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Microscopic theory of Cooper pair beam splitters based on carbon nanotubes

P. Burset,1 W. J. Herrera,2 and A. Levy Yeyati1
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We analyze microscopically a Cooper pair splitting device in which a central superconducting lead is connected
to two weakly coupled normal leads through a carbon nanotube. We determine the splitting efficiency at resonance
in terms of geometrical and material parameters, including the effect of spin-orbit scattering. While the efficiency
in the linear regime is limited to 50% and decays exponentially as a function of the width of the superconducting
region, we show that it can rise to ∼100% in the nonlinear regime for certain regions of the stability diagram.
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I. INTRODUCTION

The production of entangled electron pairs in a solid state
device from the splitting of Cooper pairs1 is a challenging
possibility which is starting to generate an intense experi-
mental effort.2–4 A basic splitting device is a three-terminal
system with a central superconducting lead (S) between two
normal (N) ones, as depicted in the upper panel of Fig. 1.
When a Cooper pair is injected from the S lead it can either
be transmitted as a whole to one of the N leads by means of
a local Andreev reflection process [Fig. 1(a)] or split so that
each of the electrons in the pair is transmitted to a different
lead, which corresponds to a crossed Andreev reflection (CAR)
process [Fig. 1(b)].5 Initial experimental devices were based on
nanolithographically defined diffusive samples.2 In this case a
key issue which was extensively addressed theoretically is the
competition between CAR processes and direct tunneling of
electrons between the normal leads. The cancellation between
the two contributions to the nonlocal conductance for thick
tunnel barriers was shown to be removed by introducing
ferromagnetic leads,6 increasing the barrier transparency,7 or
taking into account Coulomb interactions.8 The importance
of nonequilibrium effects at large bias voltages has been
also analyzed.9 More recent experiments are oriented toward
tunable double-quantum-dot systems based on either carbon
nanotubes3 or InAs nanowires.4 In spite of the difference
in materials the systems realized in both experiments are
conceptually equivalent. They did correspond, however, to
different physical regimes: while in Ref. 3 the hybridization
by direct tunneling between the dots was dominant, in Ref. 4
the direct tunneling appeared to be negligible. In both works
the Cooper pair splitting action was demonstrated indirectly
by analyzing the changes in the behavior of the conductance
when going from the normal to the superconducting state.
Both works pointed out an unexpectedly high efficiency for
CAR, much higher than would be predicted by theories
which do not take into account the direct interdot tunneling.1

Still further experimental and theoretical efforts are needed
in order to demonstrate the splitting unambiguously and to
reach the nearly 100% efficiency that might be necessary for
entanglement detection.10

In the present work we analyze microscopically the case
of double quantum dots (DQDs) defined on single-walled
carbon nanotubes (SWCNTs) and show that the two regimes
of Refs. 3 and 4 can be reached in metallic or semiconducting

tubes. We consider the situation illustrated in Figs. 1(c) and
1(d), where the central electrode modifies the electrostatic
potential and induces a pairing amplitude on the portion of the
tube underneath without breaking its continuity. In agreement
with the experimental observations, we show that in this case
the splitting efficiency decays rather weakly with increasing
width of the central electrode.4 Our results also suggest how
to increase the splitting efficiency up to a level close to 100%
by operating the devices in the nonlinear regime. We begin
with a SWCNT in the normal state without e-e interactions
in order to analyze the interdot coupling. Subsequently, we
switch on superconductivity in the central electrode and study
the probability of CAR processes and the splitting efficiency.
Finally, we map the problem onto a minimal model where
analytical insight into the nonlinear regime and the effect of
interactions is obtained.

