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Fragmentation pathways of nanofractal structures on surfaces
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We present a theoretical analysis of the post-growth processes occurring in nanofractals grown on a surface.
For this study we have developed a method that accounts for the internal dynamics of particles in a fractal. We
demonstrate that the detachment of particles from the fractal and their diffusion within the fractal and over the
surface determines the shape of the islands remaining on a surface after the fractal fragmentation. We consider
different scenarios of fractal post-growth relaxation and analyze the time evolution of the island’s morphology.
The results of our calculations are compared with available experimental observations, and experiments in which
the post-growth relaxation of deposited nanostructures can be tested are suggested.
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I. INTRODUCTION

Nowadays, nanoscience is a rapidly developing research
domain.1–4 This generic word refers to the study performed on
systems having a characteristic length scale on the order of a
nanometer: a length scale at which new specific physical and
chemical properties emerge in the system. One of the main
goals of nanotechnology is the development of controlled,
reproducible, and industrially transposable nanostructured
materials.1–7 In this context, controlling of the final archi-
tecture of such materials by tuneable parameters is one of the
fundamental problems.

The conventional technique of thin-film growth by deposi-
tion of atoms,2,3 small atomic clusters,3,4 and molecules1,2,8–10

on surfaces gives a possibility to construct materials with
pre-defined properties. Recent experiments show that pat-
terns with different morphology can be formed in the
course of cluster deposition on a surface.3,4,11 Among other
possible shapes, droplet-like and fractal islands have been
observed in various systems.3,4,11–13 It was shown that the
island morphology depends on various factors, such as
the temperature,3–5,14,15 particle size,16 particle deposition
rate,5,17,18 substrate roughness,19,20 concentration of impurities
in the system,4,14,21 and interparticle interaction energies.4,5

It was also demonstrated that the patterns on a surface
strongly depend on the type of the substrate. For example,
experimental studies of silver clusters deposited on silicon
at room temperature showed that droplet-like islands are
formed,22 while in Refs. 14,15, and 21 it was demonstrated
that dendritic shapes emerge on graphite.

The investigation of the dendritic structures (fractals) has
attracted considerable attention.11,14,15,21,23–27 The formation
of such systems provides a natural framework for studying
disordered structures on a surface because fractals are gen-
erally observed in the far-from-equilibrium growth regime.
For example, fractals consisting of Ag,14,15,21 Au,28 Fe-N
clusters,26 and C60 molecules29,30 have been fabricated on
different surfaces with the use of the cluster deposition
technique.1,2

The growth process of fractals has been extensively studied
in experiments.17–20,28,29,31 In Refs. 17 and 18 a quantitative

experimental study of spherical antimony cluster diffusion
on graphite was performed. It was shown that the size of
the emerging fractals depends on the cluster deposition rate.
The influence of cluster size on fractal morphology was
experimentally studied in Ref. 16. In that work antimony
clusters of different size were subsequently deposited on
graphite surface, and it was demonstrated that the fractal
branch width depends on the size of the deposited clusters.
Molecular processes underlying the C60-fractal formation on
graphite substrate were investigated experimentally by use of
the scanning tunneling microscopy.29 The self-organization
of silver clusters on graphite surfaces with different crys-
tallographic orientations was experimentally investigated in
Ref. 19. It was shown that the size of the formed fractals
depends on the crystallographic planes of graphite, which
influences the cluster mobility over a surface.

Contrary to the process of fractal formation, the process
of post-growth relaxation and the question of stability of
deposited structures are still not well understood. The under-
standing of the post-growth relaxation processes would allow
one to control the self-organization processes of particles on a
surface for the purpose of obtaining patterns with predictable
morphology. An illustrative example of pattern manipulation
was given in Ref. 31 by adding metal impurity to the system. In
that work different morphologies of C60 films with triangular,
dendritic, and fractal-like (111)-oriented single-crystal grains
were detected by changing the thickness of the pristine
fullerene film and the concentration of Ag impurities.

The post-growth transformation of silver cluster fractals
to compact droplets on graphite surface was experimentally
studied in Refs. 14,15, and 21. It was demonstrated that
depending on the experimental conditions the shape and the
size of the stable silver droplets changes significantly.21 In
Refs. 14,15, and 21 it was shown that oxidizing of silver
clusters results in rapid fragmentation of a fractal, leading
to the formation of several compact droplets.

