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Atomistic calculation of the thermal conductance of large scale bulk-nanowire junctions
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We have developed a stable and efficient kernel method to compute thermal transport in open systems, based on
the scattering-matrix approach. This method is applied to compute the thermal conductance of a junction between
bulk silicon and silicon nanowires with diameter up to 10 nm. We have found that beyond a threshold diameter of
7 nm, transmission spectra and contact conductances scale with the cross section of the contact surface, whereas
deviations from this general trend are observed in thinner wires. This result allows us to predict the thermal
resistance of bulk-nanowire interfaces with larger cross sections than those tractable with atomistic simulations,
and indicate the characteristic size beyond which atomistic systems can in principle be treated accurately by
mean-field theories. Our calculations also elucidate how dimensionality reduction and shape affect interfacial
heat transport.
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I. INTRODUCTION

Nanostructures and nanostructured materials offer the
possibility to tune heat transport properties over an excep-
tionally wide range. For example, in carbon-based materials
it is possible to obtain variations of the thermal transport
coefficients over three orders of magnitude: Graphene and
suspended carbon nanotubes are possibly the most efficient
heat conductors,1,2 whereas interacting nanotubes, in networks
or bundles,3,4 and graphene nanoribbons with disordered edges
are predicted to have thermal insulating properties.5 Similarly,
nanostructuring may turn silicon and SiGe alloys into efficient
thermoelectric materials by significantly reducing the thermal
conductivity (κ) as in the case of nanowires6–8 (SiNW),
SiGe nanocomposites,9 superlattices,10 and nanoporous
silicon.11,12

Further improvement in designing materials and nanode-
vices with controlled thermal transport properties stems from
a deeper theoretical understanding of phonon transport. Fol-
lowing Landauer and Büttiker’s works,13,14 atomistic Green’s
function (GF) formalism has become the reference method to
study coherent electronic transport.15–17 The GF approach has
been transferred successfully to compute thermal transport
in nanostructures,18–21 and it is the optimal framework to
investigate elastic phonon scattering from impurities, defects,
disorder or interfaces (i.e., in all those cases where anhar-
monic phonon-phonon scattering can be deemed of secondary
importance22,23). An atomistic GF method including phonon-
phonon scattering has also been developed and applied to small
model systems,24 however, one can in general safely assume
elastic scattering when a finite nanoscale system between two
reservoirs, connected with coherent junctions, is considered.
This is often the case for solid state junctions between materials
with similar vibrational spectra. Anharmonic effects may
also be neglected in several other cases, such as molecular
junctions, grain boundaries, and superlattices, but special care
must be taken in testing this assumption. Similarly, one has to
use coherent scattering methods in a very critical way when
he wants to extrapolate finite size calculations to extended
materials, where long wavelength phonons do not get scattered
by nanoscale impurities and contribute a significant amount to
the total thermal conductivity.

In spite of significant insight achieved in these former
studies, it remains a formidable task to perform atomistic
simulations of nanostructures with characteristic sizes of
several tens of nanometers, as it would be needed to bridge
the gap between theory and experiment. Because of matrix
inversion operations, even the recursive implementation of the
GF method, which permits us to deal with systems extending
for several micrometers in the direction of heat propagation,
imposes severe size limitations in the orthogonal plane. Even
though partitioning and “knitting” algorithms to circumvent
this problem have so far been proposed for GF calculations
of electronic transport,25,26 such schemes have not yet been
applied to heat transport. In terms of SiNW, this means that one
is limited to diameters that do not exceed a few nanometers.21

Similar limitations hamper the predictive power of approaches
based on molecular dynamics, so far restrained to the study of
thin wires.27,28

Lattice dynamics methods that do not utilize GF for the
solution of the phonon transport problem were proposed
in the past.29–31 These methods, compared to those based
on GF, replace the calculation of the self-energy with an
eigenvalue equation. Here we outline a formalism for phonon
transport based on lattice dynamics and the scattering-matrix
approach,32 in the same spirit as the scattering boundary
equation method proposed in Ref. 31. Our approach circum-
vents the matrix inversion problem by substituting eigenvalue
equations with local kernel search and intersections.

