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Helical BN and ZnO nanotubes with intrinsic twisting: An objective molecular dynamics study
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We investigate helical single-walled nanotubes of BN and ZnO described with density-functional based
tight-binding models. The employed objective molecular dynamics computational framework accounts for the
helical instead of the translational symmetry and allows for simulating chiral nanotubes as the result of the
nanomechanical process of a nearly axial glide [D.-B. Zhang, R. D. James, and T. Dumitrică, J. Chem. Phys.
130, 071101 (2009)]. At large diameters, by comparing the microscopic strain stored in the tube wall with the
continuum predictions, we observe the invalidity of the continuum shell idealization of the one-atom thick layer.
At small diameters, comparing the computed Eshelby twist executed by the one-atom thick layers with the one
predicted by pure rolling, we find that a large catalog of nanotubes store intrinsic twists. This unusual intrinsic
twist effect is shown to be dependent on chirality and diameter, as part of the general trend to depart from the
standard rolled-up construction. While changes in the electronic structures and Young’s modulus are dominated
by curvature, the shear elastic constants vary both with curvature and chirality.
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I. INTRODUCTION

Nanostructured tubular materials have attracted vast atten-
tion for almost two decades. In addition to carbon nanotubes
(CNTs), first reported in 1991,1 a large number of inorganic
nanotube (NT) nanostructures have been synthesized from
both layered2–10 and nonlayered materials.11–16 While the
inorganic fullerene-like NTs can be typically imagined as
layers rolled into cylindrical structures, the NTs made out of
nonlayered materials are essentially pristine one-dimensional
(1D) monocrystalline structures possessing a central vacant
space. In this paper, we focus on two such one-atom thick NTs
made out of BN and ZnO.

Recent experimentation14–18 indicates that screw-
dislocation growth represents a growth mechanism of
quasi-1D structures. Such developments renewed the interest
in chiral structures other than CNTs. Due to the inherent
difficulties encountered at the nanoscale, experimental
characterization of these chiral materials is often problematic.
Although microscopic simulations are essential tools for
investigating infinite crystalline systems, their applicability
in NT chiral structures is challenging due to the difficulties
associated with handling translational symmetry. It is known
that a screw dislocation lying parallel with the axis of a thin
rod or a tube, see Fig. 1, is stabilized at a central location by
an Eshelby twist.19,20 According to the elasticity theory, the
twist per unit length (a twist rate) γ ′

E induced by the presence
of an axial screw dislocation in an isotropic thin cylindrical
rod or a tube can be expressed in terms of its outer and inner
radii (R and r , respectively) and the magnitude of the Burgers
vector b as

γ ′
E = b

π (R2 + r2)
. (1)

The formation energy per unit length of a screw-dislocated
isotropic thin rod or a tube writes

E = Gb2

4π
ln

R

r
− Gb2

4π

R2 − r2

R2 + r2
+ S, (2)

where G is the shear modulus. The above expression contains
three different terms: the energy associated with the elastic
strain field created by the screw dislocation (first term), the
energy reduction attributed to the Eshelby twist (second term),
and the surface energy (third term) of both outer and inner
surfaces for nonlayered materials (ZnO) or bending energy
related with the rolling of a sheet into a tube for layered
materials (C, BN).

From a continuum perspective, the one-atom-thick tube
can be represented by a shell of a certain thickness, i.e., r �=
R. Then, the first two terms in Eq. (2) bring nonvanishing
contributions and the NT total strain energy will contain shear
strain. Alternatively, the monolayer can be represented by a
continuum membrane without thickness,21 i.e., r = R. Then,
the first two terms in Eq. (2) vanish. This implies that there is
no shear energy cost to create an axial screw dislocation and,
hence, the Burgers vector magnitude can be large.

Because, in general, the mechanics of an axial glide
in a nanostructure is not yet understood, the magnitude
of the atomic-scale Eshelby twist, and hence the resulting
translational periodicity, is not a priori known. This makes it
difficult to carry out systematic microscopic calculations in
the standard periodic framework.

