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Strong enhancement of high-voltage electronic transport in chiral electrical nanotube superlattices
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We consider metallic carbon nanotubes with an overlying unidirectional electrical chiral (wave vector out of
the radial direction, where the axial direction is included) superlattice potential. We show that for superlattices
with a wave vector close to the axial direction, the electron velocity assumes the same value as for nanotubes
without a superlattice. Due to an increased number of phonons with different momenta but lower electron-phonon
scattering probabilities, we obtain a large enhancement of the high-voltage conductance and current sustainability
in comparison with the nanotube without a superlattice.
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Depending on their chirality, carbon nanotubes (NTs)
behave either as a semiconductor or a metal. In the first case,
they offer an interesting alternative for building logical circuits.
In the second case, they can be used as nanometer-sized
metallic wires in logical circuits. This is particularly useful
since they can sustain very high currents before breaking. At
low voltages (U � 0.17 V) the effective electron scattering
length at room temperature in metallic NTs is mainly governed
by acoustical phonon and impurity scattering with a value
of a few hundred nanometers.1 At higher voltages, scattering
with hot optical phonons created by electron-phonon scattering
becomes relevant. This leads to a significant reduction of the
electron’s mean free path down to roughly lsc ≈ 10 nm,2–6

resulting in a large increase in the absolute and differential re-
sistance. Due to the large number of optical phonons, phonon-
phonon scattering with acoustic phonons produces heat in the
NT that ultimately causes the electrical breakdown.7,8

In Ref. 9 it was argued that the performance of a metallic
NT, i.e., its absolute and differential conductance, can be
enhanced considerably by isotopical disorder enrichment.
This causes additional relaxation paths for optical phonons
by disorder scattering. The purpose of the present Rapid
Communication is to propose a different mechanism to
enhance the electronic transport. We show that by applying
an unidirectional electrical superlattice (SL) (cf. Fig. 1) with
a wave vector that is close to the axial direction of the NT, we
can enhance the (differential) conductance considerably, espe-
cially in the large voltage regime. Such a potential could be, for
example, produced by adatom deposition via electron beams
directed on the NT10 or (at least approximately) by twisted
periodical patterned top and bottom gate electrodes or coupling
of the NT to surface acoustic waves.11 Since the (average)
phonon number is proportional to the inverse electron-phonon
scattering time 1/τep, and the inverse electron mean free path
1/lsc is proportional to the phonon number times 1/τep in the
hot phonon regime, we obtain a quadratic dependence of the
electron mean free path on the scattering time lsc ∼ τ 2

ep. Below
it will be shown that an application of an electrical chiral
potential causes a large number of different phonons to take
part in the electron-phonon scattering process with increased
electron-phonon scattering times, so that 1/τep ∼ ∑

i 1/τ i
ep.

This is what causes the strong decrease of the (differen-
tial) resistance that scales with 1/lsc ∼ ∑

i 1/(τ i
ep)2 � 1/τ 2

ep

by using Matthiessen’s rule and reduces the phonon
temperature.

It was shown recently that new Dirac points in the energy
spectrum can be opened by imposing a SL on the graphene
lattice.12–16 This is also seen in NTs for potentials with a wave
vector in the radial direction. We will show that they vanish
for general chiral potentials.

The Hamiltonian near the Dirac point K for a NT with an
axis in the y ′ direction subjected to a SL potential reads

HK =
(

V (x ′ + tγ y ′) −ih̄vF (∂x ′ − i∂y ′ )
−ih̄vF (∂x ′ + i∂y ′ ) V (x ′ + tγ y ′)

)
, (1)

where vF is the Fermi velocity. For a NT with circumference
D, the SL potential V is periodic in the radial (axial) direction
with periodicity d (d/tγ ), i.e., V (x ′ + d) = V (x ′), and one
has D/d ∈ N. In the following we solve the eigenvalue
equation HKu(r′) = εu(r′). We use the abbreviation tγ =
tan(γ ), where γ is the chiral angle of the SL potential V . The
metallic NT boundary conditions are given by u(x ′ + D,y ′) =
u(x ′,y ′).17