II. BASIC MODELING

We focus on zigzag SWCNTs which allow us to consider
both metallic and semiconducting cases. If the coupling to
the central lead is sufficiently smooth on the atomic scale, we
may assume that intervalley scattering is weak and the K-K ′
degeneracy is preserved. For this case and when the radius is of
the order of 1 nm or smaller it is important to consider curvature
effects, which produce a finite band gap in metallic tubes
and enhance the effect of spin-orbit (SO) interactions. We use
two complementary approaches for describing the electronic
states in the zigzag SWCNT: a tight-binding (TB) model and a
continuous description based on the Bogoliubov–de Gennes–
Dirac equations.

Within the continuous description the system is character-
ized by the equations
(

He
τ,s − EF �(x)

�(x) EF − He
τ,s

) (
uτ,s

vτ,s

)
= Eτ,s

(
uτ,s

vτ,s

)
, (1)

where He
τ,s = −ih̄vF ∂x · σx + τh̄vF qnσy + τδ0s − τδ1sσy +

V (x) is the normal state effective Hamiltonian for the n

mode (corresponding to quantized momenta qn around the
tube), �(x) is the induced pairing amplitude, and V (x) is the
electrostatic potential profile along the tube. In these equations
σμ are Pauli matrices in sublattice space, and τ,s = ±
correspond to the valley and spin indices, respectively. Finally,
the terms in δ0 and δ1 take into account the SO interaction as
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FIG. 1. (Color online) Schematic representation of local (a) and
nonlocal (b) Andreev processes in a generic Cooper pair splitter. (c)
Specific geometry considered in this work: a finite SWCNT coupled
to normal leads at its ends and a central superconducting lead. (d)
illustrates the potential profile along the tube.

in Refs. 13. The momenta qn take the values 2π
3Na0

(n ± p

3 ) −
qcurv, where p = N mod 3 = 0, ± 1, a0 is the interatomic
distance and N the number of atoms in the cross section.
Depending on whether p = 0 or p = ±1 the tube is metal-
lic or semiconducting, respectively. The curvature effect is
included in qcurv = Ecurv/h̄vF , where Ecurv � π2|Vppπ |/4N2

with |Vppπ | � 2.7 eV. In the normal homogeneous case the
corresponding energy levels for longitudinal wave vector k

are thus given by En
τ,s(k) = h̄vF

√
(qn + τsδ1)2 + k2 + δ0τs.

The transport properties can be expressed in terms of Green
functions which satisfy [E − Hτ,s(x)]Gτ,s(x,x ′) = δ(x − x ′),
where Hτ,s(x) denotes the full Hamiltonian on the left-hand
side of Eq. (1). We obtain these quantities by solving first for
the uniform finite regions and then matching the result using
the method of Ref. 11.

III. NORMAL STATE

We start by analyzing the linear conductance along the tube,
GLR , when the central lead is in the normal state. In Fig. 2 we
show a map of GLR in the VgL-VgR plane, obtained using
the TB model in the usual nearest-neighbor approximation
with a hopping parameter t ≡ Vppπ . As a first approximation
the potential profile along the tube is assumed to change
discontinuously as represented by the dashed lines in Fig. 1(d).
The lateral leads are modeled by ideal one-dimensional (1D)
channels weakly coupled to the ends of the tube, as represented
schematically in Fig. 1(c). We fix the tunneling rates to these
leads to a value �L,R ∼ 0.01t , which is consistent with the
conductance values observed in Ref. 12 for the lowest-energy
states of a SWCNT quantum dot. To model the effect of the
central lead we rely on the results of ab initio calculations
for the case of Al electrodes.14,15 According to Ref. 14 these
produce an n-doping effect, leading to a shift of the tube bands
EFs ∼ −0.5 eV for an ideal interface. On the other hand, in
the normal state it would induce a broadening of the tube

FIG. 2. (Color online) Left panel: Conductance map for a metallic
tube (N = 12) in the normal state for the p-n-p region with (lower)
and without (upper) SO interactions. Right panel: Same for the
semiconducting tube (N = 11) but in a logarithmic scale. The
geometrical parameters are W = WL,R = 170 nm.