After deriving a generalized scattering-matrix approach for
phonon propagation in Sec. II, in Sec. III we will illustrate a
numerically stable and efficiently parallelizable kernel method
to solve the scattering problem. In Sec. IV we will discuss
the application of the scattering formalism to compute the
contact thermal resistance between bulk silicon and SiNWs
with diameters up to 14 nm.

II. SCATTERING-MATRIX APPROACH

The scattering-matrix approach was formulated to solve
quantum electronic transmission problems,32,33 and found its
natural application for the simulation of scanning tunneling
microscopy images34 and of molecular electronic devices via
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the so-called elastic scattering quantum chemistry (ESQC)
method.33 Here we reformulate the theory in terms of phonon
transport, making use of lattice dynamics concepts,29,30 ex-
tending the one proposed by Wang and Wang31 to two parts of
a general open system.

We consider a phonon wave packet, represented by a
weight-normalized displacement field u, traveling through an
open system made of semi-infinite reservoirs connected by
an arbitrary structure (defect). Our goal is to determine the
thermal energy exchanged between the reservoirs through
the defect in stationary nonequilibrium conditions (i.e.,
when the reservoirs are kept at different temperatures). In
the harmonic approximation, the equation of motion for the
displacement field u(t) is ü(t) = Du(t), where D is the force
constant matrix. The real-valued state u can be decomposed in
terms of the complex valued eigenstates v(ω) of D. Given the
state u(τ0) and its eigen-decomposition coefficients gτ0 (ω), the
time propagation of u is

u(t) =
∫

[gτ0 (ω)v(ω)e−iω(t−τ0) + cc.]dω. (1)

Let P be the projector associated with the degrees of freedom of
an arbitrary part P of the system. To get the energy exchanged
between P and the rest of the system, one can balance the time
derivatives of the work from P to the whole system and vice
versa, thus obtaining

ĖP (t) = 〈u̇(t)|[P,D]|u(t)〉. (2)

The energy of P in stationary conditions (EP (∞)) is found by
integrating (2) to the infinite time limit. Substituting u with its
eigen decomposition in (1) in the integral leads to

EP (∞) = −2πi

∫
h̄ω |gτ0 (ω)|2〈v(ω)|[P,D]|v(ω)〉dω. (3)

All information concerning the initial state lies in the weights
gτ0 (ω), which can be taken as the statistical distribution of the
states |v〉 when simulating a system at finite temperature. In the
stationary nonequilibrium case, those weights refer to the rate
of phonons emitted from the reservoirs [i.e., one-dimensional
(1D) phonon gas obeying Bose-Einstein statistics]:

|g0(ω)|2 = 1

2π

1

eh̄ω/kT − 1
= 1

2π
f (ω,T ), (4)

where f (ω,T ) is the Bose-Einstein distribution function at
the reservoir temperature T . In order to evaluate (3), the
eigensolutions |v(ω)〉 of the open system have to be expressed
in terms of a convenient basis made of a single phonon mode
|ψ in

i∈A(ω)〉 coming from a reservoir A into the defect, and the
set of phonon modes ψout

j (ω) coming out of the defect toward
the reservoirs:

|vi(ω)〉 = ∣∣ψ in
i (ω)

〉 + ∑
j

Sji(ω)
∣∣ψout

j (ω)
〉 + ∣∣vdef

i (ω)
〉
, (5)

where both defect displacements and reservoir surface states
at the interfaces are included in |vdef

i (ω)〉. The scattering tensor
S(ω) maps the incoming phonons |ψ in

i (ω)〉 onto the outgoing
phonons |ψout

j (ω)〉. As the energy carried by any incoming
or outgoing phonon with frequency ω is quantized as h̄ω,

(3) provides the following normalization and orthogonality
conditions:〈

ψ in
i∈A(ω)

