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Ab initio based determination of thermodynamic properties of cementite including vibronic,
magnetic, and electronic excitations
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The thermodynamic properties of cementite have been evaluated with a hybrid approach, which describes the
vibrational and electronic excitations based on density functional theory calculations, while the magnetic free
energy is evaluated using the spin quantum Monte Carlo scheme. Our ansatz allows us to calculate the heat
capacity and free energy of cementite with a high accuracy resulting in a free-energy difference of less than
10 meV/atom at 1500 K when compared with experiment. For the formation energy of cementite we observe,
however, that the accuracy of density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation
functional is not sufficient to provide quantitative agreement with experiment. We show that the main limit in the
accuracy of this exchange-correlation functional is the T = 0 K potential energy surface.
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I. INTRODUCTION

The phase diagram of Fe-C plays an essential role in
understanding and tailoring thermodynamic properties of
carbon-containing steels. Cementite (Fe3C) is one of the
key structures appearing in the Fe-C phase diagram, and is
the predominant carbide in carbon steels.1 Among others, it
allows one to control the mechanical properties of steels by
combining the hard and brittle cementite phase with the soft
and ductile phase of α-Fe (ferrite). Fe3C has also attracted
significant attention in geophysics due to a recent suggestion
that it can be contained in the Earth’s core.2–4 An experimental
evaluation of the cementite properties is, however, not trivial
since at ambient pressure it is a metastable phase up to
≈1000 K,5 and the experimental samples are typically con-
taminated with ferrite and bulk carbon phases.6 This leads to
a sizable scatter between different experimental studies when
considering the thermodynamic properties of cementite, such
as the thermal volume expansion, heat capacity, and the heat
of formation. Consequently, an unambiguous parametrization
of experiment-based thermodynamic databases within, for
example, the CALPHAD concept, becomes cumbersome. In this
situation supplementing experimental data sets with results of
first-principles calculations becomes appealing, since the latter
have the main advantage of not using any fitting parameters. In
case of cementite, however, the majority of the first-principles
studies are focused so far on T = 0 K properties only,7–13 and
do not take temperature effects into account, thus providing
only limited input to experimental databases.

In a recent paper14 we have presented a hybrid approach
which combines first-principles electronic structure total en-
ergy calculations with quantum Monte Carlo simulations in
order to assess the thermodynamic properties of cementite.
In the present paper we extend that work by providing a
detailed description of the obtained results as well as of
the underlying methodologies. The results obtained using
this approach are compared with a recent thermodynamic
assessment of Fe3C, where particular emphasis has been put
on the accurate description of the free energy. We further
consider the thermodynamic stability of cementite versus the
decomposition into the bulk carbon and iron phases, and
discuss the accuracy and errorbars of the free energy for each
individual phase.

II. METHODOLOGY

The thermodynamic properties of Fe3C are calculated
assuming that the various excitation mechanisms are adiabat-
ically decoupled. This allows us to decompose the Helmholtz
free energy F (T ,V ) into three contributions:

F (V,T ) = F vib(V,T ) + F el(V,T ) + F mag(V,T ). (1)

Here F vib, F el, and F mag are the free energy contributions
due to lattice vibrations and electronic and magnetic excita-
tions, respectively.

To calculate F vib we use the quasiharmonic approxi-
mation15,16 which accounts for the thermal expansion of the
crystal V0(T ) based on the explicit description of the phonon
properties at different crystal volumes as obtained with the
density-functional theory (DFT). In order to calculate the
dynamical matrix we have employed the direct force constant
method with atomic displacements of ±0.02 Å from the atomic
equilibrium positions and using five volumes homogeneously
spanning the volume range between V0(T = 0 K) and 1.06 ·
V0(T = 0 K). The projector augmented wave method17 within
the generalized gradient approximation in Perdew-Burke-
Ernzerhof (PBE) parametrization18 as implemented in the
VASP19 package was used in the corresponding calculations.
Iron and carbon PAW potentials include 3d and 4s, as well as
2s and 2p states as valence, respectively.