To solve the eigenvalue equation we follow first a transfer
matrix method similar to Ref. 14. By using the coordinates
x = x ′ + tγ y ′ and y = y ′, the solution of the Schrödinger
equation has the Bloch form u(r) = eiqy[u1(x),u2(x)]T with
[u1(x),u2(x)]T = �(x)[u1(0),u2(0)]T , where

�(x) = e−iq̃xP exp

[∫ x

0
dx ′MV (x ′)

]
, (2)

MV (x) =
(

q/T 2
γ iκ(x)/(1 + itγ )

iκ(x)/(1 − itγ ) −q/T 2
γ ,

)
(3)

and q̃ = qtγ /T 2
γ , κ(x) = [ε − V (x)]/h̄vF , Tγ =

√
1 + t2

γ .
The operator P indicates path ordering and places all larger
values of x to the left-hand side. The Bloch condition reads
[u1(d),u2(d)]T = eiη[u1(0),u2(0)]T with det[eiη − �(d)] = 0
when d is the SL wavelength.

Consider first a carbon NT in a chiral periodical lattice of
two piecewise constant potentials of the form

V (x) =
{

V1 if 0 � x < d1,

V2 if d1 � x < d1 + d2.
(4)

121404-11098-0121/2011/84(12)/121404(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.121404


RAPID COMMUNICATIONS
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Then we obtain �(d) = �1�2, where d = d1 + d2:

�i = e−iq̃di

{
cos[αε(di)] + sin[αε(di)]

αε(di)
MVi

di

}
, (5)

αε(di) = di

√
κ2

i /T 2
γ − q2/T 4

γ . (6)

κi is given by κ(x), with V (x) = Vi . Since det[eiq̃x�(x)] =
1 we have for the eigenvalues of the matrix �(d), ξ =
e−iq̃d (1/2)(T ± √

T 2 − 4), with T = Tr[eiq̃d�(d)] and

T = 2 cos[α(d1)] cos[α(d2)] + 2
sin[α(d1)] sin[α(d2)]

α(d1)α(d2)

×
(

q2

T 4
γ

− κ1κ2

T 2
γ

)
d1d2. (7)

By taking into account that T is real, we obtain from (7) the
dispersion relation

2 cos(q̃d + η) = T . (8)

In the following, we restrict ourselves to the mirror
symmetric potentials V1 = −V2 = V , with d1 = d2 = d/2
leading to the best current-voltage results over all two-step
potentials. This leads to an energy spectrum that possesses a
mirror symmetry at ε = 0 as a function of the quasimomentum
q in the y direction. For ε = 0, we obtain from Eq. (8) that
T = 2 + q2d2 sin2[α0(d/2)]/α2

0(d/2)T 4
γ . This leads with (8)

to the existence of new Dirac points14 at zero chirality tγ = 0.
The number of these points is given by [V d/2πh̄vF Tγ ], where
[x] is the largest integer number smaller than x. For tγ �= 0 an
energy gap is opened and the Dirac points disappear (see the
left-hand panel in Fig. 1).

Next we calculate the energy values of the bands at zero mo-
mentum q = 0. Equations (7) and (8) deliver for these energy
values εη(0) = (±η + 2πn)Tγh̄vF /d, where n determines the
energy bands for fixed quasimomentum η. Thus the energy
bands are far more separated in energy space for tγ 	 1 than
for the system without a chiral potential, i.e., εη(0) for tγ = 0.

In order to see how the lowest-energy band scales with
V and tγ , we calculate from (7) the energy dispersion of the
lowest band for metallic NTs, i.e., η = 0, in the regime |εs | �
h̄vF Tγ /d, V , and q2 � T 2

γ (V (x)/h̄vF )2, to be called R. We
then obtain

εs = sh̄vF

√
|q�|2
T 2

γ

+ 4
T 2

γ

d2
sin2

(
q̃d

2

)
, (9)

� = 1

d

∫ d

0
dx exp

[
i2

∫ x

0
dx ′sgn[V (x ′)]α0(x ′)/x ′

]
, (10)

where s = ±1 and sgn[x] is the sign of x. Note that
� = sin[α0(d/2)]eiα0(d/2)/α0(d/2) for the symmetric two-step
potential (4).

