV and Uc ≈ 7.0
eV, while � ≈ 0.75 eV for the K edge.17 In comparison, in the
effective one-band Hubbard model for cuprates, t ≈ 0.4 eV.22

Observe that the expression of ED involves Uc, suggesting that
the true resonant frequency of the intersite dipole transition
is offset from that of the intrasite quadruple transition by
Uc. Indeed, the relative frequency shift between the intersite
dipole transition and the intrasite quadruple transition has been
used to explain the “three peaks” feature of Ti pre-K-edge
absorption spectra in TiO2.6 The existence of such frequency
shift may thus allow the signals from the intrasite quadruple
transition to be further suppressed relative to intersite dipole
transition when the frequency of the incident photon is
tuned.

If we further assume that � 
 U and that U and Uc are of
the same order of magnitude, assumptions that appear to be
valid in cuprates, then the virtual processes are dominated by
those having intermediate states with exactly one low-energy
valence doublon not located at the core-hole site, and we can
organize the T matrix as an expansion in t/� similar to that in
the Raman case. Since the effect of the photon polarizations is
now mostly reflected in the directions of the induced electron
hops and since the spin-orbit coupling is negligible, we
may take H

(1)
C ∼ ±J (eα · μ)

∑
σ c

†
i+μ,σ ci,s,σ ≡ ±J (eα · μ)

(c†i+μci,s) for the electron hop associated with the virtual ab-

sorption of photon and H
(1)
C ∼ ±J (eα · μ)

∑
σ c

†
i+μ,s,σ ci,σ ≡

± J (eα · μ)(c†i+μ,sci) for the electron hop associated with
the virtual emission of photon, in which operators with the
subscript s correspond to the s orbitals while operators without
orbital labels correspond to the valence 3d orbitals. Note that
J is now a real scalar constant. The ± signs in the above
equations are determined by the relative orientations of the d

orbitals and are illustrated in Fig. 5.
Now consider the particular case of the square lattice with

only uniform nearest-neighbor hopping t . For such a lattice,
virtual processes that involve valence electrons on at least
three sites first appear at the order of two internal hops [i.e.,
at the (t2J 2/E3

D)-th order]. Two such processes are depicted in
Figs. 6(a) and 6(b). The corresponding contributions to the T

J

−J

(a)

J

−J

(b)

FIG. 5. (Color online) Orientations of the 3d orbitals in (a)
cuprates and (b) herbertsmithite, and their effects on the signs of
the photon-induced hopping amplitudes in the s → 3d RIXS. Here
the red (solid) and cyan (shaded) fillings indicate the relative signs
of the angular part of the electron wave functions. Note from the
figure that none of the photon-induced hopping magnitude is required
to vanish by symmetry.

matrix are, respectively,

T (a)
sq = 1

E3
D

(
e
y

f J c
†
1,sc3

)
(tc†3c4)(tc†4c2)

(
ex
i J c

†
2c1,s

)

= t2J 2

E3
D

e
y

f ex
i tr{χ3χ4χ2}

.= −2it2J 2

E3
D

e
y

f ex
i S3 · (S4 × S2)

= −2it2J 2

E3
D

e
y

f ex
i × , (11)

T (b)
sq = 1

E3
D

( − ex
f J c

†
1,sc2

)
(tc†2c4)(tc†4c3)

( − e
y

i J c
†
3c1,s

)

= t2J 2

E3
D

ex
f e

y

i tr{χ2χ4χ3}

.= −2it2J 2

E3
D

t2J 2
(
ex
f e

y

i

)
S2 · (S4 × S3)

= 2it2J 2

E3
D

ex
f e

y

i × , (12)

where
.= denotes the part of the T matrix that contains the

spin-chirality terms, and that a graphic representation of the
spin-chirality terms have been adopted on the fourth line of
Eqs. (11) and (12).