Efficient microscopic modeling of screw-dislocated NTs
was only recently performed22 due to the development
of objective molecular dynamics (MD),23 a relatively new
microscopic technique based on the objective structures24

concept. By coupling25 it with the computationally efficient
density-functional-based tight-binding (DFTB) treatment of
the chemical binding implemented in the code TROCADERO,26

objective MD enables simulating with minimal symmetry
constraints the interplay between the classical ionic and
quantum electronic degrees of freedom under an arbitrary twist
and chirality.

Using objective MD and well-tested two-center nonorthog-
onal DFTB models,27–29 in this paper, we investigate the
nanomechanics of screw dislocations in one-atom-thick hexag-
onal layers of BN and ZnO. The motivation for our study is
threefold.
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FIG. 1. (Color online) Schematics of a screw-dislocated hollow
tube with Burgers vector b with (a) fixed ends and (b) one free-to-
rotate end leading to an Eshelby’s twist.

Firstly, it is interesting to understand and compare the
rolling traits of these two materials as they are representative
for the two categories of the currently synthesized helical
NTs. Bulk hexagonal BN is a layered material and BN
NTs have been synthesized in both single- and multiwalled
forms.4–7,9 Although the majority of obtained tubes displayed
zigzag configurations, helical and armchair BN NTs were
also reported. ZnO exhibits a typical wurtzite structure and
helical ZnO NTs have been synthesized along the c direction
via dislocation-driven growth.14–16 Structurally, the thicker-
walled ZnO NTs are faceted and display a hexagonal cross
section.12,14–16 The single-walled NTs have a ZnO hexagonal
wall and a cylindrical cross section.30

Secondly, single-walled BN and ZnO NTs are analogous to
CNTs, with alternating B (Zn) and N (O) atoms substituting for
C atoms. They are both isotropic in the linear elastic regime.
When this approximation holds, the magnitude of the Eshelby
twist can be analytically predicted based on the standard
rolled-up construction of CNTs.31 Recent investigations32,33

indicated that the thicker, three atomic layers of MoS2 and TiS2

exhibit a departure from the rolled-up predictions, manifested
in diameter-, chirality-, and wall-structure-dependent intrinsic
twists. Other symmetry-constrained DFTB calculations34 indi-
cated that even the widely studied CNTs exhibit intrinsic twist.
The effect was attributed34 to the well-known strain sensitivity
of the electronic properties.37 It would be interesting to know
if such intrinsic twists are present in other one-atom-thick NTs
with electronic properties less sensitive to twisting.

Thirdly, the BN NTs offer a number of appealing
properties,9,39–41 including excellent mechanical
properties.38,42 They are interesting as components for
electromechanical devices in which the individual BN NT
is subjected to torsional deformation.43 The knowledge of
the elastic constant variations with diameter and chirality is
assistive for the design of such nanodevices.

This paper is organized as follows. Section II A reviews the
standard rolled-up construction and details the original helical
nanotube construction introduced by Iijima1 and employed in
Ref. 32 and 33 to simulate chiral MoS2 and TiS2 nanotubes.
The relation between the Eshelby twist and the helical NT
indexes n and m is indicated. Section II B outlines the
helical symmetry treatment of the electronic states. Section III
presents the simulation results for both BN and ZnO helical

NTs. Section III A focuses on the obtained structures and
compares them with the ideal rolled-up structure predictions.
For a comparison with the existing literature,34,44 the case
of small-diameter helical CNT structures is also considered.
Section III B focuses on the scaling of electromechanical
properties with chirality and diameter. Finally, in Sec. IV
obtained results are summarized and discussed.