The convergence of the calculated vibrational contribution
is ensured by using a supercell consisting of 2×2×2 Fe3C unit
cells (128 atoms), plane-wave energy cutoff Ecut = 400 eV,
≈13 000 k-points per atom resulting from a homogeneous
Monkhorst-Pack sampling of the Brillouin zone. A first order
Methfessel-Paxton scheme with a thermal smearing parameter
of 0.15 eV is used for integration over the k-points. A
homogeneous mesh of more than 106 q points has been
used to integrate over the phonon spectrum in the reciprocal
space. We note, that in case of cementite explicit systematic
convergence tests of F vib with respect to the supercell size are
not straightforward: The 1×1×1 cell (16 atoms) is too small
to ensure high convergence of the vibrational free energy,
while the 3×3×3 supercell (432 atoms) is computationally
too expensive. We have, therefore, compared ferromagnetic
Fe3C with ferromagnetic bcc Fe as a reference, for which
systematic convergence tests are computationally feasible.
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In particular, we have analyzed the force constant versus
distance distribution for 128-atom Fe3C supercell (minimum
interatomic distance between an atom and its image a > 8.9 Å)
with that in bcc-Fe 54-atom supercell (a ≈ 8.5 Å). We
have found, that for both systems the distributions are even
quantitatively similar: for distances larger than 3.5 Å the
largest force constants do not exceed 0.15 eV/Å2, while for
distances up to 3.5 Å the largest force constants decrease from
≈10 eV/Å2 to ≈1.5 eV/Å2. Based on this comparison we
expect the F vib convergence for Fe3C is similar to that in bcc
Fe, where for 54-atom large supercell F vib is converged to
better than ≈1 meV/atom at T = 1300 K.

The phonon calculations for Fe3C are performed assuming
a ferromagnetic ordering of the system at all volumes.
The magnetic moments at each volume are calculated self-
consistently, that is, without applying constrains within the
DFT calculations. This results in an increase of the local
magnetic moments of the Fe atoms with increasing volume.
This magnetovolume effect is, however, weak: for the volume
which corresponds to T = 1500 K the increase of the local
magnetic moments of Fe when compared to that at V0(T =
0 K) is less than 0.1 μB (compared to the absolute value of
the Fe local magnetic moments at V0 of ≈1.9 μB, see Table I).
Thus, in the relevant temperature interval the local magnetic
moments in the ordered magnetic state remain essentially
unchanged. The phonon calculations are, therefore, decoupled
from the electronic temperature-driven excitations, including
the excitations of the local magnetic moments. For bcc iron
it was recently shown by Shang et al.20 that the influence of
magnetic order on the vibronic contribution on the Helmholtz
free energy can be accounted for by considering different
magnetic structures and a statistical averaging procedure. The
extension and application of these concepts20 beyond simple
magnets toward more complex magnetic alloys such as the
considered cementite structure, is a topic of ongoing research
and is beyond the scope of the present manuscript.

The electronic contribution F el(V,T ) is calculated using
finite temperature DFT,21,22 which explicitly describes the
excess energy of the thermally excited electrons at a given
T . For this purpose a k-point mesh with ≈40 000 k-points per
atom and a Fermi-Dirac statistics was used. Identical to the
quasiharmonic calculations, a nonconstrained ferromagnetic
collinear state of the system is assumed at all temperatures.
Further method details on the ab initio calculations of
F vib(V,T ) and F el(V,T ) are discussed in Ref. 15.

The magnetic free energy F mag(V,T ) is described by
solving the quantum Heisenberg model for the Fe3C crystal.
A promising approach to numerically solve the quantum
Heisenberg model is given by the spin quantum Monte Carlo
approach (QMC). For many realistic systems such as bcc
iron, the long-ranged magnetic exchange interactions result,
however, into spin frustration causing the so-called negative
sign problem23 and making the QMC approach inapplicable.
Mapping the long-ranged Heisenberg model onto an effective
nearest-neighbor Heisenberg model provides a frustration free
system that can be readily solved using QMC. The application
to the transition metals iron, cobalt, and nickel revealed the
high efficiency and excellent performance of this approach.24

In this work we therefore employ the same methodology to
compute the magnetic contribution of cementite. The three

ingredients to construct the nearest-neighbor model are the
crystal structure, the effective spin quantum number and
the effective nearest-neighbor exchange parameter J . Whereas
the first ingredients are obtained by first-principles directly, the
latter is determined by the experimental critical temperature
T

exp
C = 483 K.25 We note that due to the atomic relaxations the

averaged nearest-neighbor distance for Fe8d and Fe4c slightly
differs (2.61 ± 0.04 Å for Fe8d and 2.57 ± 0.06 Å for Fe4c).
Since these differences are one order of magnitude smaller than
the second nearest-neighbor distance (approximately 3.7 Å),
the same effective J is chosen for all considered first nearest
neighbors.