An important characteristic that determines fractal for-
mation and post-growth relaxation dynamics is the mobility
of a cluster on the substrate, which in turn is temperature
dependent. Fractals of gold clusters grown at room temperature
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on ruthenium substrate undergo a transformation into compact
droplets after annealing at 650 K.32 Thermal relaxation of
silver cluster fractals was experimentally studied in Refs. 14
and 21. In these papers it was demonstrated that due to thermal
annealing the fractal branch width increases and eventually the
fractal breaks into smaller parts.

The dynamics of particles on a surface was also studied
theoretically. An efficient theoretical tool for describing parti-
cle dynamics on a surface is the diffusion limited aggregation
(DLA) method.33 In this method each particle on a surface
moves freely in a random direction until it collides with
another particle. In the case of collision both particles stick
together and become immobile. The DLA model was used for
a qualitative description of the process of fractal formation on
a surface.5,17,20,34

A two-dimensional theoretical model based on the DLA
method has also been developed for the description of thermal
relaxation of fractals on surfaces.34 In this model particles are
treated as immobile only if they are completely surrounded by
other particles. In all other cases particles are allowed to move
along the branches of a fractal with a certain probability.34 The
parameter dependent method developed in Ref. 34 was used to
describe the thermal transformation of a fractal into a droplet.
The description of fractal instability in Ref. 34 was limited
only to one particular choice of parameters. However, the
correspondence of these parameters to the actual experimental
values was not established.

The island size distribution function is a fundamental
quantity in the kinetic description of island growth. It has been
widely used to characterize the experimentally measured35–37

as well as computed38–42 surface morphologies. The scaling of
the island size distribution, island density, monomer density,
and other morphology characteristics of the system are often
studied as a function of the surface coverage, and as a function
of the ratio of the diffusion rate to the deposition rate.38–41 The
scaling of the aforementioned quantities allows us to determine
important physical parameters describing the kinetic growth
processes on a surface, such as, e.g., the activation energy
and the diffusion constant.39,41 An important characteristic
of the island size distribution scaling is the scaling function.
The shape of the scaling function is independent of the initial
distribution of particles on a surface and is determined by
the island’s growth mechanism.43 The scaling of the island
size distribution emerging during the postdeposition growth
processes on a surface was also suggested.44 The scaling
of island morphology characteristics has been performed for
various model systems,38–41 and allows us to characterize
complex kinetic processes occurring on a surface.

In the present paper we make an important step toward the
understanding of the different evolution scenarios of nanofrac-
tals morphology. We present a systematical theoretical analysis
of the post-growth processes occurring in nanofractals on a
surface. For this study we have developed a method describing
the internal dynamics of particles in a fractal with accounting
for their diffusion and detachment. We demonstrate that these
kinetic processes determine the final shape of the islands
on a surface after the post-growth relaxation. We consider
different scenarios of fractal relaxation and analyze the time
evolution of the island’s morphology. The results of our
calculations are compared with experimental measurements

of the post-growth relaxation of silver cluster fractals on the
graphite substrate.14,15,21 In particular, we analyze the island
size distributions calculated at various conditions and different
post-growth fragmentation regimes. In conclusion we outline
a number of open problems that should be investigated in the
future. For instance, as a possible next step one could explore
the scaling of the island size distributions during the fractal
fragmentation processes, as also suggested in Ref. 44. This
and many other interesting relevant questions are beyond the
scope of the present work and are left for further investigations.

II. THEORETICAL METHODS

In this section we discuss the theoretical methods used for
studying the dynamics of particles on a surface. Computations
were performed with the use of the MBN EXPLORER com-
puter package, which is developed for structure optimization,
simulation of dynamics, and growth processes in various
nanosystems.45–55 Below we describe the general idea of the
computational method used in our work and explain how
internal dynamics of particles in a fractal has been accounted
for.

To study the diffusion of particles over a surface we used
a version of the kinetic Monte Carlo (KMC) method.7,56–59

The KMC method is based on the Monte Carlo algorithm
and is widely used for the study of time evolution of
various processes occurring in nature,57–63 such as surface
diffusion of particles,64 vacancy diffusion in alloys,65 damage
accumulation and amorphization,66 and many others. The
processes described using the KMC method always occur with
certain predefined rates. Note that these rates are input in the
KMC algorithm, and the method itself cannot predict them.
The calculation of the kinetic rates for different processes is
usually a nontrivial problem. The kinetic rates are material-
dependent parameters of the KMC method, which in the
case of particle diffusion over a surface are determined by
the atomic composition of particles, substrate material, and
interparticle interactions. Therefore, by varying values of the
kinetic rates, the KMC method can be used to study the
dynamical behavior of various molecular systems. Advanced
computational methods are often necessary for the kinetic rates
calculation. For example, the rate of particle diffusion over a
surface can be extracted from molecular-dynamics simulation
(for a review see, e.g., Ref. 67).