levels of the order of a few meV,15 which suggests a typical
value �S ∼ 1 meV for the corresponding tunneling rate. As in
the experiments of Ref. 3 the length of the central region is set
initially to ∼200 nm. We consider tubes with N = 11,12 which
correspond to radii R ∼ 0.43,0.47 nm, respectively. In the
metallic case curvature effects lead to the opening of a narrow
gap, which can be estimated as Eg � Ecurv � 45 meV. The
curvature gap is apparent in the upper left panel of Fig. 2. On
the other hand, in the semiconducting case the gap is Eg � 412
meV (top right panel of Fig. 2). It should be noticed that for
these diameters and for gate potentials of the order of 0.5 eV
only the lowest-energy mode, corresponding to n = 0, gives a
significant contribution to the transport properties.

For positive VgL,VgR , i.e., in the p-n-p regime, the
conductance displays a DQD behavior as shown in Fig. 2.
The metallic case (left panels) exhibits an anticrossing pattern
similar to the one found in the experiments of Ref. 3. The
confinement of the dot states is much more pronounced in
the semiconducting case where the Klein tunneling is less
significant. We have used a logarithmic scale in this case in
order to enhance the visibility of the conductance peaks. When
SO scattering is introduced (lower panels in Fig. 2), there is
a general splitting of the conductance peaks of the order of
∼2 meV due to the breaking of the spin-valley degeneracy.
Close to the gap edges this splitting is of the same order as the
mean level separation.

IV. SUPERCONDUCTING STATE

When superconductivity in the central lead is switched
on, pairing correlations within the tube are induced by
proximity effect. The size of the induced gap �i is set
by �S . We shall assume that the temperature is zero and
that the energy E of the injected electrons from the normal
leads is smaller than �i . Then RAL(E) and RAR(E) denote
the local Andreev reflection probabilities at the L and R

leads, while TCAR(E) corresponds to the CAR processes.
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FIG. 3. (Color online) Evolution of the CAR probability (blue
or dark gray) and the splitting efficiency η (green or light gray)
in the linear regime as a function of the length W of the central
electrode for a metallic SWCNT with N = 12 (upper panel) and a
semiconducting one with N = 11 (lower panel). The gate potentials
VgL,gR are fixed at the points indicated by the circles in Fig. 2. The
dashed lines represent the decay of the CAR probability for a 3D bulk
superconductor multiplied by a factor 103.

When the system is operated as a beam splitter, a finite
voltage difference V is applied between the S and the N
leads and the nonlinear conductance is given by GL(R)(V ) =
G0[TCAR(V ) + TCAR(−V ) + 2RAL(R)(V )], with G0 = 2e2/h

[notice that at finite energy in general TCAR(E) �= TCAR(−E)
due to the breaking of the electron-hole symmetry]. Thus
we can define the splitting efficiency as η = G0[TCAR(V ) +
TCAR(−V )/(GL(V ) + GR(V )].

Within our model the CAR coefficients decay exponen-
tially on the scale ξ0 = h̄vF /�i

√
1 − (h̄vf q/EFs)2, where

q = q0 ± δ1/h̄vF , exhibiting oscillations on the scale λF =
h̄vF /|EFs |, as illustrated for the linear regime in Fig. 3. In these
plots we have fixed the gate voltages at the values indicated
by the circles in Fig. 2. The CAR probability decays more
slowly in the metallic case (N = 12) due to the longer effective
coherence length of this case. In both cases, however, the decay
is remarkably slower than in a 3D bulk BCS superconductor,
where the prediction is ∼ exp (−2W/ξ0)/(kF W )2,6 indicated
by the dashed lines in Fig. 3. This is a consequence of the
single-channel character of the connection between the dots
in the present system and explains the rather large efficiency
values estimated in recent experiments.4 As can be observed
the efficiency η decreases from 0.4 at W ∼ 200 nm to <0.05
at W ∼ 700 nm in the semiconducting case, while it varies
between 0.5 and 0.2 for the metallic tube within the same W

range. For large W the overall evolution of η is well described
by the expression η ∼ 1/(1 + exp 2W/ξ0). This qualitative
behavior is also found for a smoother potential profile (see
Appendix A).