We performed spin QMC calculations using the ALPS
code26 and employing the direct-loop algorithm and local
updates within the stochastic series expansion representation.
The magnetic contribution of the C atoms is neglected since
their local magnetic moments are found to be negligible (less
than 0.006 μB) compared to that of the Fe species. The
calculations have been performed using a supercell consisting
of 6 × 6 × 6 Fe3C unit cells (3456 atoms), and 5 × 106 steps
for thermalization and statistical averaging. Since the localized
spin model only permits multiple of half integer spin quantum
numbers (SFe = 0, 1/2, 1, . . .), the magnetic free energy for
Fe3C with the equilibrium local magnetic moments of the
Fe atoms M

eq
Fe(T = 0 K) ≈ 1.9 μB (see Table I) is calculated

using linear interpolation between the spin QMC free energies
evaluated with the spin quantum number SFe = 1 as well as
SFe = 1/2. These numbers for the Fe atoms correspond to
MFe = 2 μB and MFe = 1 μB, respectively, with the Landé
factor g ≈ 2 being used.27 In the spin QMC calculations the
T = 0 K value of the M

eq
Fe was used at all temperatures.

The temperature-dependent free energy of formation (for-
mation energy) of Fe3C from the bulk iron and carbon phases
is calculated as

�Ff (T ) = FFe3C(T ) − [3FFe(T ) + FC(T )] /4. (2)

Here all free energies F are given per atom. FFe(T ) is
taken from Ref. 24, where it was calculated using the identical
approach as employed here for Fe3C. In Ref. 24, however,
the plane-wave cutoff energy Ecut = 340 eV was sufficient
to ensure convergence of the free-energy FFe(T ) to less than
1 meV/atom up to T = 1800 K. Thus, in case of α-Fe the
increase of the cutoff energy from Ecut = 340 eV to Ecut =
400 eV may change the ground-state energy of the crystal
[FFe(0)], but does not change the temperature dependence
of the free energy �FFe(T ) = FFe(T ) − FFe(0) within the
accuracy margins. In this work we, therefore, calculate the
free energy of α-Fe corresponding to Ecut = 400 eV as
FFe(T ) = F ′

Fe(T ) + �Eecut, where �Eecut = EFe
tot(340 eV) −

EFe
tot(400 eV), and F ′

Fe(T ) is the α-Fe free energy calculated
with Ecut = 340 eV.

We note here that apart from the above described spin QMC
scheme for calculating the ab initio magnetic free energy
F mag, an alternative approach to compute this contribution
is employing the random phase approximation (RPA) and
solving the complete (not effective) Heisenberg Hamiltonian
analytically.28–30 In a previous study on α-Fe it has been found
that employing the RPA within Eq. (1) allows us to calculate
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the free energy of this material with an accuracy comparable to
that within the spin QMC method (less than 20 meV/atom at
T = 1500 K).27 In the following we will apply both ab initio
approaches to describe the magnetic contribution of FFe(T ) in
Eq. (2). The simultaneous application of both approaches has
the advantage that the sensitivity of �Ff (T ) on the free-energy
methodology (for α-Fe) as well as possible error cancellations
when using QMC (for α-Fe as well as Fe3C) can be
assessed.

FC(T ) in Eq. (2) is the free energy of a bulk carbon
phase. The thermodynamically stable phase of bulk carbon
is graphite which is experimentally known to be at T = 0 K
about 5–20 meV/atom more stable than diamond.14,31,32

Accordingly, the properties of the carbon ground-state phase
are in the literature often described employing GGA-DFT for
graphite. However, it is well known that conventional DFT
exchange-correlation functionals fail to accurately describe
the weak correlation forces of van der Waals type. Therefore,
another established approach to calculate the total energy of
the graphite phase in �Ff (T = 0 K) is the use of the diamond
structure as a reference, and the subsequent application of an
energy shift of ≈5–20 meV/atom in favor of graphite.14,33

There is no justification, however, that the latter procedure
can be used to describe the free energy of graphite at finite
temperatures. In order to estimate the importance of van
der Waals interactions in the system we calculate �Ff (T )
considering not only graphite, but also the diamond reference
for carbon.

The diamond and graphite calculations are performed using
the identical PAW potential and employing a plane-wave
cutoff energy of Ecut = 400 eV as for Fe3C. In the case of
diamond the calculations are fully converged with respect
to this parameter. In the case of graphite this applies only
to the in-plane geometry, while the interlayer spacing is
continuously increasing with an increase of the cutoff energy.
To be more specific, the in-plane lattice constant changes
only from a0 = 2.469 Å to a0 = 2.467 Å when increasing the
cutoff energy from Ecut = 400 eV to Ecut = 1500 eV, that is,
by less than 0.1%. In contrast, for the out-of-plane lattice
constant the corresponding change is from c0/a0 = 2.871
to c0/a0 = 3.600. This indicates that the PBE xc functional
predicts extremely weak bonding between the graphene sheets,
which is characterized by a rapid step-like change from the
high-electron charge density in the vicinity of the graphene
sheets to the low-electron charge density in between the sheets.
Consequently, an accurate description of such a step-like
distribution of the electron charge density along the out-of-
plane direction requires extremely high plane-wave cutoff
energies, leading to the above mentioned slow convergence
of c0. Fortunately, the spurious increase of c0 has little effect
on the formation energy of Fe3C (less than 2 meV/atom
difference between, e.g., Ecut = 400 and 800 eV) in which
we are interested in the present study.

