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Quantum magneto-optics of graphite with trigonal warping
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The optical conductivity of graphite in quantizing magnetic fields is studied. Both the dynamical conductivities,
longitudinal as well as Hall’s, are analytically evaluated. The conductivity peaks are explained in terms of electron
transitions. We have shown that the trigonal warping in graphite can be considered within the perturbation theory
at strong magnetic fields larger than approximately 1 T. The main optical transitions obey the selection rule
with �n = 1 for the Landau number n, however, the �n = 2 transitions due to the trigonal warping with small
probability are also essential. The Kerr rotation and reflectivity in graphite in the quantizing magnetic fields
are calculated. Parameters of the Slonczewski-Weiss-McClure model are used in the fit taking into account the
previous dHvA measurements and correcting some of them for the case of strong magnetic fields.
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I. INTRODUCTION

Properties of graphite have attracted much attention for
more than 50 years. Many of that properties were suc-
cessfully explained within the Slonczewski-Weiss-McClure
(SWMC) theory.1 The most accurate method to study the
band structure of graphite is a study of the Landau levels (LLs)
through experiments such as magneto-optics2–10 and magneto-
transport.11–15 However, the interpretation of the experimental
results involves a significant degree of uncertainty since, as it
is not clear how the resonances should be identified and which
electron transitions they correspond to.

The SWMC theory requires the use of many tight-binding
parameters and provides the simple description of observed
phenomena either in the semiclassical limit of week magnetic
fields or for high frequencies when the largest tight-binding
interlayer parameter γ1 plays the leading role.16 It is more
difficult to take into account the parameter γ3 known as
“trigonal warping.” Usually, it is either neglected9,16–19 or
considered numerically.20–24 The Bohr-Sommerfeld quantiza-
tion condition was applied in Ref. 25 to find in low magnetic
fields the level structure including the trigonal warping. In any
case, only the problem of levels was considered so far, and no
calculations of conductivities were done in order to evaluate
the optic properties of graphite. The problem appearing for
three-dimensional systems in the magnetic field connects
partly with integrating over the momentum projection kz along
the magnetic field.

The SWMC model can be simplified assuming that only
the integration limits such as the K and H points in the
brillouin zone produce the main contributions.8,17,18 Such an
approximation is similar to the theory of magneto-optical
effects in topological insulators26 and graphene.27 However,
the band extrema or the integration limits at the Fermi level can
also contribute into the absorption. Therefore, the analytical
expression for the dynamic conductivity in the presence of
magnetic fields is needed for the interpretation of the magneto-
optics experiments.

In this paper, motivated by the experimental study of the
Faraday rotation in single- and multilayer graphene,10 we
propose a theory of magneto-optics phenomena in graphite
in strong magnetic fields including the interlayer hopping

parameters γ3 and γ4 in the Hamiltonian. The trigonal warping
γ3 is considered as a perturbation with the help of the Green’s
function method. Not only the energy-level structure corrected
due to the trigonal warping is found, but the expressions for
the longitudinal and Hall dynamical conductivities are derived.
Our main theoretical finding is the reflectivity and the Kerr
angle for graphite in strong magnetic fields.

II. LANDAU LEVELS IN GRAPHITE WITH
TRIGONAL WARPING

Taking into account the tight-binding parameters of the
SWMC theory, the effective Hamiltonian near the KH line of
the brillouin zone in graphite writes in the form of Refs. 22
and 23:

H (k) =

⎛
⎜⎜⎜⎝

γ̃5 vk+ γ̃1 γ̃4vk−/γ0

vk− γ̃2 γ̃4vk−/γ0 γ̃3vk+/γ0

γ̃1 γ̃4vk+/γ0 γ̃5 vk−
γ̃4vk+/γ0 γ̃3vk−/γ0 vk+ γ̃2

⎞
⎟⎟⎟⎠ ,

(1)

where k± = ∓ikx − ky are the momentum components and v

is the velocity parameter in the intralayer directions; γ̃j are the
functions of the kz momentum in the main axis direction,

γ̃2 = 2γ2 cos (2kzd0), γ̃5 = 2γ5 cos (2kzd0) + �,

γ̃i = 2γi cos (kzd0) for i = 1,3,4,

with the distance d0 = 3.35 Å between the layers in graphite.
The nearest-neighbor hopping integral γ0 ≈ 3 eV corresponds
with the in-layer interatomic distance a0 = 1.415 Å and the
Fermi velocity parameter v = 1.5a0γ0 = 106 m/s.