In Fig. 1, we plot the two lowest-energy bands (d = D)
for η = 0 by solving Eq. (8) numerically. Equation (9) leads
to the electron velocity vy ′ (q) = ∂εs/∂(h̄q) along the NT axis
(the q dependency of q̃ has to be considered in the derivate).
We restrict our discussion to momentum region near the Dirac
point, i.e., q̃d/2 � 1. It is smaller for larger potentials V

being maximal at α0 → 0 with a value of vy ′ (q) � vF . We
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FIG. 1. (Color online) The upper panel shows a NT with an
overlying chiral electrical superlattice potential. The lower panel
shows the two lowest-energy bands (d = D) by solving Eq. (8) for
η = 0 as a function of the rescaled axial quasimomentum qd/2 for
various chiral angles γ with V d/2h̄vF = 5 (left-hand panel) and
various chiral potentials V d/2h̄vF with tγ = 1 (right-hand panel).
Note that the dotted curve in the right-hand panel crosses the x axis
exactly only at q = 0.

point out that in general for |tγ | � 1 we have vy ′ (q) ≈ vF in R,
irrespective of the potential strength V . Since electron-phonon
scattering times are proportional to vy ′ (q) we restrict our
transport calculations below to NTs with |tγ | � 1 leading to the
largest conductivities. For the group velocity of the electrons
in the radial direction we have vx ′ (q) = ∂εs/∂(h̄q̃) − tγ vy ′ (q).
For tγ � 1 we obtain vx ′ ≈ vF (1 − |�|2)/Tγ in R, leading
to the collimination of the electron beam,18 i.e., |vy ′ (q)| >

|vx ′ (q)|. This expression is even valid where t2 	 |�|2. On the
other hand, for t2 � |�|2 we obtain vx ′ ≈ tγ vF (1 − |�|2)/�,
leading to the vanishing of collimination at chiral angles
|�|2/(1 − |�|2) � |tγ | � (1 − |�|2). For even smaller tγ we
obtain collimination again.

In Fig. 1 we see how the energy bands oscillate, in
accordance with Eq. (9) for q � Tγ V/h̄vF , thus forming
band SL valleys. The central valley possesses a true Dirac
point at q = 0. The SL side valleys then have a minimum
at sin2(q̃d/2) = 0. Within the SL valleys, electrons travel
either to the left-hand side (right-hand side) for ∂εs/∂q < 0
(∂εs/∂q > 0). The number of side valleys can be read of
from (9) as 2m1 with m1 = [tγ V d/Tγ h̄vF 2π ].

For SLs with a wave vector in an exact axial direction we
can read off the physics from the chiral case by choosing
q̃ → k, tγ = η = 0, where d is now the wavelength of the SL
potential in the axial direction with quasimomentum k. The
wave vector q in the circumferential direction is quantized
by q = 2πn/D due to the periodic boundary conditions of
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the wave functions. We point out that also the wave functions
Eqs. (11) and (12), and the considerations below Eqs. (11)
and (13) are still valid with the additional replacements kx →
ky and x → y. Equation (9) shows that the energy bands are
separated by h̄vF q�, which means that the energy spacing
between the energy bands goes to zero for infinite potential
strength. From Eq. (9) we have v → vF for V d/h̄vF → ∞,
where for the lowest band, i.e., q = 0, v → vF even for finite
potentials V d/h̄vF .