V. MAP ONTO A MINIMAL MODEL

Further analytical insight is provided by mapping the
system onto a minimal model, valid around the crossing
points between dot resonances, in which we keep just one
twofold-degenerate electron level EL,R in each dot.16 In the

combined dot-Nambu space the model properties can be
expressed in terms of bispinor fields �μ = (dμ↑,d

†
μ↓)T where

μ = L,R and d†
μσ creates dot electrons. In the absence of

interactions this reduced model is characterized by a retarded
Green function matrix of the form Ĝ(0) = [E − ĥ0 + i�̂ −

̂(E)]−1, where (ĥ0)μν,αβ = Eμδμνδαβ(−1)α+1, μ,ν ≡ L,R,
α,β ≡ 1,2 are the Nambu indices, (�̂)μν,αβ = �̃μδμνδαβ with
�̃μ = �μa0/Wμ correspond to the effective tunneling rates to
the normal leads, and 
̂ is a matrix self-energy describing
the coupling with the central superconducting region (see
Appendix B). Of particular importance for determining the
splitting performance of the device is the quantity 
LR,12

associated with the interdot CAR processes. In the long-W
limit this reduces to


LR,12 ∼ ta0e
−W/ξ (E)

2
√

WLWR

�i√
E2 − �2

i

sin (k0W + αs), (2)

where k0 =
√

(EFs/h̄vF )2 − q2, eiαs = h̄vF (k0 + iq)/EFs ,

and ξ (E) = ξ0�i/

√
�2

i − E2. To the lowest order in


̂, TCAR(E) ∼ |
LR,12/[(E − EL + i�̃L)(E + ER + i�̃R)]|2,
which suggests that it would be maximized for E ∼ EL ∼
−ER . Further analysis shows that η → 1 could be obtained
provided that �i > |EL| � �̃L,ReW/ξ (EL). As we show below,
these predictions are confirmed by the full calculations where
we additionally include the effect of interactions.

For this purpose we assume a constant charging energy
UL,R � �i acting on each dot and apply the equation of
motion (EOM) technique with a Hartree-Fock decoupling at
the level of the two-body Green functions as described in
Appendix C. This approximation is valid when Kondo and
exchange correlations between the dots can be neglected.
Further simplification is achieved in the limit Uμ → ∞, where
we find Ĝ = [ĝ−1 + i�̂ − 
̂]−1, with g = (E − ĥ0)−1[1 −
Â∞] and (Â∞)μν,αβ = nμδμνδαβ . The evaluation of the mean
values nμ = 〈d†

μσ dμσ 〉 must be performed self-consistently.
The main effect of interactions within this approximation

is to shift the resonances and to reduce their width, roughly
as (1 − nμ)�̃μ. Then, the CAR and the local Andreev proba-
bilities are reduced by factors (1 − n1)(1 − n2) and (1 − nμ)2,
respectively, which therefore do not modify significantly the
efficiency at resonance. The color map in Fig. 4(a) shows
the efficiency in the linear regime corresponding to the
semiconducting case with W ∼ 700 nm (arrow in Fig. 3)
and for the region of gate voltages indicated by the circle
in the right panel of Fig. 2. As can be observed, η exhibits
maximum values at the crossing points between resonances of
the order of 0.1, slightly higher than the values found in the
noninteracting case. The efficiency reaches a maximum of the
same magnitude along the line EL ∼ −ER (red dashed line).