For the zero magnetic field, the eigenvalues of the Hamil-
tonian give four close bands. In the magnetic field B, the
momentum projections kx,y become the operators obeying
the commutation rule {k̂+,k̂−} = −2eh̄B/c, and we use the
relations,

k̂+ =
√

2|e|h̄B/c a, k̂− =
√

2|e|h̄B/c a+,

involving the creation a+ and annihilation operators a. We
will write only one of two x,y space coordinates including the
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corresponding degeneracy proportional to the magnetic field
in the final results.

We search the eigenfunction of the Hamiltonian (1) in the
form,

ψα
sn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1
snϕn−1(x)

C2
snϕn(x)

C3
snϕn−1(x)

C4
snϕn−2(x)

, (2)

where ϕn(x) are orthonormal Hermitian functions with the
Landau numbers n � 0. One sees that every row in the Hamil-
tonian (1) becomes proportional to the definite Hermitian
function if the terms with γ3 are omitting. We will show that
the terms proportional to γ3/γ0 can be considered within the
perturbation theory at strong magnetic fields.

Canceling the Hermitian functions from the equations, we
obtain a system of the linear equations for the eigenvector Csn,

⎛
⎜⎜⎜⎝

γ̃5 − ε ωc

√
n γ̃1 ω4

√
n − 1

ωc

√
n γ̃2 − ε ω4

√
n 0

γ̃1 ω4
√

n γ̃5 − ε ωc

√
n − 1

ω4
√

n − 1 0 ωc

√
n − 1 γ̃2 − ε

⎞
⎟⎟⎟⎠ ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1
sn

C2
sn

C3
sn

C4
sn

= 0,

(3)

where the band number s = 1,2,3,4 numerates the solutions
at given n from the bottom, ωc = v

√
2|e|h̄B/c and ω4 =

γ̃4ωc/γ0.
The eigenvalues of the matrix in Eq. (3) are easily found;

they are shown in Fig. 1 as a function of the momentum kz. For
each Landau number n � 2 and momentum kz, there are four
eigenvalues εs(n) and four corresponding eigenvectors, Eq. (2),
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FIG. 1. (Color online) LLs εsn for n = 0–4 in four bands
s = 1,2,3,4 (in dotted, solid, dashed, and dash-dotted lines, corre-
spondingly) as functions of momentum kz along the KH line in
the brillouin zone (K = 0, H = π/2d0) at the magnetic field B =
7 T with the SWMC model parameters given in Table I. The main
electron transitions shown in the right panel below 100 meV are
possible between the levels with the selection rule �n = ±1 ; see
text.

marked by the band subscript s. We will use the notation |sn〉
for levels. In addition, there are four levels. One of them,

ε1(n = 0) = γ̃2, (4)

for n = 0 with the eigenvector C0 = (0,1,0,0) as is evident
from Eq. (2). It intersects the Fermi level and belongs to the
electron (hole) band near the K (H ) point. The other three
levels indicated with n = 1 and s = 1,2,3 are determined by
the first three equations of the system (3) with C4

s1 = 0.
The |21〉 level is close to the |10〉 level. In the region of kz,

γ1/ cos z � γ2, where the electrons are located, this level has
the energy,

ε2(n = 1) = γ̃2 − 2
ω2

c γ̃4

γ̃1γ0
.

In the same region, the two closest bands (s = 2,3) with n � 2
are written as

ε2,3(n) = γ̃2 − ω2
c γ̃4

γ̃1γ0
(2n − 1) ∓ ω2

c

γ̃1

√
n(n − 1), (5)

within accuracy of (γ̃4/γ0)2.
A simplest way to evaluate the corrections resulting from

the warping γ3 consists in the consideration of the relative
Green’s function having the poles at the electron levels. The
corrections to the levels can be found in the iterations,

Gm+1(x,x ′) =
∫

dx ′′G0(x,x ′′)V(x ′′)Gm(x ′′,x ′), (6)

where V(x) has only two matrix elements V 42 = ωcγ̃3a
+/γ0

and V 24 = V 42∗ in the Hamiltonian (1). The Green’s function
of the unperturbed Hamiltonian writes