Next, we determine the eigenvectors vη of the matrix �(d).
These are given by vη = 1

N�
([a + i sin(η + q̃d)]/b,1)T with

a =
[
qd2 cos(α1)

sin(α2)

α2
+ qd1 cos(α2)

sin(α1)

α1

]
1

T 2
γ

,

b =
[
κ2d2 cos(α1)

sin(α2)

α2
+ κ1d1 cos(α2)

sin(α1)

α1

]
i

1 − itγ

−i
sin(α1) sin(α2)

α1α2

d1d2q(κ1 − κ2)

T 2
γ (1 − itγ )

, (11)

and N� is a normalization factor. The eigenfunction uη(x,q)
of the full Hamiltonian HK is then given by uη(x,q) =
(cos[α0(x)]I + {sin[α0(x)]/α0(x)}MV )vη for x < d/2. Equa-
tion (11) leads to 〈uη(x,q)|eikxxI |u−η(x, − q)〉 = 0, where
we used the abbreviation 〈uη(x,q)|eikxxσ |u−η(x, − q)〉 ≡∫ d

0 dx〈uη(x,q)|eikxσ |u−η(x, − q)〉 with σ ∈ {σx,σy,I }. Here
I is the identity matrix and σx ,σy are the spin matrices. The
wave vector of the phonons or impurities is denoted by kx . This
is a generalization of the results that inner-valley backward
impurity scattering in Refs. 19 and 20 and deformation
potential phonon scattering in Ref. 21 does not exist in the
lowest band in metallic NTs in contrast to semiconducting
ones.

We then obtain from (11) for the lowest band eigenfunctions
us(x,q) for η = 0 in the regime R corresponding to the
eigenvalues (9)

us(x,q)

= 1

Nu

e−iq̃x

[
− i

(√
1 − itγ√
1 + itγ

)
Tγ

�∗ ×
(

Tγ

qd
sin(q̃d) + εs

h̄vF q

)

×φ∗(x) +
(−√

1 − itγ

1 + itγ

)
φ(x)

]
, (12)

where Nu in (12) denotes a normalization factor. The phase fac-
tor φ(x) is given by φ(x) = exp[i

∫ x

0 dx ′sgn[V (x ′)]α0(x ′)/x ′].
We point out that the lowest band eigenvalues (9)
and eigenfunctions (12) are more generally valid for
chiral potentials V (x) = V (x + D), where we have
to assume that

∫ D

0 dx ′ sgn[V (x ′)]α0(x ′)/x ′ = 0. In or-
der to derive the eigenfunctions (12) we first for-
mulate the eigenvalue problem corresponding to (1)
in the basis (

√
1 − itγ ,

√
1 + itγ )T e−iq̃xφ∗(x)eiqy and

(−√
1 − itγ ,

√
1 + itγ )T e−iq̃xφ(x)eiqy . The resulting Hamil-

tonian is evaluated perturbatively in lowest order
in (h̄vF /d)Tγ sin(q̃d)σz and (h̄vF q/Tγ ){(Re[φ2(x)]σy +
Im[φ2(x)]σx}, resulting in (9) and (12) when the ∼q2 terms
in α0 are absent. The full expressions (9) and (12) valid in the
regime R can then be read off by comparing the first-order
expressions with the formal solution of (8) for general chiral

potentials V (x), leading effectively to the ∼q2 correction
factor in α0 (6).

By using (12) we are now able to calculate the back-
ward squared transition matrix elements in the regime R

being inverse proportional to the inverse electron-phonon
scattering time. Here we restrict ourselves to SL inner-
and intervalley backward scattering, i.e., ∂q sin(q̃d/2)2 ≷ 0
and ∂q ′ sin(q̃ ′d/2)2 ≶ 0, at large chiral angle |tγ | � 1, for
(qd)2�2 � 4T 4

γ sin(q̃d/2)2 and (q ′d)2�2 � 4T 4
γ sin(q̃ ′d/2)2,

which is the relevant regime for transport at high applied bias
voltages. We obtain

|〈us(x,q)|σeikxx |us ′ (x,q ′)〉|2

≈ (A0
σ )2δk̃xd,0 + 1

2m2
(A1

σ )2
m2∑
j=1

∑
±

δk̃xd,±2π[2Vj d/2πh̄vF Tγ ],

(13)

where (A0
σ )2 ≈ 0 and (A1

σx
)2 ≈ 1, (A1

σy
)2 ≈ (A1

I )2 ≈ 0. Here

we introduced the abbreviation k̃x = kx − q̃ ′ + q̃. Note that
we used in (13) the approximation that α0(di) ≈ di |Vi |/h̄vF Tγ ,
which is valid for the majority of SL valleys.