∣∣[PA,D]|ψ in
j∈A(ω)〉 = − ih̄

2π
· δij ,〈

ψout
i∈A(ω)

∣∣[PA,D]
∣∣ψout

j∈A(ω)
〉 = ih̄

2π
· δij , (6)〈

ψ in
i∈A(ω)

∣∣[PA,D]
∣∣ψout

j∈A(ω)
〉 = 0,

where PA denotes the projector on reservoir A. Combining
the stationary nonequilibrium weights of (4) with (3), and
observing the conditions of (6), one obtains the stationary
energy transfer between reservoirs A and B:

�A→B =
∫

h̄ω

2π

∑
i∈A

∑
j∈B

|Sij (ω)|2[f (ω,TA) − f (ω,TB)]dω.

(7)

Once S(ω) is obtained by computing the eigenstates |v(ω)〉, the
energy flux between two reservoirs A,B is determined using
the transmission coefficient TAB(ω) = ∑

i∈A

∑
j∈B |Sij (ω))|2.

The corresponding thermal conductance is given by the
Landauer formula as the limit of (7) when TA → TB :

σAB(T ) =
∫

h̄ω

2π
TAB(ω)ḟ (ω,T )dω. (8)

However, the derivation of these expressions is equivalent
to that for the scattering boundary condition equation;31 it
turns out useful to have a generalized expression of the
energy transfer between arbitrary parts of the system for the
implementation scheme outlined in the following section, and
to treat systems with more than two semi-infinite reservoirs.

III. SCALABLE IMPLEMENTATION

The first step to obtain the eigenstates described in (5)
consists of rewriting the open system eigenvalue equation as a
null-space search problem:

Dv = ω2v ⇔ v ∈ ker{D − ω2}. (9)

One can consider a partition P = {Pi} of the system, typically
a set of projectors on each reservoir completed by a set of
projectors on the defect, and solve the auxiliary equations:

v ∈ ker{Pi(D − ω2)}. (10)

Only the solutions defined within the interaction range of
the current part need to be represented explicitly. A simple
QR decomposition of the corresponding interaction matrix
provides us with those solutions. The final eigenstates are then
given by the intersection of the resulting invariant subspaces:

Dv = ω2v ⇔ v ∈
⋂
P

ker{Pi(D − ω2)}. (11)

As the intersection of two subspaces is defined by the degrees
of freedom shared by their subsets, one can keep low memory
usage and fast arithmetic by discarding the unnecessary
coefficients.

Two different strategies are used during the reconstruction
of the defect solutions: At first, a serial reconstruction takes
place within each computer node. Starting from the solution
set of a unique auxiliary equation, we repeatedly solve a
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FIG. 1. Silicon nanowire and bulk interconnect partitioning. The
central defect is generally further subdivided in order to speed up
the computation. The bulk and wire reservoirs are organized as a pile
of periodic slices (S and S′, respectively) indexed starting from the
contact areas.

neighboring auxiliary equation and intersect the resulting
subset with the current solution. This method allows low
memory requirement within the node. Once all the auxiliary
equations have been solved, the internodes reconstruction is
achieved with two-by-two intersections of the neighboring
subsets. This last strategy ensures a good scalability of the
implementation: The reconstruction of the solutions in the
unfavorable case of a spherical object of diameter R goes as
O(R6).

The reservoirs are treated in a separate way: As for the
propagator method,32 every reservoir is partitioned in periodic
slices Si of dimension n such that only nearest neighbors
interact (see Fig. 1). However, instead of formulating a spatial
propagator, we first compute the 2n nontrivial solutions of
Eq. (10) for the second slice S2 of the reservoir:

PS2(D − ω2) ·

⎛⎜⎝vi
S1

vi
S2

vi
S3

⎞⎟⎠ = 0. (12)

Since any slice of the reservoir but S1 is equivalent to S2, the
periodic solutions hold for the entire reservoir, except for S1
which is treated explicitly as part of the defect. The periodic
solutions are then found through the 2n × 2n generalized
eigenproblem:

α

[
v1

S1 . . . v2n
S1

v1
S2 . . . v2n

S2

]
·

⎡⎢⎢⎣
c1

...

c2n

⎤⎥⎥⎦ = β

[
v1

S2 . . . v2n
S2

v1
S3 . . . v2n

S3

]
·

⎡⎢⎢⎣
c1

...

c2n

⎤⎥⎥⎦ . (13)

The intersection of the periodic solutions leads to the phonon
modes |ψ in/out(ω)〉 (|α/β|=1), and surfaces states (|α/β| 	= 1).
However, their reconstruction is straightforward and the
intersection does not need to be performed explicitly, therefore
one obtains

PSk|ψ in/out(ω)〉 =
(

α

β

)k−1 2n∑
i=1

ci

∣∣vi
S1

〉
. (14)

The intersection of the defect subset with the reservoir
solutions leads to the decomposition of the open system
eigenstates in terms of phonon modes. The eigenstates are

finally refined to extract the set {̃vi} spanning only surface
states localized at the defect interface (i.e., with |α/β| < 1):

ṽi =
∑

j

(
�ji

∣∣ψ in
j (ω)

〉 + ji

∣∣ψout
j (ω)

〉) + ∣∣̃vdef
i (ω)

〉
. (15)

The scattering tensor is easily obtained by applying the �−1

transform to {̃vi}, providing the set of eigenstates {vi} defined
in Eq. (5), so that S(ω) =  · �−1.

In the presence of short-range interatomic interactions,
parts can be defined as small as the interaction range, so
that only neighboring parts interact. Such implementation
allows for efficient parallelization, in the same fashion
as domain decomposition in molecular dynamics codes.
Furthermore, a reciprocal space sampling technique allows
for efficient treatment of the periodic reservoir solutions.
Within this framework, the main limitation of the approach
is the treatment of nonperiodic 1D reservoirs which requires
the full diagonalization of a matrix growing as the surface of
the contact.

IV. RESULTS AND DISCUSSION

a. Thermal conductance of bulk silicon and silicon
nanowire contacts. We apply the scattering-matrix approach
to compute the contact thermal resistance of a bulk-SiNW
interface. Interface resistance plays an essential role in deter-
mining the thermal transport performance of nanostructured
materials and nanoscale devices. In addition, evaluating the
thermoelectric performances of nanostructures such as SiNWs,
it is indispensable to be able to resolve the contact thermal
resistance from the intrinsic resistance. A few special cases,
such as grain boundaries in silicon, crystalline-amorphous
interfaces, and silicon-germanium junctions, have previously
been addressed using molecular dynamics and real-space
Kubo-Greenwood formalism.35,36 An often overlooked yet
omnipresent case where contact resistance is essential is the
junction between nanostructures and reservoirs. A simplified
model, based on lattice dynamics calculations of bulk silicon
and of SiNWs with different diameters, predicts that the
contact resistance is dominant over the intrinsic resistance
of the ideal nanowire.37,38 Coherent contacts between crystals
and nanowires with diameters as small as ∼20 nm can be
actually realized by etching nanowires directly out of the bulk
precursor.39,40 We model the interatomic interactions between
silicon atoms by means of the short-range empirical force field
after Tersoff.41 Crystalline SiNWs with diameters between 2
and 14 nm are considered. The wires are grown in the (100)
crystallographic direction, have a nearly circular cross section,
and are coherently connected to the bulk reservoir. The surface
is reconstructed in order to minimize the number of dangling
bonds.42

Transmission spectra are displayed in Fig. 2(a) along with
the interface conductance σ [Fig. 2(b)] obtained by integrating
the transmission coefficient over the whole frequency spectrum
according to (8). The data sets are normalized according to the
interface area, as one would reasonably expect the conductance
of a junction to scale with its cross-section area. In fact such
normalization makes curves comparable, but not overlapping.
Normalized transmission spectra and σ (T ) curves overlap for
wires of 7- and 10-nm diameter (red and pink curves in Fig. 2).
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(b)

(a)

FIG. 2. (Color online) Transmission spectra (a) and thermal
conductance as a function of the temperature (b) for a set of
bulk-nanowire contacts. Both data sets are normalized with respect to
the interface area expressed either in nm2 (conductance) or in number
of atoms at the contact interface (transmission).