II. METHODOLOGY

A. Ideal nanotube structure

An (n,m) NT is commonly conceptualized in the literature
by the rolled-up construction, which involves pure mechanical
rolling of a flat hexagonal-lattice strip along the (n,m) hexag-
onal lattice vector into a seamless cylinder.31 In the unrolled
representation, the n and m indices represent the components
of the chiral vector Ch of the nanotube on the lattice vectors
a1 and a2 of the honeycomb lattice, i.e., Ch = na1 + ma2.
By convention, a1 and a2 are taken along the two zigzag
chains as shown in Fig. 2. The radius of this tubule writes
R0 = |Ch|/2π = a

√
n2 + nm + m2/2π . Here, a is the length

of the primitive vector of the flat layer. The NT chirality is mea-
sured by the angle χ = arcsin[(

√
3m)/(2

√
n2 + nm + m2)]

FIG. 2. (Color online) (left and center) Schematics for the two
ways of forming (a) (3,3) and (b) (4,2) NTs from the ideal flat
hexagonal layer: by rolling-up the big rectangle bounded by the chiral
Ch and translational T vectors and by rolling-up a ribbon such as the
hexagons labeled by A become superimposed. Lattice basis vectors
a1, a2, and Burgers vector b3 along the hatched hexagon are also
shown. The row of hatched hexagons form a helix on the tube. The
objective unit cells used in the calculations are shown with thicker
(red) lines. (right) Bond lengths and angles obtained by mapping in
two dimensions the DFTB optimized CNTs. The NT axis is in the
vertical direction.
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enclosed by Ch and the closest of the three zigzag chains in
the flat graphene sheet. The special cases corresponding to
(n,0) and (n,n) are the zigzag and armchair configurations,
respectively.

The fundamental property of an infinitely long NT is
ostensibly its translational periodicity, described by the trans-
lational vector T pointing along the axial direction of the NT.
In the unrolled representation, the translational vector T is
orthogonal to Ch. While the precise expression of T can be
found in literature,31 what matters here is that it points into a
direction, which is distinct from one of the glide directions of
the graphene sheet, see Fig. 2. The underlying assumption is
that during the rolling process of the unit cell delineated by T
and Ch, the translational symmetry is preserved even though
the bond lengths and angles between atoms will change due
to finite curvature effects. The infinitely long NT structure is
then described with

Xj,ζ = Xj + ζT, (3)

where Xj are the coordinates of the atoms located in the unit
cell. Integer ζ indexes the unit cell replica.

An ideal NT possesses also helical symmetry, described in
the unrolled representation by screw vectors comprised of both
rotational and translational components, i.e., with components
along both Ch and T. One such vector is the Burgers vector
b3 = a1 − a2, shown in Fig. 2. By evaluating its axial and
circumferential components, one obtains that screw vector b3
is associated with a θ0 angular rotation and a T0 axial translation
given by

θ0 = π (n − m)

n2 + nm + m2
,

(4)

T0 =
√

3a(n + m)

2
√

n2 + nm + m2
.

The makeup of helical CNTs was depicted by Iijima in
a another way, namely, by the rolling-up along the tube
axis of a graphene ribbon in the armchair orientation (along
the glide direction indicated by the Burgers vector b3), see
Fig. 2, such that the hatched edge hexagons are superimposed.1

In the cylindrical geometry, the gliding of the edges past
one another creates an axial screw dislocation. Indeed, in
the cylindrical structure of an (n,n) NT, its chiral vector
keeps a closed ring composed of 4n atoms. A slip along the
nearly axial helical glide path introduces an integer number
of hexagons i between the head and the tail of the old
chiral vector and thus leads to a change in NT’s chirality.
Of course, during this process the cylindrical structure of
the armchair NT is maintained and its new chiral vector
keeps a closed ring, i.e., the dislocation between the head
and the tail of the new chiral vector is zero. The wrapping
indexes of the new chiral pattern can be easily obtained by
identifying on the unrolled NT representation the new chirality
vector connecting the overlapping hexagons. It is an easy
task to show that one glide step introduces a characteristic
(+1, − 1) change in NT’s indexes.22 The repeated glide
defines a nearly equal radius family of NTs with indexes
(n,n), (n + 1,n − 1), . . . ,(2n,0). An arbitrary NT with indexes
(n + i,n − i), where i ∈ [0,n], can be viewed as a screw-
dislocated (n,n) NT that underwent a twist per unit length

given by

γ0 = θ0

T0
= b

2πR2
0

√
1 − (

b
2πR0

)2
. (5)

Here, b = i|b3| is the magnitude of the Burgers vector.
According to Eq. (1), the twist rate for an one-atom-thick
tube, where inner and outer radii coincide, is γ ′

E = b/2πR2
0 .