For the symmetric two-step potential (4) we have m2 = 1
and V1 = V in (13). We generalized in (13) our results to
a chain of symmetric two-step potentials with d1 = d2 =
d/2m2 of potential heights Vi , where we assume the poten-
tial heights are separated considerably [2Vid/2πh̄vF Tγ ] �=
[2Vjd/2πh̄vF Tγ ] �= 0 for i �= j . This restriction implies that
the number of different phonons taking part in an electron-
phonon scattering process is maximal. Equation (13) shows
that for every phonon type of a certain momentum the
scattering probability is 1/2m2 smaller than in the case
of no existing chiral potential.6 By using (12) we obtain,
for general step potentials within the same approximation
used in (13),

∑
kx

|〈us(x,q)|σeikxx |us ′ (x,q ′)〉|2 ≈ 1 for σ = σx

and zero for σ ∈ {σy,I }. This shows, with the help of the
discussion above, that the considered chain of symmetric
two-step potentials (13) should give the best transport results
over all step potentials and that even a general step potential
should show an enhanced conductivity when compared to the
pristine NT.

The number of SL valleys for a chain of two-step potentials
is now m1 = [|tγ |min[Vi]d/Tγ h̄vF 2π ], which can be read off
from Eqs. (5) and (6) as in the case of the symmetric two-
step potential. Here we denote min[Vi] as the minimum of
all Vi’s. Finally, we mention that for the forward scattering
amplitudes, i.e. ∂q sin(q̃d/2)2 ≷ 0 and ∂q ′ sin(q̃ ′d/2)2 ≷ 0, we
have (A0

σy
)2 ≈ (A0

I )2 ≈ 1, (A0
σx

)2 ≈ 0 and (A1
σ )2 ≈ 0 in (13).

Until now, we have ignored transitions of electrons between
the K and K′ valleys. For the eigenvalue problem of the
K′ valley we can repeat the discussion above for the K
valley by using the substitution tγ → −tγ and q → −q in
the corresponding expressions.21 Zone boundary A′

1 phonon
backward scattering is the only relevant phonon-scattering
mechanism in this case.5,6 We now have to calculate the square
of transition matrix element (13) with σ = σy ,22 where one of
the wave functions stands for a K′ valley function and the
other is an eigenfunction of the K valley. Equation (13) leads
to (A0

σy
)2 ≈ 0 and (A1

σy
)2 ≈ 1. The corresponding forward

scattering amplitudes vanish.
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FIG. 2. (Color online) Upper panel: Current-voltage character-
istic of the (m1,m2) model (2m1 SL side valleys and 2m2 phonon
species) for m1 = 1 (green dotted curves), m1 = 2 (blue dashed
curves), and m1 = 3 (red dashed-dotted curves). Curves of the same
style have different m2 parameters with (m1,1) (bottom curves),
(m1,m1 + 1) (middle curves), and (m1,(m1 + 1)2) (top curves).
This ordering is reversed in the inset and in the lower panel.
The NT length is L = 300 nm. The black solid curves show the
current-voltage characteristic with zero chiral potential V = 0 and
hot phonons (ni �= 0) or frozen phonons fixed at zero temperature
(ni = 0) (Ref. 6). Inset: Differential resistance as a function of
the NT length L. Lower panel: Position and energy-averaged
phonon number of SL inner-valley � phonons n� for L = 300 nm
(Ref. 6).