This scaling laws are valid for frequencies larger than ∼1 THz,
when the number of channels on both sides of the junction
becomes conspicuous. The transmission is roughly determined
by the number of channels in the wire, scaled by a suitable
average transmission coefficient which does not depend on
the cross-section area of the wire. At frequencies lower than
a certain threshold (0.56 THz for d = 5 nm, 0.4 THz for
d = 7 nm, and 0.3 THz for d = 10 nm) one always finds
four channels in the wire: namely, two flexure transverse
acoustic (TA) modes with quadratic dispersion, one torsional
and one longitudinal acoustic (LA) mode. Torsional modes
are completely reflected by the interface. This shows that the
availability of channels at a certain energy is not sufficient to
guarantee transmission and that modes need to share the same
character (i.e., similar polarization) to transfer energy across
the interface. This determines the transmission spectra of the
interfaces with thinner wires and, as will be discussed later,
the scaling behavior of the reflection coefficients. Whereas heat
transport in thicker wires can be treated within a mesoscopic
approach,43,44 below the threshold diameter of 7 nm, one has
to consider explicitly the atomistic details of the interface to
obtain an accurate estimate of the contact conductance. As the
construction of the bulk-wire interface is ideal at the atomic

FIG. 3. (Color online) Band structure of the bulk contact
(left panel) and reflection spectra of the nanowire modes normalized
with respect to the diameter (center panel) and the surface area
(right panel) of the SiNW.

scale, our calculations provide an upper limit to the contact
conductance. In the low-temperature regime (T < 50 K) the
interface area normalized contact conductances collapse to a
single curve and display a temperature dependence of T 3. This
trend was formerly predicted analytically38 and confirmed in
experiments,39 where it was shown that deviations from the
T 3 behavior stem from specific features of the SiNW, such as
surface roughness, the effects of which add up in series to the
contact conductance.

On the other hand the reflection spectrum for modes coming
from the wire displays more complex scaling, which provides
useful insight in the physics of phonon scattering at the contact
interface. The reflection spectra, normalized with respect to
diameter and cross section of the SiNW, are shown in Fig. 3
(center and right panel). The reflection spectra scale with the
diameter of the wires for low-frequency acoustic phonons,
up to ∼4.6 THz, which corresponds to the folding of the
transverse acoustic (TA) band of bulk silicon. Since the number
of channels is proportional to the interface area, this indicates
a dependence of the average reflection coefficients on the size
of the nanowire. The reflection coefficients are in turn an
indicator of the mismatch of the phonons of the wire with
those of the bulk. In fact, the average reflection coefficients
decrease with the size of the wire, because the modes in the
bulk and in the nanowire become more and more similar in
larger wires, reducing the interfacial scattering. The linear
dependence of the total reflection function on the diameter
also reveals that these modes get scattered mainly at the
perimeter of the contact interface. This is indeed confirmed
by the real-space distribution of the energy flux discussed
below. Between 4.6 and 7 THz we observe a transition between
this scaling regime and the standard situation in which the
reflection spectra scale with the interface area, which takes
place above 7 THz. For frequencies larger than 7 THz the
average reflection coefficients are relatively low, between 0.05
and 0.2, and do not depend on the diameter of the wires, so
that the total reflection scales with the number of channels.

b. Representation of the heat flux. An advantage of the
present implementation of the scattering-matrix method is
that it provides a real-space representation of the energy
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FIG. 4. (Color) Volumetric representation of the norm of the
energy flux at the interface of a 10-nm-thick silicon nanowire,
corresponding to channels with frequency of 0.25, 0.75, 2, and 4 THz.
In the 0.75 and 2 THz case, thermal transport mainly occurs in a thin
subsurface layer (red color area).