A. Nonlinear regime

What is more remarkable is that the efficiency along this
line rises to ∼100% in the nonlinear regime V �= 0. This is
illustrated in Fig. 4(b). The high-efficiency regions lie within
the dot resonances (indicated by the dashed white lines) which
are shifted from zero energy due to the presence of an induced
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FIG. 4. (Color online) Color map of the splitting efficiency
within the minimal model with parameters corresponding to a
semiconducting tube with W ∼ 700 nm (indicated by the arrow in
Fig. 3) in the linear (a) and nonlinear (b) regimes. In the latter case
the dot levels are varied along the line EL ∼ −ER indicated by the
dashed red line of (a). The white dashed lines indicate the maxima in
the spectral density, which is shown in (c) for the two dots along this
line. Local and nonlocal Andreev processes at finite V are indicated
by the black arrows.

minigap and split due to the hybridization between the dots.
This last effect is linked to the matrix elements 
LR,μμ.

The origin of these high-efficiency regions can be under-
stood qualitatively from the spectral density on each dot, which
is shown in Fig. 4(c). As can be observed, the electron-hole
symmetry in the local spectral density is lost along the
line EL ∼ −ER . Crossed Andreev processes like the one
sketched as the CAR arrow in Fig. 4(c) combine electron
and hole states on each dot with high spectral density. These
interdot transitions are then more favorable than the intradot
electron-hole conversions (arrows AR and AL), in which either
the electron or the hole state has low spectral density. As
a consequence, local Andreev processes become suppressed
while nonlocal CAR processes are enhanced, thus explaining
the efficiency increase. It should be stressed that this increase
is mainly due to an energy filtering mechanism,17 which is
only weakly affected by Coulomb interactions.

VI. CONCLUSIONS

We have analyzed the splitting efficiency of SWCNT
double-quantum-dot devices in terms of material and ge-
ometrical parameters. The single-channel character of the
connection between the dots in this configuration explains the
weak decay of CAR with distance, which is consistent with the
experimental observations. Furthermore we have shown how
the splitting efficiency can rise to ∼100% by working in the
nonlinear regime. We expect that our analysis can guide future
experiments for the production of entangled electron pairs
using these devices. In this respect the appearance of recent
experimental results by Hofstetter et al.18 is encouraging;
they extend the study of Cooper pair splitters based on
semiconducting nanowires to the nonlinear regime.
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APPENDIX A: EFFECT OF SMEARING THE
POTENTIAL PROFILE

For the results of Figs. 2 and 3 the electrostatic potential pro-
file along the tube has been assumed to change discontinuously
at the interfaces with the central region. It is thus defined as

V (x) =

⎧⎪⎨
⎪⎩

VgL, 0 � x � WL,

EFs, WL < x � WL + W,

VgR, WL + W < x � WT ,

(A1)

where WT = WL + W + WR .
However, a more realistic description would correspond to

a smooth potential as defined by

V (x) = EFs + VgL − EFs

π

[
π

2
− arctan

x − WL

αa0

]

+ VgR − EFs

π

[
π

2
+ arctan

x − WL − W

αa0

]
, (A2)

where the parameter α controls the smearing of the potential
at the interfaces. This smooth electrostatic potential displaces
the position of the energy levels of the dots, thus changing the
position of the resonance in the VgL-VgR map. Nevertheless,
the overall features of the conduction maps are not modified.
In Fig. 5 we show the evolution of the splitting efficiency
η as a function of the length W of the central electrode
for a semiconducting case with N = 11 and gate potentials
corresponding to the resonance indicated by the centers of the
red circles of Fig. 2. Different values of the parameter α are
shown along with the case α → 0, which corresponds to the
square barrier potential given by Eq. (A1). The main effect of
the smeared potential is a change of phase in the oscillatory
pattern at the atomic scale. However, in all cases, the efficiency

FIG. 5. (Color online) Evolution of the splitting efficiency η

as a function of the length W of the central electrode for N =
11. Different values of the parameter α are shown, representing
different electrostatic potential profiles. The asymptotic behavior
η ∼ 1/[1 + exp 2W/ξ (q)] is indicated by the black dashed line. The
gate potentials VgL,gR are fixed at the values indicated by the centers
of the circles of Fig. 2 in the main text.
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fits very well the functional form η ∼ 1/[1 + exp 2W/ξ (q)]
indicated by the black dashed line in Fig. 5.