The idea of the KMC method is as follows. The time
evolution of a molecular system is modeled stepwise in time.
With a certain probability, at each step of the simulation,
the system undergoes a structural transformation. The new
configuration of the system is then used as the starting point for
the next simulation step. The transformation of the system is
governed by the kinetic rates, input into the KMC method. Note
that at each simulation step the system can be transformed into
one of several states. Thus in the KMC method, the probability
for the system to attain a certain configuration is proportional to
the corresponding kinetic rate. Due to its probabilistic nature,
the KMC method allows us to study dynamical processes
on time scales significantly exceeding the time scales of the
conventional molecular-dynamics simulation. This method is
ideal in the situations when the intermediate details of the
dynamical processes are not so essential, and the transition
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to the final state of the system can be parametrized by a few
kinetic rates.

In our studies we used a modification of the conventional
KMC method. First, for each particle on a surface we determine
the number of possible diffusion directions. Thereby a particle
can either diffuse freely over a surface, or diffuse along the
periphery of the already preformed structure on a surface.
A diffusion direction of the particle is chosen randomly in
such a manner that all possible diffusion directions are equally
probable. For a given diffusion direction the probability of
particle diffusion is then calculated, and the particle is moved
in this direction according to the calculated probability. Below
we discuss this method in detail.

A. Fractal growth

To model the growth of a fractal on a surface we used
the diffusion limited aggregation (DLA) method.33 Using a
module of the MBN EXPLORER program68 we have computed
the growth process of a fractal by depositing particles on a
surface in the vicinity of the pre-defined growth center. To
compare with the experimental measurements14,15,21 we have
used in our simulations the model parameters consistent with
the experiment. Thus the diameter of a particle has been
taken to be 2.5 nm, which corresponds to the size of an
Ag500 cluster used in Refs. 14,15, and 21. The deposition flux
has been decreased from Fstart = 7.2 × 1013 particle/cm2 s to
Fend = 1.1 × 1011 particle/cm2 s because the area to which the
particles are added decreases as the size of the fractal increases.
The used values of the particle deposition flux are chosen
higher than the experimental value reported in Refs. 14 and 21,
F = 1010 particle/cm2 s, in order to accelerate simulation of
the fractal growth. The simulated fractals have been used as the
initial structure in the investigation of fractal fragmentation.
To speed up the calculation, we simulated particle dynamics
on a two-dimensional (2D) hexagonal grid, on which a particle
has up to six neighbors, as illustrated in Fig. 1. The size of a
single grid cell in this case is defined by the particle diameter.

To simulate fractal growth the following procedure has been
adopted. At every step of the simulation new particles are
deposited on the surface according to the deposition rate and
occupy some of the free cells in the grid. Simultaneously, the
already deposited particles diffuse over the surface with the
rate

� = ν1 exp

[
−Ea

kT

]
, (1)

where Ea is the activation energy, ν1 is the attempt escape rate,
T is the temperature of the system, and k is the Boltzmann
constant. The process of particle diffusion over the surface is
schematically illustrated in Fig. 1.

An important quantity in the DLA method is the time step
�t , which defines the characteristic time for particle diffusion
over a surface as

�t = 1/�. (2)

The time step �t is related to the coefficient D of particle’s
diffusion over a surface arising in the equation of diffusion.69,70

The solution of the diffusion equation in two dimensions gives

FIG. 1. Island of deposited particles on hexagonal grid. Processes
essential for a fractal formation on a surface are shown by arrows, � is
the free particle diffusion rate, �d (m,n) is the diffusion rate along the
periphery of fractal or island, and �e(l) is the particle detachment rate
from fractal or island. The diffusion rate along the periphery depends
on the number of broken bonds (m) and the number of maintained
neighboring bonds (n). The particle detachment rate depends on the
number of broken bonds (l). In the depicted example m = 3, n = 1,
l = 2.

the probability to find a particle at the instant t being at distance
[r , r + dr] from its initial position as

ω(r,t) dr = 1

2Dt
exp

(
− r2

4Dt

)
r dr. (3)

Using this probability function one derives the mean-square
displacement of a particle as69,70

(r1 − r0)2 =
∫ ∞

0
ω(r,t1 − t0)r2 dr = 4D(t1 − t0), (4)

where r0 and r1 are the distances to a particle from the initial
position at two successive instances t0 and t1. Equation (4)
allows us to express the diffusion coefficient as

D = 〈�r2〉
2z�t

, (5)

where 〈�r2〉 is the mean-square displacement of a particle per
time �t , and z is defined by the dimensionality of space.69,70 In
the case of particle diffusion over a surface z = 2 [see Eq. (4)].