G
αβ

0 (ε,x,x ′) =
∑
sn

ψα
sn(x)ψ∗β

sn (x ′)
ε − εsn

. (7)

In the second iteration, we get the corrections,∫
dx1dx2G

α4
0 (x,x1)V 42(x1)G22

0 (x1,x2)V 24(x2)G4β

0 (x2,x
′),

and the similar term with the substitution of the superscripts
2 ↔ 4. The matrix elements of the perturbation V are easily
calculated with respect to the Hermitian functions of Eqs. (7)
and (2) and we obtain for the diagram shown in the upper part
of Fig. 2,(

ωcγ̃3

γ0

)2 ∑
s ′sn

(n − 2)
∣∣C4

snC
2
s ′,n−3

∣∣2
ψα

sn(x)ψ∗β
sn (x ′)

(ε − εsn)(ε − εs ′,n−3)(ε − εsn)
. (8)

This correction plays an important role near the poles of the
Green’s function. Therefore, we can substitute εsn instead of
ε in the second factor of the denominator and represent this
correction as a shift δεsn of the poles (ε − εsn − δεsn)−1 with

δεs(n) =
(

ωcγ̃3

γ0

)2 ∑
s ′

{
(n − 2)

∣∣C4
snC

2
s ′,n−3

∣∣2

εs(n) − εs ′ (n − 3)

+ (n + 1)
∣∣C2

snC
4
s ′,n+3

∣∣2

εs(n) − εs ′ (n + 3)

}
, (9)

where the first term should be omitted for n − 3 < 0. In fact,
our illustration is nothing but a calculation of the electron
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FIG. 2. Diagrams for the second iteration of the perturbation
theory; corrections to the Green’s function (a) and corrections to
the vertex in conductivity (b).

self-energy and the naive expansion of the denominator can
be indeed replaced by summarizing of the corresponding
diagrams.

Comparing the corrections, Eq. (9), with the main contribu-
tion Eq. (5), we find that the perturbation theory is valid when
an expansion parameter (γ̃3γ̃1/γ0ωc)2 becomes small (i.e., for
the strong magnetic fields B > 1 T). The corrected |10〉 level
writes

ε1(n = 0) = γ̃2 +
(

ωcγ̃3

γ0

)2 ∑
s ′

∣∣C4
s ′3

∣∣2

γ̃2 − εs ′ (3)
. (10)

The |21〉 level is very close to the level with n = 0 [Eqs. (4)
and (10)].

Our expressions for the levels with the corrections (9)
and (10) give the same results as obtained in Ref. 21 by the
numerical method of truncating the infinite matrix.

III. CONDUCTIVITIES IN MAGNETIC FIELDS

In the collisionless limit when the relaxation rate � is much
less than the frequency, � 
 ω, the conductivity is expressed
in terms of the correlation function

P (ω) = T
∑
ωm

∫
dxdx ′Tr{viG(ω+,x,x ′)vjG(ω−,x ′,x)},

(11)

where we should (i) summarize over Matsubara’s frequencies
ωm, (ii) take the trace over the Landau and band numbers,
(iii) make an analytic continuation into real frequencies ω, and
(iiii) substrate from the result its value at ω = 0 (for details
see Refs. 28 and 29).

The velocity matrices vi in Eq. (11) are given by the
derivative of the Hamiltonian, Eq. (1),

v = ∂H (k)

∂k
. (12)

First we consider the largest velocity operators, Eq. (12),
which do not involve the parameter γ̃3/γ0 . Straightforward

calculations yield two independent components of the dynam-
ical conductivity,

σxx(ω)
iσxy(ω)

}
= iσ0

4ω2
c

π2

∑
n,s,s ′

∫ π/2

0
dz

�fss ′n

�ss ′n
|dss ′n|2

× [(ω + i� + �ss ′n)−1 ± (ω + i� − �ss ′n)−1],

(13)

where �ss ′n = εsn − εs ′,n+1 is the level spacing including the
corrections given in Eqs. (9) and (10), �fss ′n = f (εs ′n+1) −
f (εsn) is the difference of the corresponding Fermi-Dirac
functions, and

dss ′n = C2
snC

1
s ′n+1 + C3

snC
4
s ′n+1

+ (γ̃4/γ0)
(
C1

snC
4
s ′n+1 + C2

snC
3
s ′n+1

)
(14)

is the dipole matrix element. These electron transitions obey
the selection rule,