The convergence of the ground-state calculations for the
bulk carbon phases with respect to the k points is ensured by
using more than 13 000 (18 000) homogeneously distributed
k points per atom in case of diamond (graphite).

The calculations of the free energy FC(T ) are performed
using Eq. (1), with the magnetic contribution being zero. The
supercell sizes used in the quasiharmonic phonon calculations

are 3 × 3 × 3 (216 atoms) and 6 × 6 × 1 (144 atoms) for
diamond and graphite, respectively. The electronic F el

C (V,T )
is calculated using the same settings as for the ground-state
calculations. A homogeneous mesh of more than 5 × 105 q
points has been used for the integration over the first Brillouin
zone.

III. THERMODYNAMIC PROPERTIES

A. Ground-state properties

The ground-state properties of cementite have been inten-
sively studied by first-principles calculations, and, regarding
structural and magnetic properties, are known to be rather
accurately predicted by DFT with GGA xc functionals.
Considering the T = 0 K enthalpy of formation �Ff [see
Eq. (2)], the best agreement with experiment is obtained when
using DFT data for graphite without any corrections that
could account for missing van der Waals contributions and
disregarding the zero-point energy. When �Ff is calculated
approximating the graphite ground-state energy by shifting
that of diamond (see discussion in Sec. II), the agreement
with experiment worsens. The obtained agreement when
neglecting van der Waals interactions is probably related to
error cancellation and is thus coincidental.

The corresponding results of the present study are sum-
marized in Table I, together with selected first-principles and
experimental data for comparison. In order to estimate the
impact of the frozen-core approximation, which is used to
describe the electron-ion interactions in the present work,
we compare our calculations with the results of all-electron
studies, where the overall accuracy of the calculations is
limited only by the specific form of the employed xc functional.
The comparison in Table I indicates that our calculations
are in perfect agreement with previous PAW studies, and
that the assumption of a frozen core has only a marginal
influence on the accuracy of the calculated properties of
Fe3C. In fact, the deviations of the results due to use of
another gradient-corrected xc functional (PW91 instead of
PBE) are larger than that due to the frozen-core approximation.
Excluding the experimental work of Duman et al.6,43 where
an unusually low equilibrium volume has been reported (see
Table I), our calculations predict an equilibrium volume at
T = 0 K that is about 2% smaller than the experimental volume
at this T (see Fig. 1).

B. Thermal volume expansion

The quasiharmonic analysis using the parameters described
in Sec. II shows that ferromagnetic Fe3C is dynamically
stable at all considered volumes and temperatures, that is,
no phonons with imaginary frequencies in the relevant volume
range are found. In Fig. 1 we show the calculated thermal
volume expansion of cementite in comparison with available
measured data. First, we note some scattering of the measured
data, which is comparable with the deviations between our
calculations and the measurements. The overall quantitative
agreement between the experiment and the calculations is
remarkable and is within 2% for the atomic volume at all
considered temperatures. We note that the kink observed in
the experimental curves at TC is not reproduced within our
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TABLE I. Calculated energetic, structural, and magnetic properties of cementite in comparison with selected experimental and theoretical
data. V0 is the equilibrium volume per unit cell, a0, b0, and c0 are the corresponding lattice constants, B0 and B ′

0 are the bulk modulus and its
derivative at V0, and mFe4c and mFe8d are local magnetic moments of Fe atoms. The formation energy of Fe3C at T = 0 K, �Ff , is calculated
taking the graphite structure for the carbon reference (superscript “a” indicates that the latter is obtained by introducing an energy shift of
20 meV/atom relative to the diamond structure, superscript “b” indicates that a graphite energy as obtained with DFT is used), or using the
diamond structure (indicated with superscript “c”). Superscript “d” indicates the values correspond to T = 298 K. Superscript “f” indicates
that the values correspond to the heat of formation. Superscript “g” shows estimation of the heat of formation to T = 0 K (Refs. 10 and 45).
The formation energy of Fe3C, calculated in the present work including the zero-point energy, is given in brackets.