Let us now consider the conductance of a NT with a SL
potential. To this end we use the electron-phonon Boltzmann
approach with the parameters established in Refs. 5, 6, and 23
for a NT lying on a substrate without a chiral potential,
where also thorough discussions on the scattering mechanisms
can be found. The leads and the substrate are fixed at room
temperature. Before going into the details of our calculation
we want to recall here that the number 2m1 was defined as
the number of the SL side valleys and 2m2 is the number of
steps in the SL chain potential which is equal to the number of
different phonon species taking part in a backward scattering
process.

In the following, we assume that higher bands do not
contribute to the conductivity, so that we have h̄vF Tγ 2π/D �
eU (h̄vF 2π/d � eU ) for wave vectors of the SL out of
(exact in) axial direction. For large enough applied bias
voltages eU 	 |εs(qi)|, where qi is defined by sin(q̃id/2) = 0,
q2

i � T 2
γ (min[Vj ]d/h̄vF )2, and large chirality, i.e., tγ � 1, we

obtain the following idealized band system: We have one
central SL band with dispersion ε(k) ≈ ±h̄vF |k| and 2m1

SL sidebands with a momentum-shifted dispersion ε(k) ≈
± limk0→0 h̄vF

√
k2 + k2

0. Phonons of 2m2 type contribute to

electron-phonon backward scattering with scattering times
2m2τ

ν
ep. Here ν stands for � for longitudinal E2 zone-center

scattering or K for A′
1 zone-boundary phonon scattering.5,6 τ ν

ep
is the corresponding electron-phonon scattering time without
a chiral potential. We can simplify our calculation by using
the same phonon velocity vν

op (Refs. 5 and 6) of the system
without SL for all types of optical phonons. This is justified
by the fact that our results do not depend much on the
specific velocity value since the phonon mean free path
is much smaller than the NT length, as we have verified
numerically.

It is enough to consider only forward scattering between
the central SL valley and the 2m1 side valleys mediated by
transversal optical � phonons with a scattering time τ�

ep,6 where
we use calculation methods established in Ref. 23 for forward
scattering. At low voltages U � 0.17 V, quasielastic scattering
is relevant and we take it into account in our numerical
calculations by inner SL valley scattering. This approximation
is exact for voltages lower than the SL side-valley energy gap.
We can simplify even further the model to an effective two-
valley model with one central SL valley and one side valley
by using the approximation of periodic boundary conditions
for the positions of the potential valleys in momentum
space.

In Fig. 2, we show our results for the conductance, the
differential conductance, and the position and energy-averaged
phonon number n� for certain (m1,m2) values and lengths
L. Here n� mediates the inner SL valley scattering. Note
that an upper limit for 2m1, 2m2 is given by the number of
excitable circumferential phonons, i.e., 2m1, 2m2 � d/

√
3a

where a is the NT interatomic distance a ≈ 1.42 Å. We obtain
a strong increase in the absolute conductance and differential
conductance at high voltages (U ≈ 2 V) as a function of m1

and m2 while n� is strongly decreasing. The reason for an
increase of the conductance for larger m1 values and fixed m2

comes mainly from the fact that, due to the band edges of the
side valleys, scattering from the central SL valley to the SL
side valleys is effectively forward. The backscattering to the
central valley is accomplished then by a number of different
phonons in contrast to the system without a chiral potential.
The growth of the conductance as a function of m1 is then seen
from our discussion above, which also leads to the explanation
of the conductance increase as a function of m2.

Summarizing, we have shown that large chiral unidirec-
tional superlattice potentials in metallic NTs should lead
to a large increase of the conductance, the differential
conductance, and to a decrease of the optical phonon tem-
perature at high voltage. We have shown this explicitly for
a chainlike SL potential with symmetric steps. This kind
of SL potential leads to the best transport results over all
step potentials. Nevertheless, the main effect should be also
observed for at least other SL step potentials with strong
chirality. The effect arises from an increased number of
phonons with different momenta but lower electron-phonon
scattering probabilities contributing to the electron-phonon
scattering process. As a result of our findings, we expect
an increase of the applicability of carbon NTs as metallic
wires.
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