On the other hand, the mean-square displacement depends
on the diffusion rate and on the particle hopping length, which,
in the example considered, is equal to the particle diameter d0:

〈�r2〉 = �d2
0�t. (6)

Here �t has a meaning of a single simulation step defined in
Eq. (2). Substituting Eq. (6) into Eq. (5), one derives

D = �d2
0

2z
. (7)

Equation (7) allows us to estimate � (and therefore �t) once
the diffusion coefficient is known:

�t = d2
0

2zD
. (8)
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The diffusion coefficient of an Ag500 cluster on graphite
at room temperature was measured as 2 × 10−7 cm2/s.21

Substituting this value into Eq. (8), one obtains �t = 78 ns.
Substituting Eq. (1) into Eq. (7), one relates the diffusion

coefficient to the activation energy and temperature:

D = d2
0ν1

2z
exp

[
−Ea

kT

]
. (9)

It follows from Eq. (9) that the diffusion coefficient decreases
as the activation energy grows. This results in an exponential
growth of the time step �t with Ea , since �t ∼ 1/D [see
Eq. (8)]. Equation (8) introduces the optimal time step for
the computations, because it defines the characteristic time
at which a freely deposited particle gets displaced for the
distance d0, i.e., to the neighboring lattice cell (see Fig. 1). Note
that the diffusion of deposited particles is typically the fastest
process in the system. Therefore it determines the minimum
time step and the time scale for the growth and fragmentation of
fractal structures on a surface. It is computationally inefficient
to perform simulation with time steps much less than �t ,
because in this case the particles will practically not move
during t � �t .

In our method we have employed the following procedure
to model particle dynamics over a surface: for each step of
the simulation the deposited particles without neighbors have
six possibilities for diffusion; see Fig. 1. The direction of
displacement is chosen randomly and each particle is moved to
a neighboring lattice cell in the chosen direction. Thereby each
step of the simulation corresponds to �t = 78 ns, as estimated
above. The particles at the fractal periphery diffuse slower, as
shown in the next section, and therefore are displaced less
frequently.

B. Kinetic processes in fractal fragmentation

In this work we consider fragmentation of a two-
dimensional fractal consisting of rigid particles of the equal
radius. The relaxation of such fractal is driven by the diffusion
of particles along the fractal periphery and by the detachment
of particles from the fractal. Both processes are schematically
depicted in Fig. 1. The diffusion and the detachment rates
depend on the activation energy and the particle-particle
interaction. In the Arrhenius approximation the diffusion rate
of a particle along the fractal periphery reads as

�d (m,n) = ν2 exp

[
−mEb

kT
− n�ε

kT
− Ea

kT

]
, (10)

where m is the number of bonds that are broken due to
the particle motion, Eb > 0 is the binding energy between
two particles, n is the number of maintained neighboring
bonds between two particles, �ε � Eb is the diffusion energy
barrier,15,34 and ν2 is the attempt escape rate. Equation (10)
describes the probability of a particle to overcome a potential
energy barrier, which for a particle diffusing along the fractal
periphery is parametrized by the energies Eb, �ε, and Ea .
Note that the parameter Ea , which enters Eq. (10), depends
on the simulation time step �t , as discussed in the previous
section. Therefore only the parameters Eb and �ε define the
potential-energy barrier for particle diffusion along the fractal
periphery, while Ea characterizes the time scale.

Note that Eq. (10) does not account for the bonds that
may be created in the system when a particle diffuses. This
feature of Eq. (10) is easy to understand. Indeed, the particle
diffusion process in our model is considered stepwise, i.e.,
at each step of the computation a particle is displaced with
a certain probability in a random direction for the distance
equal to its diameter. But before the particle is displaced to its
new position there is no information about the newly created
bonds in the system (causality principle). Therefore only those
bonds in which the particle forms with its neighbors prior to the
displacement influence the diffusion dynamics in the system.