Theory (T = 0 K)

V0 a0 b0 c0 B0 mFe4c mFe8d �Ff

(Å
3
) (Å) (Å) (Å) (GPa) B ′

0 (μB ) (μB ) (meV/atom) Method Reference

19.5(−13.7)a

151.49 5.035 6.716 4.480 213 4.36
1.92 1.84 45.6(24.3)b PAW/PBE present results

153.49d 5.053d 6.745d 4.503d 196d 5.37d

14.5(−8.7)c

151.71 5.037 6.720 4.482 – – 1.97 1.88 20.6a, 16.4c PAW/PBE Ref. 33
151.95 5.024 6.754 4.478 234 4 – – 45b PAW/PBE Ref. 12
152.2 5.128 6.665 4.462 227 – 2.06 1.96 55.8b FLAPW/PBE Ref. 8
152.8 5.047 6.743 4.490 – – – – – FLAPW/PBE Ref. 9
153.56 5.068 6.714 4.513 235 – 1.97 1.96 – FLAPW/PW91 Ref. 11

Experiment (T = 298 K)

154.2–155.4 5.08–5.09 6.73–6.75 4.51–4.53 174 ± 6 4.8 ± 0.8 – – 37–60f XRD, Calor. Refs. 2,25,34–42
151.0 5.04 6.73 4.48 174 ± 8 – 1.8 (averaged) 47.5g EELS, XMCD Refs. 6,43,44

theoretical model. To include it the coupling between magnetic
and phononic degrees should also be taken into account.
However, such an extension goes beyond the scope of the
present paper and is not considered here since the effect is
small.

C. Magnetization

The theoretical temperature dependence of the magneti-
zation in comparison with the corresponding experimental
data is shown in Fig. 2. The theoretical magnetization is
evaluated according to the methodology presented in Sec. II. A
full quantitative comparison between theory and experiment
is hampered by the fact that the reported experiments were
done on multiphase samples containing phase mixture of
cementite, ferrite, and carbon. Nevertheless, as shown in Fig. 2,
qualitatively the magnetization in Fe3C is reproduced well and

0 300 600 900 1200 1500
Temperature (K)

251251

451451

651651

851851

061061

261261

V
ol

um
e 

(Å
3 /u

ni
t c

el
l)

present results

Reed 1997
Vocadlo 2002
Wood 2004

T
C

FIG. 1. (Color online) Calculated thermal volume expansion of
Fe3C in comparison with experimental data.

is similar to that for the unary bulk ferromagnetic phases of
Fe, Cr, and Ni.24

D. Heat capacity

In Fig. 3 the calculated constant pressure heat capacity
CP , available experimental CP data sets, and results of the
phenomenological experiment-based thermodynamic assess-
ments are presented.46–48 The theoretical heat capacity is
split into vibronic, electronic, and magnetic contributions.

FIG. 2. (Color online) Dependence of the simulated Fe3C net
magnetization on temperature as compared to the experimental data
from Ref. 6. The experimental data are acquired at a magnetic field
of 5 kOe for a mixture of Fe3C nanoparticles of size 40 ± 10 nm
with the residual carbon and α-Fe with the amount of about 2% by
weight for the latter. The calculated magnetization of Fe3C at T = 0 K
corresponds to ≈177 emu/g.
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FIG. 3. (Color online) Calculated heat capacity (CP at p = 0)
of cementite as a function of temperature T in comparison with
available experimental data (open symbols) and thermodynamic
assessments (filled symbols). The calculated electronic and magnetic
contributions to the heat capacity are shown in shaded orange and
gray correspondingly.

Similar to nonmagnetic metals and to α-Fe,15,27 we find
that the dominating contribution originates from the vibronic
excitations. We also observe a significant contribution of
electronic excitations, which is due to the high density of
electronic states close to the Fermi level in Fe3C.8 The
magnetic part of the heat capacity is largest at the Curie
temperature due to the break down of the long-range magnetic
order, and smoothly vanishes to zero for temperatures below
200 and above 1000 K.

Comparing our results with the available measurements
of the heat capacity at constant pressure (Fig. 3) below the
Curie temperature we find that our predicted theoretical curve
falls within the scatter of the various measurements. (The
large discrepancy of the measured heat capacity in Ref. 25
is unclear and likely related to the quality of the samples
and/or their preparation procedure.) Above TC our curve is
located practically on top of the measurements of Naeser,49

and reproduces the presence of a local minimum at T ≈ 600 K
and the increase at higher temperatures. These results are also
consistent with the thermodynamic assessments by Chipmann5