This means that the twist rate calculated under pure rolling
assumption, as given in Eq. (5), converges to the continuum
membrane elasticity result when the tube radius increases
(valid for i < n). Even for the extreme case of zigzag NT
(i = n), the calculated twist rate of γ0 = b/

√
3πR2

0 is very
close to continuum predictions.

What is useful in the screw-dislocation construction based
on the nearly-axial glide is that under the helical repetition
rule indicated by b3, one can alternatively describe any NT
from this family based on the same 4n atoms contained in the
small translational unit cell of the armchair (n,n) NT. Let Xj

be the atomic positions in the open ring after the axial glide
took place. Positions Xj,ζ of the atoms located in the objective
cell replica indexed by integer ζ are then obtained with

Xj,ζ = Qζ Xj + ζT0, j = 1, . . . ,4n. (6)

The rotational matrix Q and the axial vector T0

Q =
⎛
⎝

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

⎞
⎠ , T0 =

⎛
⎝

0
0
T0

⎞
⎠ , (7)

describe the helical transformation indicated by the screw
vector b3.

We emphasize that other views of chiral NTs as screw-
dislocated achiral NTs are possible. To address CNT growth,36

an ingenious representation was proposed that involves (n,0),
(n,1), . . . ,(n,n) NTs obtained via glides along −0.5a1 +
a2 combined with addition and removal of atom chains.
The representation used here based on Iijima’s construction
of helical NTs, has relevance in the torsional mechanical
response.22 It connects (n,n), (n + 1,n − 1), . . . ,(2n,0) NTs
without involving any edge component.

B. Symmetry-adapted tight-binding objective molecular
dynamics

With the NT description (3), the usual DFTB treatment
formulated under periodic boundary conditions can be applied
in order to determine the precise atomic location inside one
unit cell.26 Microscopic modeling based on description (6),
however, requires special consideration for the electronic
states. The one-electron states are represented in terms of
symmetry-adapted Bloch sums

|αj,κ〉 = 1√
Ns

Ns−1∑
ζ=0

eiκζ |αj,ζ 〉, (8)

where Ns is the number of helical operations (typically ∞)
over which the cyclic boundary conditions are imposed. The
Bloch factors are eigenvalues of the helical operators and
−π � κ < π is the helical quantum number. |αj 〉 is an
atomic orbital with symmetry α located on atom j inside
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the computational cell. The valence shell basis set used here
comprises sp basis functions for C, B, N, and O and sd for
Zn. The orbitals located in the objective cell indexed by ζ are

obtained by applying proper rotations to the corresponding
|αj 〉 orbitals.25 Specifically, for the five d orbitals of Zn, we
have

⎡
⎢⎢⎢⎢⎢⎣

|dx2−y2j,ζ 〉
|dxyj,ζ 〉
|dzxj,ζ 〉
|dyzj,ζ 〉

|d3z2−r2j,ζ 〉

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

cos 2θ − sin 2θ 0 0 0

sin 2θ cos 2θ 0 0 0

0 0 cos θ − sin θ 0

0 0 sin θ cos θ 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

|dx2−y2j 〉
|dxyj 〉
|dzxj 〉
|dyzj 〉

|d3z2−r2j 〉

⎤
⎥⎥⎥⎥⎥⎦

, (9)

where θ = ζθ0. Note that the d3z2−r2 orbitals are invariant
because they are oriented along z axis, which is parallel to the
NT axis.