�n = 1,

and will be referenced as the strong lines. The integration over
the brillouin half-zone, 0 < z < π/2, and the summation over
the Landau number n as well as the bands s,s ′ should be done
in Eq. (13). The conductivity units,

σ0 = e2

4h̄d0
,

have a simple meaning, being the graphene dynamic
conductivity30 e2/4h̄ multiplied by the number 1/d0 of layers
within the distance unit in the main axis direction.

Now we consider the terms with γ̃3/γ0 in the velocity
operators [Eq. (12)]. Calculating the correlation function
Eq. (11) we get an additional term in the conductivity, which
can be obtained from Eq. (13) with the substitutions,

n + 1 → n + 2,

and with the matrix element,

dss ′n = (γ̃3/γ0)C2
snC

4
s ′n+2,

instead of the matrix element given by Eq. (14). These
transitions obey the selection rule,

�n = 2,

and will be referenced as the weak lines. I should emphasize
that Nakao21 did not recognize the order of the perturbation
theory in his numerical calculations and therefore all the terms
with different �n appear together.

So far we considered the γ3 corrections to the Green’s
function (i.e., to the levels). These calculations are similar
to the analysis of the electron self-energy in the problem of
the interaction with defects (see, for instance, Ref. 28; pages
327–334). However, there are so-called vertex corrections to
the self-energy shown at the bottom of Fig. 2. They result
from the quartet of the coupled Landau levels, which interfere
while the selection rules �n = 1 and �n = 2 are allowed.
For compactness, let us denote this quartet of given n as the
following:

a = |sn〉, b = |s ′,n + 1〉, c = |s1,n + 3〉,
d = |s ′

1,n + 4〉, (15)
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TABLE I. The parameters of the Hamiltonian, Eq. (1), their values in the SWMC model, and obtained in the experimental works, all in meV.

γ0 γ1 γ2 γ3 γ4 γ5 � εF

(1) 3050 360 −10.2 270 −150 −1.5 16 −4.1

Sa γ0 γ1 2γ2 γ3 −γ4 2γ5 � + 2(γ2 − γ5) 2γ2 + εF

Mb 3160 390 −20 276 44 38 8 −24
Dc 3120 380 −21 315 120 −3 −2 −
aSWMC, Reference 1.
bMendez et al., Reference 5.
cDoezema et al., Reference 4.

where the band numbers s,s ′,s1, and s ′
1 are arbitrary.

The corresponding corrections to conductivities write

δσxx(ω)
iδσxy(ω)

}

= 2iσ0

∑
nss ′s1s

′
1

∫
0

π/2
dz

(
2ω2

c γ̃3

πγ0

)2

×C2
aC

2
bC

4
c C

4
d

(
C1

bC
2
a + C3

aC
4
b

)(
C1

dC
2
c + C3

c C
4
d

)
×

√
(n + 1)(n + 2)(εb − εd )−1(εa − εc)−1

×{[(ω + i� + εb − εa)−1 ± (ω + i� − εb + εa)−1]∂ab

+ [(ω + i� + εb − εc)−1 ± (ω + i� − εb + εc)−1]∂cb

+ [(ω + i� + εd − εa)−1 ± (ω + i� − εd + εa)−1]∂ad

+ [(ω + i� + εd − εc)−1 ± (ω + i� − εd + εc)−1]∂cd},
(16)

where

∂ab = [f (εa) − f (εb)]/(εb − εa),

and f (εa) is the Fermi-Dirac function. The terms with the
negative radicand should be omitted while summing over n

and all band numbers from Eq. (15).