and Darken et al.50 There is a strong deviation between
the above described behavior and the recent measurements
by Umemoto and co-workers where CP steeply increases
with the temperature above TC .25 In the latest assessment of
CP by Hallstedt et al.14 the heat capacity above 600 K is
constant and below it coincides with the experiments of Seltz
et al.51 The assessment agrees within the 0.3 kB/atom with
first-principles results up to T = 1500 K. In the following
we use the Hallstedt et al.14 assessment as reference when
comparing other quantities such as the free energy. We
note that due to the large scatter in the experimental data
underlying the Hallstedt et al. assessment, benchmarks are
subject to an uncertainty that will hopefully be reduced in
the future by progress in materials synthesis and experimental
setups.
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FIG. 4. (Color online) Comparison of the calculated free energies
for α-Fe and Fe3C at zero pressure with the thermodynamic
assessment from Ref. 14, referred to as CALPHAD. The first-principles
and the CALPHAD curves are aligned at T = 200 K. The calculated
electronic and magnetic contributions to the free energy are shown
in shaded orange and gray correspondingly. The first-principles
magnetic free energy is calculated either employing QMC or RPA
approach. In the latter case the free energy is extracted from Ref. 27
as described in Sec. II. Inset: The CALPHAD data are taken as reference
at each temperature.

E. Free energy

In Fig. 4(a) we compare our calculated free energy FFe3C(T )
with the thermodynamic assessment by Hallstedt et al.,
which we refer later in the text as CALPHAD assessment or
experimental free energy. Since CALPHAD assessments are
only extrapolated to low temperatures and are therefore less
reliable at temperatures below 200 K,15 we align the calculated
FFe3C(T ) with the corresponding experimental curve at T =
200 K. This allows us to quantitatively analyze the accuracy of
the description of the T dependence (excitation of the system)
within our theory and to disregard for the moment the accuracy
at T = 0 K (ground-state properties).

The obtained agreement of the theoretical and the ex-
perimental free energies is below 15 meV/atom up to T =
1500 K. Similar to α-Fe [see Fig. 4(b)], deviations between
the first-principles and the experimental data sets start around
TC [see inset in Fig. 4(a)]. Overall the theoretical free energy
of bulk iron and bulk cementite are described with similar
accuracy. Deviations from the corresponding experimental
results increase with T , with the largest deviation of less than
20 meV/atom at T = 1500 K.

It is noteworthy that qualitative use of the QMC for
the magnetic part provides for both systems underestimated
free energy F . When using an analytic RPA solution for
the magnetic part which is shown in Fig. 4(b) for sake
of completeness for α-Fe, the first-principles free energy is
slightly overestimated compared to experiment. It could be
of interest to figure out, therefore, whether the same behavior
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holds for other elements and systems such as, e.g., Fe3C, which
could indicate that these two solutions of the Heisenberg model
(RPA and effective QMC) bound the true solution.

IV. PHASE STABILITY

The construction of an accurate ab initio Fe-C phase dia-
gram requires one to calculate the thermodynamic stability of
different phases with respect to each other. For the case of Fe3C
the relevant bulk phases are α-Fe and graphite. Recalling that
conventional semilocal DFT exchange-correlation functionals
(like GGA-PBE used here) fail to correctly describe van der
Waals interactions, we consider next to the graphite phase
(where van der Waals interactions between the graphene layers
are large) also diamond as reference for carbon. While the
latter phase does not appear in the Fe-C phase diagram it can
be easily computed in a CALPHAD approach and allows us to
thus estimate the importance of van der Waals interactions
in the system (see discussion in Sec. II). The calculated free
energies of all these phases are shown in Figs. 4 and 5.

Using Eq. (2) and the data shown in Figs. 4 and 5, we
analyze the phase stability for Fe3C. A positive formation
energy indicates that Fe3C is thermodynamically unstable
against a decomposition into bulk Fe and C phases. The
resulting calculated heat of formation �Ff (T ) obtained when
using either the graphite or the diamond as a reference phase
for C in comparison with the corresponding CALPHAD data is
shown in Fig. 6.

First, we focus on the zero-temperature enthalpy of for-
mation. Vibrational zero-point energies (ZPE) significantly
influence the formation free energy of Fe3C. Indeed, while the
ZPE contributions for cementite and α-Fe are nearly identical
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FIG. 5. (Color online) Comparison of the calculated free energies
for diamond and graphite at zero pressure with the thermodynamic
assessments from Ref. 14 (graphite) and the THERMOCALC program
with the SGTE unary database52 (diamond), referred to as CALPHAD.
The first-principles and the CALPHAD curves are aligned at T =
200 K. Inset: The CALPHAD data are taken as reference at each
temperature.
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FIG. 6. (Color online) Calculated free energy of formation of
cementite from the pure compounds (bcc Fe and graphite) at zero
pressure as a function of temperature and including zero-point
vibrations (upper figure). Results obtained when assuming the
diamond phase (where van der Waals interactions are absent and
which is used only as a benchmark) are shown in the lower figure.
The open black circles show the T = 0 K data without zero-point
vibrations. The black dashed curve, referred to as CALPHAD, gives
the thermodynamic assessment as given in Ref. 14 (for α-Fe,
Fe3C, graphite) and the THERMOCALC program with the SGTE unary
database52 (diamond), based on experimental data. For an easier
comparison of the temperature dependence the present theoretical
curves aligned to the CALPHAD value at T = 200 K are also shown.
The calculated electronic and magnetic contributions to the free
energy are shown in shaded orange and gray correspondingly. The
first-principles magnetic free energy for Fe3C is calculated either
employing QMC approach, while for α-Fe either QMC or RPA
approach is used. In the latter case the free energy is extracted
from Ref. 27 as described in Sec. II. The temperature at which
�Ff (T ) = 0 when the magnetic free energy of α-Fe and Fe3C is
neglected (T ≈ 1600 K) is shown in gray (upper figure).