For a fixed core-hole site, at this order there are three
additional pairs of processes that contribute to the spin-
chirality terms, which can be obtained from the processes
depicted in Fig. 6 by successive 90◦ rotations about the
core-hole site. Summing over all these processes, to this order
the contribution to the spin-chirality terms by a core hole at
site i is given by

T i
sq

.= 2it2J 2

E3
D

(
ex
f e

y

i − e
y

f ex
i

)

×
(

+ + +
)

. (13)
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FIG. 6. (Color online) Two processes with intersite photon-
induced transitions that contribute to the spin-chirality terms in the
s → 3d RIXS.

Summing over all possible core-hole sites, and now restoring
the exponential factor ei(ki−kf )·ri , we have24

Tsq
.=

∑
R

2it2J 2

E3
D

(
ex
f e

y

i − e
y

f ex
i

)
ei(ki−kf )·R

×
(

+ + +
)

R
, (14)

where the subscript R next to the parenthesis labels the site with
which the spin-chirality terms are associated. From Eq. (14)
we see that for the square lattice there are indeed contributions
to the T matrix that couple to the spin-chirality terms at
momentum q = ki − kf (i.e., the momentum transferred by
the photon).

The above analysis for the square lattice can be readily
modified to the case of the triangular lattice, since processes
with less than two internal hops can involve valence electrons
at at most two sites and hence do not give rise to any spin-
chirality terms, while the two-internal-hop processes in the
triangular lattice and the square lattice are topologically the
same (see Fig. 7 for illustration). For example, the contribution
to the spin-chirality terms by the process depicted in Fig. 7(b)
can be read off as

T
(b)

tri
.= 2it2JiJf

E3
D

ew
f ex

i , (15)

where the superscript w in the photon polarization ew
f corre-

sponds to the unit vector ŵ as depicted in the figure. Assuming
that all photon-induced hops have the same amplitude, so that

1 2

3 4

i

iiiv

iii

x̂

ŷ

1 2

3 4

i

iiiv

iii
x̂

v̂

ŵ

x̂ → x̂
ŷ → −ŵ

)b()a(

FIG. 7. (Color online) Mapping of two-internal-hop processes
between the square and the triangular lattices.

Ji = Jf = J for all processes, we can sum up all contributions
as in the square lattice case to obtain

Ttri
.=

∑
R

√
3it2J 2

2E3
D

(
ex
f e

y

i − e
y

f ex
i

)
ei(ki−kf )·R

3

R
.

+ 3 + +

+

×

+ + +

(16)

Hence, as in the square lattice case, the spin-chirality terms do
appear in the triangular lattice at the (t2J 2/E3

D)-th order.
Next we consider the kagome lattice with only uniform

nearest-neighbor hopping t . In Fig. 8 we list all the distinct
topologies (as opposed to geometries, such that, e.g., Fig. 8(c)
is also representative of processes in which the third site is
located at other locations) of resonant virtual processes up
to three internal hops. Unfortunately, none of these processes
generate any spin-chirality terms. To see this, first observe that
the processes depicted in Figs. 8(a)–8(d) involve valence
electrons at only two or fewer sites and thus cannot generate
any spin-chirality terms (note that only core electrons are
involved at site 1 in all of the processes listed in Fig. 8).
Next, to rule out the processes depicted in Figs. 8(e)–8(g),

1 2
i

ii

(a)

1 2

3

i

iiiii

(b)

1 2

3

i

ii
iii

iv

(c)

1 2

3

i

iiiiiiv
v

(d)

1 2

3

1

i

ii

iii
iv

v

(e)

1 2

3

1i
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ii

iii

v

(f)

1 2

3

1

i

ii

iiiiv

v

(g)

FIG. 8. (Color online) Topologically distinct resonant virtual
processes with intersite photon-induced transitions in the s → 3d

RIXS in the kagome lattice, up to three internal hops.
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FIG. 9. (Color online) Virtual processes with intersite photon-
induced transitions that contribute to the spin-chirality terms in the
s → 3d RIXS in the kagome lattice.