IV. HALL AND LONGITUDINAL CONDUCTIVITIES WITH
THE SWMC PARAMETERS

The parameters of Eq. (1) used in the calculations are
listed in Table I (see also Ref. 31). The hopping integrals
γ0 to γ3 are close to the values determined in observations
of the semiclassical ShdH effect. The Fermi energy equal to
εF = −4.1 meV agrees at the zero magnetic field with the
measurements of the extremal Fermi-surface cross sections
and the masses of holes and electrons. Connections with the
notation for the same parameters in the SWMC model are
given in the “SWMC” line. The values of parameters γ4, γ5,
and � determined in various experiments are very different,
we use γ5 and � obtained by Doezema et al.4 (given in Table I
in the “SWMC” notations) and take for γ4 the approaching
value. In the quantum limit, when electrons and holes occupy
only |10〉 and |21〉 levels, the Fermi energy must cross these
close levels at the middle of the KH line. It means that the
Fermi level becomes higher at such, the magnetic fields taking
the value εF ≈ −1 meV.

The results of calculations are represented in Figs. 3–4.
Let us emphasize that the imaginary part of the dynamical
conductivity is of the order of the real part.

One can see in Fig. 3(a), that the longitudinal conductivity
calculated per one graphite layer tends on average to the
graphene universal conductance. The main contribution in the
sharp 16-meV line is resulted from the electron |21〉 → |32〉
transitions (15 meV) about the K point where the |32〉 level
coincides with the Fermi level (within accuracy of the width �

or temperature T ). Then, the transitions |22〉 → |21〉 produce
the broad band. The low-frequency side of the band (23 meV,
at the intersection of the |21〉 level with the Fermi level)
contributes into the 16-meV line. In the same 16-meV line,
the transitions |32〉 → |33〉 can contribute as well if the band
|32〉 contains the electrons.

The next doublet at 43 meV arises from the transitions
|23〉 → |32〉 and |22〉 → |33〉 at the K point. The 68-meV
doublet splitting results due to the electron-hole asymmetry
from the transitions |24〉 → |33〉 (65 meV) and |23〉 → |34〉
(69 meV) at the K point of the brillouin zone.

The 89-meV line is more complicated. First, there are the
electron transitions |24〉 → |35〉 (89 meV) and |25〉 → |34〉
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FIG. 3. (Color online) Real (a) and imaginary (b) parts of the
longitudinal (xx, solid line) and Hall (xy, dashed line) dynamical
conductivities; Kerr angle (c) and reflectivity (d). The magnetic field
B = 7 T; the temperature T = 0.1 meV is less than the level broadening
� = 3.5 meV.
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FIG. 4. (Color online) Kerr angle and reflectivity at 10, 15,
and 25 T.

(90 meV) near the K point. Besides, the transitions |11〉 →
|10〉 (95 meV) near the H point make a contribution as well. All
these lines obeying the selection rule �n = 1 are strong. There
are two weak lines in the frequency range. One (|24〉 → |32〉)
is seen at 55 meV as a shoulder on the theoretical curve.
Another, at 31 meV, results from the transitions |10〉 → |32〉
near the K point.

The positions of the lines for fields in the range of 10–30 T
agree with observations of Refs. 8 and 18.

The optical Hall conductivity σxy(ω) in the ac regime
is shown in Figs. 3(a) and 3(b). The conductivities σxx(ω)
and σxy(ω) allow us to calculate the Kerr rotation and the
reflectivity as functions of frequency [see Figs. 3(c) and 3(d)].

It is evident that the interpretation of the Kerr rotation governed
by the conductivity σxy(ω) is much more complicated in
comparison with the longitudinal conductivity.

The Kerr angle and reflectivity shown in Fig. 4 for
the different magnetic fields demonstrate the strong field
dependence of the magneto-optic phenomena.

V. SUMMARY AND CONCLUSIONS

In conclusions, we have evaluated the perturbation theory
for the matrix Hamiltonian, which permits one to calculate
the corrections to the eigenvalues resulting from the small
matrix elements particularly from the trigonal warping. We
have shown that the trigonal warping in graphite can be
considered within the perturbation theory at strong magnetic
fields larger than approximately 1 T. We have found that the
main optical transitions obey the selection rule �n = 1 for
the Landau number n, however, the �n = 2 transitions due to
the trigonal warping with small probability are also essential.
Good agreement between the calculations and the measured
Kerr rotation and reflectivity in graphite in the quantizing
magnetic fields is achieved. The SWMC model parameters
are used in the fit taking into account the previous dHvA
measurements and correcting the Fermi energy for the case of
strong magnetic fields.
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