flux at any given frequency. This allows visualization of the
parts of the system that primarily transmit or reflect thermal
energy. An example is shown in Fig. 4, where the norm of the
heat flux across a bulk 10-nm SiNW interface is represented.
Phonon branches at 0.25, 0.75, 2, and 4 THz are considered.
The spacial features of heat transport at different frequen-
cies are clearly different: Whereas at the lowest frequency
(0.25 THz) thermal energy is mainly transmitted through the
central bulklike part of the wire, at higher frequencies (0.75
and 2 THz) thermal energy is transferred through a surface
layer. Beyond 4 THz, heat is transferred through the center of
the wire. We note that phonons with frequency between ∼1
and ∼4 THz, which are the majority heat carriers in crystalline
Si at room temperature, transfer energy preferably through a
subsurface layer. Therefore our results may hint at the reason
why thermal conductivity of SiNW is very sensitive to surface
modifications, such as disorder or presence of interfaces,8,45

however, this needs to be proved by calculations of rough
wires.

c. Dimensionality and shape effects. In order to probe
the effects of shape and dimensionality reduction on the
contact conductance we compare the number of phonon
channels (corresponding to the density of states) over
the whole frequency spectrum, in contacts made of crystalline
bulk silicon and either wires with a circular section or square
rods. We only consider SiNW larger than the threshold
size of 7 nm, identified as the onset for a mesoscopic theory of
thermal transport. The calculations have been performed for
SiNW with diameters up to 14 nm. The data are conveniently
normalized with respect to the contact surface area and are
compared to the number of channels in three-dimensional
periodic bulk. To verify size convergence we consider two bulk
samples with cubic supercell of 8.7 and 13 nm, respectively
(Fig. 5). Our data show that for SiNWs larger than 7 nm,
the number of channels per atom at a given frequency does
not depend on the diameter. The number of channels at low
frequency (<3 THz) for the contacts is the same as in the
crystalline bulk, but it deviates significantly from the bulk at
larger frequencies. This means that even in contact interfaces
with very large wires, one cannot expect to recover bulklike
thermal conductance. It also indicates that dimensionality
reduction has a profound effect on the limit density of states as

FIG. 5. (Color online) Number of transmission channels for a set
of bulk-nanowire contacts of different diameter and shape. The data
are normalized with respect to the interface area expressed in number
of atoms. Data are compared to the number of channels in a three-
dimensional periodic bulk to highlight the effect of dimensionality
reduction. All the nanowires considered here are larger than the 7-nm
diameter threshold.

well. Such a limit depends also on the shape of the SiNW, but
to a minor extent. The spectrum of square-shaped nanorods
differs from that of circular ones in the medium-to-high
frequency range, but it retains similar features as cylindric
wires and does not seem to approach the three-dimensional
(3D) bulk limit either.

V. CONCLUSIONS

We have developed an efficient method based on the
scattering-matrix approach to compute the thermal conduc-
tance in an open system. Our derivation leads to an expression
of the energy flux between semi-infinite reservoirs across a
defect region, equivalent to the one derived in Refs. 18–20,
and 31. We have implemented this expression with a stable
partitioning and knitting algorithm that allows real-size de-
vices to be simulated at the atomistic level. We have used
this approach to compute the contact thermal conductance of
ideal junctions between bulk silicon and silicon nanowires
of different diameters. Our results show that in SiNW with
circular cross section, with diameter of ∼7 nm and larger,
phonon transmission, reflection, and thermal conductance
obey simple scaling laws, whereas deviations are observed
for thinner wires. We have also investigated the effects of heat
conduction on shape and dimensionality for wire diameters of
7 nm and beyond. Our approach also provides a direct space
visualization of frequency-dependent heat flux, which yields
valuable insight into the spatial features of heat conduction in
nanoscale devices.
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