note that a spin state is annihilated by two successive creation
operators or two successive annihilation operators on the
same site, regardless of the spin characters of these two
operators. Consequently, if a site is transversed more than
once in a virtual process, then each internal loop contributes
to a separate trace in the Shastry-Shraiman derivation. For
instance, corresponding to Fig. 8(g) we have

T
(g)

kagome = ex
f ex

i

t3J 2

E4
D

(c†1,sc2)(c†2c3′ )(c†3′c1′ )(c†1′c2)(c†2c1,s)

= ex
f ex

i

t3J 2

E4
D

(c†1,sc2) tr{χ3′χ1′ }(c†2c1,s)

= ex
f ex

i

t3J 2

E4
D

tr{χ2} tr{χ3′χ1′ }

= ex
f ex

i

t3J 2

E4
D

(
1

2
+ 2S3′ · S1′

)
. (17)

Similarly, T
(e)

kagome ∼ (1/2 + 2S2 · S3) and so does T
(f )

kagome.
For the kagome lattice, the spin-chirality terms first appear

at the (t4J 2/E5
D)-th order, which arise from virtual processes in

which the doublon hops through a hexagon. One such process
is depicted in Fig. 9(a), whose contribution is given by

T
(hex)

kagome = ew
f ex

i

t4J 2

E5
D

(c†1,sc6)(c†6c5)(c†5c4)(c†4c3)(c†3c2)(c†2c1,s)

= ew
f ex

i

t4J 2

E5
D

tr{χ6χ5χ4χ3χ2}

.= ew
f ex

i

it4J 2

2E5
D

∑
6�a>b>c�2

Sa · (Sb × Sc), (18)

where the superscript w in ew
f corresponds to the unit vector ŵ

as depicted in the figure. One can check that processes with the
same topology as the one depicted in Fig. 9(a) sum to a nonzero
contribution to the spin-chirality terms in the (ex

f e
y

i − e
y

f ex
i )

channel at momentum q equal to that transferred by the photon,
which for brevity we shall not write down explicitly. It can
also be checked that any process at this order with a different
topology does not contribute to any spin-chirality terms.

Compared with the corresponding terms in the square
lattice, the spin-chirality terms in the kagome lattice are down
by a factor of (t/ED)2, which can be significant in the limit
where t 
 � even if the resonant condition is met. In such case
one may want to consider also processes in which not all energy
denominators are equal to ED . With this relaxed criterion,
contributions to the spin-chirality terms can be found at the
order of two internal hops, in which the doublon hops through
the core-hole site [see Figs. 9(b) and 9(c) for illustrations]. For
instance, the process depicted in Fig. 9(c) contributes

T
(Uc)

kagome = −ew
f ex

i

t2J 2

E2
D(ED + Uc)

(c†1,sc3)(c†3c1)(c†1c2)(c†2c1,s)

= −ew
f ex

i

t2J 2

E2
D(ED + Uc)

tr{χ3χ1χ2}

.= −ew
f ex

i

2it2J 2

E2
D(ED + Uc)

S3 · (S1 × S2). (19)

Again it can be checked that all processes with the same
topology as the one depicted in Fig. 9(b)[which includes the
one depicted in Fig. 9(c)] sum to a nonzero contribution to
the spin-chirality terms in the (ex

f e
y

i − e
y

f ex
i ) channel. It is

worth noting that such “back-tracking” processes are also
present in the square lattice and carry opposite signs from
the ordinary ones depicted in Fig. 6. Thus in the limit where
t 
 �, the ratio of prefactors in the spin-chirality terms in
the kagome lattice over that in the square lattice is given by
(ED + Uc)−1/[E−1

D − (ED + Uc)−1] = ED/Uc. It is, however,
worth noting that t/� is not expected to be small in the case
of cuprates.