APPENDIX B: SELF-ENERGY DESCRIBING
THE COUPLING WITH THE

SUPERCONDUCTING ELECTRODE

We provide here some details on the self-energy between
the dots and the central superconducting region within the
minimal model discussed in the paper. First, we need the
propagator for the finite nanotube region of width W in which
superconductivity has been induced. Following the method of
Ref. 11, this can be written as

g
S,ab =

(
F 1

ab

�
(E + σx�i) + σzF

2
ab

)
,

where � =
√

E2 − �2
i , �i is the induced pairing amplitude,

the indices a,b = L,R denote the two edges of this region,
σx,σz are the Pauli matrices in Nambu space, the functions
F

1,2
ab depend on W and are of the form

F
1,2
LR = F

1,2
RL = cos α−

2 cos (k−W + α−)
∓ cos α+

2 cos (k+W + α+)
,

F
1,2
LL = F

1,2
RR = i sin k−W

2 cos (k−W + α−)
∓ i sin k+W

2 cos (k+W + α+)
,

k± =
√

(EF ± �)2/h̄2v2
F − q2, and eiα± = (k± + iq)/√

k2± + q2
0 . With this, the self-energy between the dots and the

superconductor is given by


ab =
√

�̃a�̃bσzgS,abσz,

where �̃a are the effective tunneling rates from the central
region to the dots, �̃a = ta0| sin(k0aWa) cos αa|/(2Wa), k0a

being the wave vector for the corresponding dot state and
cos αa = k0a/

√
k0a + q2.

APPENDIX C: EQUATION OF MOTION APPROACH
TO INCLUDE INTERACTIONS

In this section we describe the approximation used to
include interactions within the minimal model for the S
DQD system. The dot levels will be indicated by the indices
μ = L,R (dot) and σ =↑ , ↓ (spin). The Hamiltonian of the
system is

Ĥ = ĤL + ĤR + ĤS + ĤT + ĤDS

+
∑
μ,σ

Eμn̂μσ +
∑

μ

Uμn̂μ(n̂μ − 1)/2, (C1)

where d†
μσ creates an electron in dot μ with spin σ , n̂μσ =

d̂†
μσ dμσ , n̂μ = ∑

σ n̂μσ , and ĤL,R,S describe the isolated left,
right, and central superconducting leads, respectively. Finally
ĤT corresponds to the tunnel coupling between the dot level
and the normal leads while HDS couple the dots to the
superconducting electrode.

The transport properties of this model can be adequately
described in terms of the DQD retarded Green functions
in Nambu space, defined as Ĝ(τ ) = −iθ (τ )〈[ψ̂(τ ),ψ̂†(0)]+〉,
where ψ̂μ = (dμ,↑,d

†
μ,↓,dμ,↑,d

†
μ,↓) is a bispinor in Nambu

space. To simplify the notation we shall use hereafter Ĝ =
〈〈ψ̂ ; ψ̂†〉〉. To deal with the interaction we rely here on an
equation of motion approach, with a decoupling at the level of
the two-particle Green functions. From the equation of motion
for Ĝ, in frequency representation we obtain

[ωÎ − ĥ0 + i�̂ − 
̂]Ĝ = Î + ÛŴ , (C2)

where (ĥ0)μν,αβ = δμνδα,β (−1)α+1Eμ, (Û )μν,αβ =
δμνδαβ(−1)α+1Uμ, and Ŵ = 〈〈 φ̂; ψ̂†〉〉, with (φ̂)μ,α =
δα,1dμ↑nμ↓ + δα,2d