The symmetry-adapted Bloch elements with different he-
lical numbers of the TB Hamiltonian and overlap matrices
vanish. Therefore, the eigenvalue problem becomes block
diagonal and it can be solved separately for each block labeled
by κ . As described elsewhere,25 the total energy and the
forces on each atom are then computed analytically using the
Hellmann-Feynman theorem.

III. RESULTS

Using the DFTB symmetry-adapted theoretical framework,
we have performed objective calculations on four NT families
(n = 3,6,8,10) generated by introducing axial screw disloca-
tions in (n,n) NT structures. Additionally, a large collection
of armchair and zigzag NTs in the 1–4 nm diameter range
was considered. For a comparison, the systematic calcula-
tions performed on BN and ZnO NTs, were supplemented
with calculations carried out on selected small-diameter
CNTs.

The linear combinations of atomic orbitals were sampled
for 50 κ values of the helical Bloch phase. The initial
structural information for any NT is adopted from the rolled-up
approximation, for which the free parameters θ0 and T0 can be
obtained with the simple expressions given before. Next, the
stress-free atomic positions and the actual DFTB Eshelby’s
twist parameters θE and TE are identified by applying a
conjugate gradient minimization procedure to the potential
energy.

A. Optimized nanotube structures

One advantage of the current approach is that it enables us to
separate the curvature from the chirality effects. The first goal
is to determine how well the translational symmetry and the
ideal rolled-up predictions hold. The results of our structural
optimizations indicate that only for small-diameter chiral NTs,
the axial relaxation under fixed angle θ0 is not sufficient to
obtain the stress-free states. As exemplified in Fig. 3, for
the (3,3) . . . (6,0) NT family, further angular relaxation under
fixed TE exhibits a parabolic dependence and can lower the
energy. The angle values of the stress-free chiral structures θE

deviate from the predicted θ0.

Unlike the flat layer, the structure of these narrow NTs
is characterized by nonequal bond lengths and bond angles.
The data for (4,2) NTs summarized in Table I, detail the
significant departure from the bond lengths and angles given by
the rolled-up prediction. The most circumferentially oriented
bonds are the most affected. For example, while the rolled-up
prediction gives a 1.399 Å length for the most circumferential
bonds in a (4,2) CNT, the DFTB relaxations obtained a
1.430 Å value. Such microscopic relaxations lead to differ-
ences not only between the optimized R and nonoptimized
R0 radii, but also between the optimized θE and TE and
the nonoptimized θ0 and T0 structural parameters. Hence,
with respect to the the rolled-up construction, the (4,2) NT
structures store both circumferential and helical prestrains.

The presence of helical prestrains alters the translational
unit cells identified on the ideal flat hexagonal layer. To
illustrate this point, we mapped in two dimensions the DFTB

FIG. 3. (Color online) Torsional strain energy vs θ for the (3,3),
(4,2), (5,1), and (6,0) (a) BN and (b) ZnO NTs. The energy minima
indicate the θE angles of the stress-free NTs, while the arrowheads
indicate the θ0 values.
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TABLE I. The DFTB structure of (4,2) BN, ZnO, and C NTs compared with the rolled-up predictions.

Material: BN ZnO C

Bond lengths (Å):
DFTB 1.476, 1.463, 1.495 1.925, 1.913, 1.922 1.430, 1.420, 1.449
Rolled-up predictions 1.424, 1.450, 1.445 1.870, 1.904, 1.898 1.399, 1.425, 1.420
DFTB mapped in 2D . . . . . . 1.456, 1.420, 1.454

Bond angles (deg):
DFTB 119.6, 117.0, 119.5 119.5, 119.2, 117.8 118.4, 119.1, 115.1
Rolled-up predictions 118.1, 120.3, 113.2 118.1, 120.3, 113.2 118.1, 120.3, 113.2
DFTB mapped in 2D . . . . . . 120.4, 118.0, 121.6

NT Radius (Å):
DFTB 2.210 2.852 2.142
Rolled-up predictions 2.115 2.778 2.079

Structural parameters:
DFTB TE (Å), θE (deg) 2.470, 13.96 3.240, 13.33 2.411, 13.42
Rolled-up T0(Å),θ0 (deg) 2.466, 12.86 3.239, 12.86 2.424, 12.86