(52 and 41 meV/atom, respectively) and cancel each other,
the ZPE of the carbon phase (178 or 170 meV/atom when
considering diamond or graphite, respectively) is significantly
larger. As a result, the total decrease of �Ff due to zero-
point vibrations is about 20-25 meV/atom (see Table I).
Taking into account that the predicted energy of formation
at T = 0 K is even without including ZPE lower than the
corresponding CALPHAD data, this leads to an underestimation
of the calculated �Ff by ≈33 and 63 meV/atom when
taking graphite and diamond, respectively. Moreover, if we
consider the theoretical diamond phase as a reference in our
calculations and introduce the free energy of graphite by using
the commonly accepted energy shift of 20 meV/atom in favor
of graphite, the first-principles formation energy of cementite
versus graphite is underestimated by about 50 meV/atom
(Table I). In this case our calculations predict Fe3C to be
thermodynamically stable at all temperatures. Only if taking
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the first-principles results for graphite as reference we obtain
Fe3C to be unstable at temperatures below ≈650 K (see Fig. 6).

To identify the reasons for the large absolute shift between
our calculations and the experimental data we first compare
our results with all-electron first-principles calculations for
the formation energy of Fe3C as well as for the cohesive
(atomization) energy of bulk C, α-Fe, and Fe3C. This data
is collected in Tables I and II. First, we note that the frozen-
core approximation, which underlies the present calculations,
results in about 10 meV/atom underestimation of the zero-
temperature heat of formation of Fe3C (see Table I). The
all-electron and PAW �Ff using the graphite phase as a
reference essentially coincides with the CALPHAD assessment
if zero-point energies are not included. Assuming that the
ZPE contribution calculated with the PAW and the all-electron
methodology are not significantly different, we conclude that
it is the current form of the xc functional which results in
an underestimation of the zero-temperature �Ff by about
25 meV/atom when using graphite as a reference for carbon.

According to Eq. (2) the deviation in the calculated �Ff

originates from a poor description of one or several of the
reference structures (bulk C, Fe, and/or Fe3C). To identify
the structure that is likely responsible for the major part of
the deviations we consider the cohesive properties of bulk
C, Fe, and Fe3C (Table II). The strength of the chemical
bond is overestimated by the PBE xc functional for all
phases. The deviations are most significant for α-Fe and
Fe3C with about 1.1 and 0.8 eV/atom too high cohesive
energies, respectively, while for both carbon phases the
deviation from the corresponding experimental value is less
than 0.4 eV/atom. This indicates that the PBE xc functional
is not accurate enough in predicting the cohesive properties of
all the considered structures, but in particular those containing
Fe as a chemical species.

Inspecting Fig. 6 we find that the agreement between our
ab initio calculations and the CALPHAD data assuming graphite
as reference is better than assuming diamond as reference for
the CALPHAD and the ab initio calculations. This is a rather
remarkable result and contradicts conventional wisdom ac-
cording to which diamond should be more accurately described
than graphite where van der Waals interactions occur that are

absent in the DFT calculations employed here. We therefore
conclude that the error introduced by the xc functional has
an opposite sign than the van der Waals interaction so that
in case of graphite a partial error compensation occurs. This
insight may be used to better understand limitations of present
xc functionals and eventually to construct improved ones.

In order to separate the errors in describing ground-state
and finite temperature effects, we align the theoretical �Ff

with the CALPHAD curves at T = 200 K. The aligned curves
are also shown in Fig. 6. We separate again magnetic and
electronic contributions in order to identify the shift of the
stable-unstable transition temperature when the corresponding
contribution is excluded. In Fig. 6 we also compare the results
with calculations using a mixed description of the magnetic
part, that is, F mag for α-Fe is described within the RPA and for
Fe3C within the QMC scheme.