†
μ↓nμ↑. Ŵ is a two-body Green function

generated by the presence of the U terms in the model
Hamiltonian. The tunneling rates (�̂)μν,αβ = �μa0/Wμδμνδαβ

arise from the coupling to the normal leads, while 
̂ is the
matrix self-energy described in the previous section. To close
the system of equations we analyze the EOM for Ŵ and
introduce a mean-field decoupling scheme for the rest of the
two-body Green functions which are generated. In this way
we obtain

(ωÎ − ĥ1)Ŵ = Â[1 + (
̂ − i�̂)Ĝ], (C3)

where (Â)μν,αβ = δμν(δαβ〈nμ〉 + (1 − δαβ)〈d̂μ↑d̂μ↓〉) and
ĥ1 = ĥ0 + Û .

Extracting Ŵ from (C3) and substituting in (C2), we obtain
an expression for Ĝ which can be evaluated self-consistently:

Ĝ = [ω − ĥ0 + i�̂ − 
̂ − Û (ω − ĥ1)−1Â(−i�̂ + 
̂)]−1

× [Î + Û (ω − ĥ1)−1Â]. (C4)

This can be written in a more compact way as

Ĝ = [ĝ−1 + i�̂ − 
̂]−1, (C5)

where

ĝ = (ω − ĥ0)−1[Î + Û (ω − ĥ1)−1Â].

Finally, taking the limit Uμ → ∞, further simplification
occurs as one can safely neglect the induced pairing correla-
tions 〈d̂μ↑d̂μ↓〉.19 This allows one to write

ĝ → (ω − ĥ0)−1[Î − Â∞], (C6)

where (Â∞)μν = δμν〈nμ〉.
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J. Nygard, and C. Schönenberger, Phys. Rev. Lett. 107, 136801
(2011).

19J. C. Cuevas, A. Levy Yeyati, and A. Martı́n-Rodero, Phys. Rev.
B 63, 094515 (2001); Y. Tanaka, N. Kawakami, and A. Oguri,
J. Phys. Soc. Jpn. 76, 074701 (2007).

115448-6

http://dx.doi.org/10.1103/PhysRevLett.95.027002
http://dx.doi.org/10.1103/PhysRevLett.97.237003
http://dx.doi.org/10.1209/0295-5075/87/27011
http://dx.doi.org/10.1209/0295-5075/87/27011
http://dx.doi.org/10.1038/nphys1669
http://dx.doi.org/10.1038/nphys1669
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1063/1.125796
http://dx.doi.org/10.1209/epl/i2001-00303-0
http://dx.doi.org/10.1209/epl/i2001-00303-0
http://dx.doi.org/10.1103/PhysRevB.70.174509
http://dx.doi.org/10.1103/PhysRevB.74.214510
http://dx.doi.org/10.1103/PhysRevB.74.214510
http://dx.doi.org/10.1103/PhysRevB.75.172503
http://dx.doi.org/10.1103/PhysRevB.79.104518
http://dx.doi.org/10.1103/PhysRevB.79.104518
http://dx.doi.org/10.1038/nphys621
http://dx.doi.org/10.1103/PhysRevB.80.174508
http://dx.doi.org/10.1088/0957-4484/14/1/318
http://dx.doi.org/10.1088/0953-8984/22/27/275304
http://dx.doi.org/10.1088/0953-8984/22/27/275304
http://dx.doi.org/10.1038/nature06822
http://dx.doi.org/10.1038/nature06822
http://dx.doi.org/10.1103/PhysRevB.80.075409
http://dx.doi.org/10.1103/PhysRevB.82.165427
http://dx.doi.org/10.1103/PhysRevLett.101.026803
http://dx.doi.org/10.1103/PhysRevLett.104.076807
http://dx.doi.org/10.1103/PhysRevLett.105.107002
http://dx.doi.org/10.1103/PhysRevLett.105.107002
http://dx.doi.org/10.1103/PhysRevB.63.094515
http://dx.doi.org/10.1103/PhysRevB.63.094515
http://dx.doi.org/10.1143/JPSJ.76.074701