Buckling (Å)
DFTB 0.125 0.134 0
Rolled-up predictions 0 0 0

relaxed structures of the (3,3) and (4,2) CNTs. The obtained
bond lengths and angles, depicted in Fig. 2 (right), reflect into
a deformed hexagonal layer. For the (3,3) CNT, the lattice
is elongated along the Ch and T directions, which remain
perpendicular onto each other. However, for the (4,2) CNT
case the lattice is additionally sheared and vector T acquires
a small component along Ch, thus becoming a screw vector.
Hence, the translational symmetry depicted by the translation
vector T is broken by the intrinsic twist (θE − θ0)/TE .

Our calculations indicated that both BN and ZnO NTs store
intrinsic twists. Focusing on the (3,3) . . . (6,0) NT family,
Table II reveals that at a set chirality, BN NTs exhibit the largest
intrinsic twist. For the CNT family, we are able to regain the
intrinsic twist values reported earlier34 from calculations based
on higher symmetry two-atoms “helical-angular” cells.

To give a broader view of the deviations from the ideal
rolled-up construction, Figs. 4 and 5 plot the variations with the
NT diameter of the axial prestrain ε = (TE − T0)/T0, the radial
prestrain, defined as ε∗ = (R − R0)/R0, the buckling of the
surface, defined as the mean radius of the N (O) atoms minus
the mean radius of the B (Zn) atoms, and the shear prestrain,
defined as γ = R(θE − θ0)/TE . The obtained changes in NT
length and diameter, buckling of the surface, and locking of
the intrinsic twist are qualitatively similar for BN and ZnO.
We obtain the following insights: (i) the rolled-up construction
works very well for both BN and ZnO only at diameters larger
than ∼2 nm. (ii) As the NT diameter decreases, ε displays an

TABLE II. Intrinsic twist values (deg/nm) in (3,3) . . . (6,0) NT
family, as obtained with the DFTB description.

Material: BN ZnO C

(3,3) 0 0 0
(4,2) 4.5 1.5 2.3
(5,1) 2.8 1.0 1.1
(6,0) 0 0 0

increased spread after chirality. In the nearly equal diameter
families, the armchair tubes are the most elongated while the
zigzag ones are the most compressed. (iii) As the NT diameter
decreases, ε∗ is also significant but appears to be chirality
independent. Our data can be fitted with the power laws ε∗ =
2.2(R/Å)−2.3 for BN and ε∗ = 0.2(R/Å)−2 for ZnO. (iv) The
amount of buckling is independent of the tube helicity as well.
In BN and ZnO NTs, the wall bucking is however present to
some degree even at large diameters, as reflected by the scaling
laws 0.6(R/Å)−1 Å for BN and 0.4(R/Å)−1 for ZnO obtained
by fitting the atomistic data presented in Figs. 4(c) and 5(c). Fi-
nally, (v) the γ stored in the NT’s wall is both diameter and chi-
rality dependent. It is significant only at the smallest diameters.
As can be seen in Figs. 4(d) and 5(d), γ is absent in the armchair
and zigzag NTs and it is maximal near the 15◦ chirality.

For a compact characterization of the NT structural pa-
rameters, we appeal to simple functional forms constructed
based on symmetry arguments. At constant R, the developed
anisotropy between special armchair and zigzag directions
implies that both the ε and γ prestrains must have a 60◦ period
in their chirality angle dependence. Additionally, we find that
the radial scaling laws identified for ε∗ are suitable for ε and γ

data as well. Indeed, Figs. 4(e), 4(f), 5(e), and 5(f) show nearly
linear dependences of the R2.3 and R2 augmented ε and γ to
the lowest symmetry-allowed order in chiral angle. Specif-
ically, we obtained ε = −0.12(R/Å)−2.3 cos(6χ ) and γ =
0.24(R/Å)−2.3 sin(6χ ) for BN, ε = −0.03(R/Å)−2 cos(6χ ) −
0.02(R/Å)−2 and γ = 0.05(R/Å)−2 sin(6χ ) for ZnO. As
discussed before,44 these prestrains alter the chiral angle
values. Of course, the n and m indexes are not changed. In
the above expressions, χ represents the chirality predicted by
the rolled-up construction.