First, we note, that the when focusing on the temperature
dependence of �Ff (T ), using both the graphite and the
benchmark diamond structures results in a similar accuracy.
This indicates that in our case missing van der Waals inter-
actions in case of the graphite do not significantly influence
the accuracy of the calculated �Ff (T ). Second, we note the
essential differences which appear when mixing RPA and
QMC results as compared to data obtained when consistently
using QMC for both magnetic systems. In case of graphite
the use of the mixed scheme leads to an increase of the
transition T by about 300 K, which clearly indicates that in case
of Fe3C an accurate description of the magnetic excitations
above TC might be as important as that below the critical
magnetic temperature. Out of these two approaches taking
the QMC method for Fe3C and for α-Fe gives a consistently
better quantitative agreement with the CALPHAD curve. Indeed,
focusing on the corresponding �Ff and using an alignment at
T = 200 K the predicted temperature at which the cementite
becomes thermodynamically stable is only ≈100 K above the
corresponding CALPHAD value. Since the fitted CALPHAD heat
capacity is slightly different from the corresponding theoretical
dependence, we cannot expect a perfect agreement between
the two data sets, and minor quantitative differences are,
therefore, natural. It is also noteworthy that the free energy
of electronic excitations is almost vanishing for �Ff (e.g.,

TABLE II. Calculated cohesive energies (neglecting and including ZPE) for diamond, graphite, α-Fe, and Fe3C in comparison with
various experimental and theoretical data.

Ecoh EZPE
coh

System (eV/atom) (eV/atom) Method Reference

Diamond 7.82 7.64 PAW-PBE present results
7.86 – FLAPW-PBE Ref. 32

– 7.37 Expt. Refs. 24, 33 from Ref. 32

Graphite 7.94 7.77 PAW-PBE present results
7.99 – FLAPW-PBE Ref. 32

– 7.38 Expt. Refs. 24, 33 from Ref. 32

α-Fe 5.27 5.23 PAW-PBE present results
5.11 – FLAPW-PW91 Ref. 53

– 4.28 Expt. Refs. 95, 96 from Ref. 53

Fe3C 5.89 5.84 PAW-PBE present results
– 5.05 Expt. estimate Ref. 54
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�F el
f is less than 2 meV/atom at T = 1500 K), while the

magnetic contributions are essential (e.g., �F
mag
f is more than

20 meV/atom at T = 1500 K) and their neglect leads to an
increase of the transition T by ≈300–450 K.

V. SUMMARY

Performing a carefully converged hybrid approach of DFT
and spin QMC we find that the thermodynamic properties of
Fe3C can be computed with a high degree of accuracy. The
quantitative deviations from the available experimental mea-
surements are found to be smaller than 2% and 0.3 kB/atom
for temperatures up to 1500 K for the atomic volume and the
heat capacity, respectively. It is interesting to note that the
deviation of the present theoretical data from experiment are
often smaller than the experimental scatter, indicating that our
present available functionals are excellently suited to describe
the T dependence of thermodynamic data.

A comparison of our results for the T dependence of the
free energy of Fe3C with our recent experimental assessment
shows that these energies differ by less than 10 meV/atom
up to T = 1500 K, with the maximum deviation at the
highest temperature. For lower temperatures the agreement
between the experimental and the theoretical data set gradually
improves. This behavior is consistent with the previously
reported application of this methodology to α-Fe, where a
maximum deviation of 25 meV/atom at T = 1500 K was
reported.27

To evaluate the thermodynamic stability of Fe3C against
decomposition into bulk Fe and C phases we have calculated
the free energy of formation of cementite. We find that the
thermal excitations are accurately described within the present
theory, predicting, for example, the transition temperature
only ≈100 K above the corresponding CALPHAD value. Such
an agreement is remarkable when taking into account the

uncertainty, which persists in the thermodynamical assess-
ment. In order to consistently improve the accuracy of the
T -dependent properties within the framework of the current
theoretical model higher order effects like phonon-phonon and
phonon-magnon interactions, longitudinal fluctuations of the
local magnetic moments, and possible temperature-activated
effects such as the creation of various point defects (e.g., vacan-
cies, interstitial C atoms, etc.), and possible off-stoichiometry
of the compound have to be included.

Our calculations indicate that the zero-temperature for-
mation energy in cementite as calculated with GGA-DFT
deviates from the CALPHAD assessments in the order of 50 meV
per atom. This leads to a large discrepancy between the
calculated and the CALPHAD-based stability of Fe3C. Since the
T dependence of the theoretical formation energy is described
with a high degree of accuracy, this indicates that the main
limitation of the existing exchange-correlation functionals is in
the T = 0 K potential energy surface, consistent with previous
findings for nonmagnetic metals.15
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Condens. Matter 10, 5081 (1998).
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