The evaporation (detachment) rate of a particle from the
fractal is given by

�e(l) = ν3 exp

[
− lEb

kT
− �μ

kT
− Ea

kT

]
, (11)

where l is the number of bonds broken during the particle
detachment from fractal, �μ is the chemical potential change
associated with particle detachment,4,15,34,71,72 ν3 is the attempt
escape rate of a particle in its equilibrium state. Equation (11)
can be understood within the framework of the classical
nucleation theory,71 which studies the liquid↔gas transition in
droplets. It is written in the Arrhenius approximation, similarly
to Eq. (10). For further discussion of the fractal fragmentation
we put

ν2 � ν3 = ν. (12)

Such a situation occurs when the characteristic attempt escape
rate of a particle leading to its diffusion or detachment are
close. Equations (10) and (11) describe the dependence of
the probability of different essential kinetic processes on the
values of Ea , Eb, �ε, �μ, which below are called the model
parameters. For convenience, in this paper we define all the
model parameters in units of kT (1kT = 0.026 eV) at room
temperature (300 K).

III. RESULTS

A. Model parameters

The interaction energy between the deposited particles and
the substrate is responsible for the particle mobility over a
surface, as follows from Eq. (1). The energetic parameters
for the atomic-scale processes on the Ag(100) surface were
studied in Ref. 73, while the energetic parameters for Si
atom migration on Si(100)-2×1 surface were discussed in
Ref. 56. The interaction energy of Ag500 (EAg

a ), C60 (EC60
a ), and

Sb2300 (ESb
a ) clusters with graphite surface at room temperature

has been estimated as E
Ag
a = 6.6kT ,74 EC60

a = 6.9kT ,75 and
ESb

a = 27.1kT .17 The significant spread of the values indicates
the essential role of interatomic interactions in defining the
activation energy. The value of Ea defines the time scale of
the fractal growth and fragmentation processes, as discussed
in Sec. II A. In this paper we describe the dynamics of silver
cluster fractals with the above-mentioned value of Ea . Another
important quantity characterizing the particle diffusion over a
surface is its attempt escape rate ν [see Eqs. (10)–(12)], which
can be estimated as

ν = 2Dz

d2
0

exp

[
Ea

kT

]
. (13)
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For a silver nanoparticle with d0 = 2.5 nm deposited
on graphite the diffusion coefficient at room temperature
D � 2 × 10−7 cm2 s−1,21 resulting in ν = 0.94 × 1010 s−1.
Note that the attempt escape rate for silver clusters is 2 to 3
orders of magnitude smaller than for individual atoms on a
surface.7,56,57,73

The interaction energy between two particles, Eb, depends
on the atomic composition of the particles and on the presence
of impurities in the system.14,15,21 Thus it was shown that the
presence of oxygen impurities in a silver cluster deposited
on graphite leads to the decrease of Eb and consequently to
the reduction of fractal stability. A systematic study of the
aforementioned factors on the interparticle interaction energy
is beyond the scope of this paper and deserves a separate
systematic investigation. Here for us it is important that
according to experiment14,21 silver cluster fractals are formed
and decay on the comparable time scales. This means that
in our model Eb should be of the same order of magnitude
as Ea . It is worth noting that the time of fractal formation
can become significantly smaller than the time of fractal
fragmentation if the conditions at which the fractal is kept after
growth rapidly change, e.g., the temperature of the system is
increased. The diffusion barrier energy �ε depends on the
atomic composition of the cluster and usually amounts to
0.05–0.2 of the bonding energy of two clusters.76

The change in the chemical potential �μ arises due to
the energy difference caused by the change of the number of
particles in the system. The chemical potential characterizes
the ability of particles to diffuse from regions of high chemical
potential to those of low chemical potential and is defined as
the partial derivative77

μ =
(

∂U

∂N

)
V,S

, (14)

where U and S are the total energy and the entropy of the
system, V is its volume, and N is the number of particles in
the system. The variation of the chemical potential arising due
to a structural transformation in the system can be calculated
from the known values of the chemical potential of individual
components of the system before and after the transformation.
For example, for the evaporation of a silver nanoparticle from
a fractal with N particles on graphite surface,

Ag(fractalN) + C(graphite)

→ Ag(fractalN−1) + C(graphite) + Ag(particle), (15)

the corresponding change of the chemical potential can be
calculated as a difference between the chemical potential of
the products and the educts. With μAg(fractalN) ≈ μAg(fractalN−1)

one obtains

�μ = μAg(particle). (16)

The chemical potential can be measured experimentally78

and is tabulated for many substances (see, e.g., Refs. 79 and
80). It depends on the phase state of the system: for the gas of
silver atoms μ

(gas)
Ag = 2.55 eV, while for the silver in the liquid

phase μ
(liquid)
Ag = 0.8 eV.79 These values and Eq. (16) allow

one to suggest that the change of the chemical potential in the

FIG. 2. (Color online) (a) Fractal structure simulated using the
DLA method; (b) structure of silver cluster fractal experimentally
grown by clusters deposition technique on graphite surface (Ref. 15).

silver fractal fragmentation process at room temperature lies
within the range 30–100kT .