B. Electromechanical properties

Having identified the stress-free NT morphologies, we
are now in the position to analyze their electronic states.
We focus our attention on ZnO NTs, since the BN NTs
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FIG. 4. (Color online) Optimized structures of BN NTs. Depen-
dence of the intrinsic (a) axial prestrain, (b) radial prestrain, and (c)
wall buckling on diameter. (d) Dependence of the intrinsic shear γ

on chirality. Scaling of (e) the axial prestrain and (f) intrinsic shear
prestrain (both multiplied by R2.3) with lowest symmetry-allowed
order in chiral angle.

have already been the focus of other studies.40 The DFTB
parametrization is designed to describe well the structural
properties of ZnO materials. Unfortunately, it overestimates
the band-gap values. For example, the used parametrization
predicts a band gap of 6.3 eV for the bulk wurtzite ZnO phase,
while the experimentally measured value is 3.4 eV. For the
purposes of predicting the fundamental band gaps in ZnO NTs,
the original parameters have been slightly altered: the on-site
energy value for the 4s electron of Zn was replaced by the
experimental first ionization energy (the parameter is changed
from −0.2079 to −0.3527 a.u.). This modification ensures that
the band-gap of the wurtzite phase is reproduced.45

Similar with BN NTs,40 the electronic structure of ZnO
NTs appears more sensitive to curvature than to chirality.
The calculated band gaps of all the ZnO NTs studied are
displayed in Fig. 6 as a function of their diameters. The
band-gap increases with diameter. Above ∼2 nm, it converges
rapidly, regardless of chirality, to the 4.08-eV value of the
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FIG. 5. (Color online) Optimized structures of ZnO NTs. Depen-
dence of the intrinsic (a) axial prestrain, (b) radial prestrain, and (c)
wall buckling on diameter. (d) Dependence of the intrinsic shear γ

on chirality. Scaling of (e) the axial prestrain and (f) intrinsic shear
prestrain (both multiplied by R2) with lowest symmetry-allowed order
in chiral angle.

flat layer. Below ∼2 nm in diameter, the band gap begins
to exhibit a weak dispersion after chirality, which becomes
non-negligeable for the smallest-diameter NT considered here,
see Fig. 6 (inset).

The electronic structures are stable against applied small
twists. In objective MD, an arbitrary twist can be applied by
varying θE while keeping TE constant. Figure 7 exemplifies
the response of the density of states (DOS) in (6,6) NTs to a
4.2 deg/nm twist rate. It can be seen that both BN and ZnO
remain insensitive to small twists, especially around the Fermi
level. This is in sharp contrast with the behavior of the (6,6)
CNT, showing a band-gap opening and change in the location
of the van Hoove singularities. This obtained behavior is in
agreement with the model proposed by Yang and Han.37

Pure axial strain can be applied by varying TE and
keeping constant θE . Similarly, pure shear strain can be
achieved by varying θE and keeping constant TE . The adiabatic
approximation, where forces on atoms are derived from the
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FIG. 6. (Color online) Band-gap dependence on diameter and
chirality for ZnO NTs.

electronic ground state at each strain configuration, was used
to study tensile and torsional deformations.35 Our investigation
was restricted to the linear elastic regime. The elastic constants
were evaluated through second-order polynomial fits of the
ground-state energy’s dependence on strain. The obtained size
dependence of Young’s modulus Y is displayed in Fig. 8(a).
The axial elasticity of BN NTs appears similar to the in-plane
one of the flat BN sheet, apart from effects due the tube
curvature. Indeed, above ∼2 nm in diameter, Y is practically
constant and takes the 850 GPa value. For 2R <∼2 nm, Y

gradually softens and remains insensitive to chirality. The
calculated shear modulus (G) is shown in Fig. 8(b). For 2R >

∼2 nm, G converges quickly to the 370 GPa value. For 2R <

FIG. 7. (Color online) Density of states in stress-free (6,6) NTs
and under 4.2 deg/nm applied twist. The Fermi energy level was set
to zero.