Since the honeycomb lattice has the same hexagon loops
as in the kagome lattice and has no shorter (in terms of the
number of hops) loops, it can be readily checked that the spin-
chirality terms again first appear in the honeycomb lattice at
the (t4J 2/E5

D)-th order when t � |ED| and at the [t2J 2/(ED +
Uc)E2

D]-th order when t 
 |ED|, with Figs. 9(a) and 9(c) the
typical contributing processes in the respective cases.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we consider the question of whether RIXS can
be used to detect many-body excitations that are coupled to the
spin-chirality terms in a Mott insulator. We find that the spin-
chirality terms are in general absent in the usual experimental
setups, in which the spectroscopy is done near an absorption
edge. The absence of the spin-chirality terms in these setups
can be traced to the lack of linkage between the virtual electron
hops and the photon polarizations. However, we argue that
RIXS still holds a prospect of observing the effects of the
spin-chirality terms if one instead considers spectroscopy near
a pre-edge, in which case the intrasite dipole transitions are
forbidden.

Focusing on the Cu2+ materials with the square and the
kagome lattice geometries, we find that the spin-chirality terms
are indeed presented in both cases under our new proposal.
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However, in the kagome case such terms appear only at a higher
order in our expansion. In addition, we also find that as far
as the spin-chirality terms are concerned, the scenario for the
triangular lattice is analogous to that of the square lattice, while
the scenario for the honeycomb lattice is analogous to that of
the kagome lattice. It is worth noting that the situation we
encounter in RIXS is essentially the reverse of what happens
in the Raman case, in which the spin-chirality terms occur at
the (t4/U 3)-th order in the kagome and the honeycomb lattices
but not in the square or the triangular lattices.

In comparison to the similar scheme to detect the spin-
chirality terms in Raman spectroscopy,11,12 which had already
been realized,25 the present scheme in RIXS suffers from
the reduced wave-function overlaps in the intersite dipole
transitions. However, it has the advantage that excitations with
finite momentum can be probed. To put this into perspective,
let us return to the motivation we presented in the introduction,
namely the emergent gauge boson in the U(1) Dirac spin liquid.
In the U(1) Dirac spin liquid, the spin-chirality terms in the T

matrix correspond to flux-flux correlators, viz.∑
f

Wf i =
∑
f

2π |〈f |T |i〉|2δ(Ef − Ei) (20)

∼ 〈i|b(
k,
ω)b(0,0)|i〉 + · · ·
∝ q2�(
ω − vF 
k)(


ω2 − v2
F 
k2

)1/2 + · · · , (21)

where � denotes the step function, vF is the Fermi velocity
at the Dirac cone of the U(1) Dirac spin liquid, b is
the “magnetic field” associated with the emergent gauge
boson, and 
ω = ωi − ωf (
k = ki − kf ) is the energy
(momentum) transferred from the photon. If we assume that

ED in RIXS and (ωi − U ) in Raman spectroscopy are of the
same order, the intensity of the signal from the gauge boson
in RIXS will be modified from that in Raman spectroscopy
by a factor roughly equal to J 2ED/t2(ED + Uc) or J 2/E2

D ,
depending on which limit one considers in RIXS. However,
such comparison is not particularly meaningful since we have
not considered how the background signals compare in the
two cases. However, the advantage offered by RIXS is not so
much in the intensity of the signal but rather in its line shape. In
the Raman case where 
k ≈ 0, the signature of the emergent
gauge boson can manifest only as a power-law behavior near
zero energy transfer, which can easily be masked by the elastic
or quasielastic peak. In contrast, in RIXS the signal from the
gauge boson has a sharp threshold at 
ω = vF 
k, which
varies as 
k varies. Thus, assuming modest intensities of the
signals, it would be much easier to discern the emergent gauge
boson in the case of RIXS.

Of course, one should not underestimate the experimental
challenges in realizing the proposal laid out in this paper.
However, enormous progress in RIXS has been made in recent
decades,5 with two-magnon excitations being observed20,26

and three-magnon excitations being proposed.27 It is our hope
that our proposal will further stimulate new theoretical and
experimental advances in the field.
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