FIG. 8. (Color online) (a) Young’s and (b) shear modulus vs. BN
NT diameter. In order to gain GPa units, a wall thickness of 3.14 Å
was assumed.

∼2 nm, there is a pronounced χ splitting, with G bounded
from above by zigzag and from below by armchair BN NTs.

IV. DISCUSSION AND CONCLUSION

The objective molecular dynamics technique, which ac-
counts for helical symmetry explicitly, allowed us to system-
atically investigate the screw dislocation mechanics in BN and
ZnO monoatomic layers. We addressed a large catalog of NTs
and obtained scaling laws beyond the errors of the numerical
procedures.

The results shown in Figs. 4 and 5 demonstrate qualitative
similarity in the rolling traits for layered BN and nonlayered
ZnO materials. Differences are only qualitative in scaling laws
of prestrains with the NT radius and in the magnitudes of
prestrains and wall bucklings. ZnO NTs reveal smaller intrinsic
twists than BN ones, but a larger buckling, as shown in Table II.

For both BN and ZnO with 2R > ∼2 nm, we obtained that
the screw dislocation mechanics gives a structure equivalent
with the rolled-up construction one. This means that, as
predicted by Eq. (2) in the r = R limit, chiral NTs store only
small bending strain. The lack of shear strain energy in the NT
wall, once more,46 suggests the invalidity of the continuum
shell idealization associated with the one-atom-thick layer. For
2R <∼2 nm, the detailed structure analysis of our optimized
NTs indicated a systematic departure from the rolled-up
construction manifested in radial, axial, and shear prestrains
that exhibit a common scaling with curvature. The presence of
the shear strain, manifested in an intrinsic structural twist,
removes the NT translational periodicity predicted by the
rolled-up prediction. Therefore care must be exercised in future
numerical studies of chiral nanotubes relying on standard
translational symmetry.

The presence of the prestrains in small-diameter NTs,
indicate that the NT wall stores not only bending but also
in-plane axial and shear strain energy. The discrepancy with
the prediction given by Eq. (2) in the r = R limit is due to
the loss of isotropy in the NT wall. It is useful to realize that
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the axial and shear prestrains observed in smaller diameter
NTs are ultimately related to the significant distortion of the
hexagonal lattice symmetry.

The calculated elastic moduli of BN NTs presented in Fig. 8
reveal that Young’s modulus is only curvature dependent,
while shear modulus G presents both curvature and chirality
dependence. The behavior at 2R <∼ 2 nm, unequivocally
shows that isotropy is lost, since the continuum isotropic
relation21 G = Y/2(1 + ν) with ν the Poisson ratio cannot be
used. Isotropic continuum idealization can be used for BN and
ZnO NTs with 2R > ∼2 nm. The isotropic relation between
G and Y if fulfilled with ν = 0.15.

In the case of CNTs, the origin of the intrinsic twist was
attributed34 to the well-known sensitivity of the electronic
states to torsion.37 The BN and ZnO NT studied here exhibit

lack of electronic-states sensitivity to chirality and twist. The
common scaling of the axial, shear, and radial prestrain with
curvature allows us to attribute the intrinsic twist solely to
the curvature effect. The presence of prestrains in (4,2) CNT
documented in Table I and in a previous work,44 suggests that
curvature plays a prime role in the development of intrinsic
twist in CNTs.
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23T. Dumitrică and R. D. James, J. Mech. Phys. Solids 55, 2206

(2007).

24R. D. James, J. Mech. Phys. Solids 54, 2354 (2006).
25D.-B. Zhang, M. Hua, and T. Dumitrică, J. Chem. Phys. 128, 084104
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