B. Fractal growth

We stress that this paper is devoted to the process of fractal
post-growth evolution. The problem of nanofractal formation
has been studied in many papers (see, e.g., Refs. 5,17–20,
28,29,31 and 34) and we intend to extend this analysis in a
separate publication. Therefore here we give only a hint how
the fractals of the morphology of interest can be obtained.

Using the method described in Sec. II A we have simulated
several fractals with the structure being very similar to
the silver cluster fractals grown experimentally on graphite
surface.14,15,21 The fractal structure shown in Fig. 2(a) has
been chosen for the further investigation of the post-growth
relaxation processes in fractals. The diameter of the fractal
is 635 nm, which is somewhat smaller than the diameter of
the experimentally grown structures.14,15,21 For the sake of
illustration in Fig. 2(b) we show the experimentally grown
silver cluster fractal prior to thermal annealing, which triggers
fractal fragmentation.14,15,21

The important characteristic of a fractal is the fractal
dimension df . The Hausdorff fractal dimension is generally
defined as81,82

df = lim
l→0

ln[N (l)]

ln[1/l]
. (17)

Here N (l) is the number of self-similar structures of linear size
l needed to cover the whole structure. In practice the fractal
dimension is usually calculated by the box-counting method.83

Equation (17) has been used to calculate the fractal dimension
of the structure shown in Fig. 2(a). This calculation resulted
in d th

f = 1.76. This value is in good agrement with experiment
for silver cluster fractals grown on the graphite surface, which
gives d

exp
f = 1.7 ± 0.1.14

As illustrated in Fig. 2, the topology of fractals simulated
by the DLA method is very similar to the fractal topology
grown in experiment. In both cases the fractals shown in Fig. 2
have several main branches, growing from the center of the
fractal. The branch width of the fractal simulated by the DLA
method is ∼10 nm, while the typical experimental width of
the branch is 15–30 nm.14 The difference arises because the
particles in the simulation were deposited on a surface at a
higher rate than those in experiment (see Sec. II A for details).
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FIG. 3. (Color online) Evolution of fractal structure on a 650 × 750-nm2 substrate with periodic boundary conditions. The initial fractal
structure shown in the middle undergoes fragmentation in different final states depending on the interparticle interactions in the system.
Numbers above the corresponding images indicate the values of Eb and �ε used in the simulations (in units of kT ), �μ = 2kT in all cases.
The simulation time t is given for each path of the fragmentation.

In addition, the implemented DLA method does not allow the
deposited particles to be placed atop a growing fractal. Another
factor affecting this difference is the sticking probability of the
deposited particles assumed to be equal to 1, meaning that if
a particle meets another particle on a surface the two particles
stick and do not move together. This is probably not the case in
experiment, where the sticking probability can be lower than
1 and the mobility of complexes with two or more particles
is not equal to 0. The sticking probability is less important
in the fractal fragmentation process as this process is mainly
governed by the detachment rate �e, and the diffusion rate �d

introduced in Sec. II B. Since the main focus of this paper is
the investigation of pathways of fractal fragmentation, we do
not discuss further the effect of sticking probability on pattern
formation.

C. Fractals fragmentation

In this section we perform analysis of the fractal post-
growth relaxation using the method described in Sec. II B.
According to the estimates performed in Sec. II A, a single
time step in our calculation is equal to �t = 78 ns, which
allows one to simulate the process during the time period

t = Nstep�t, (18)

where Nstep is the number of simulation steps.
In the present work we analyze several paths of fractal

fragmentation. The rate of fractal decay depends on the
interparticle interaction, and it defines the morphology of the
fragments that are formed during the process. Snapshots of
the structures arising at different stages of the fragmentation
process simulated at different parameters of interparticle inter-
actions are shown in Fig. 3. This example shows how different
the fragmentation paths and the fragments morphology can be.

Figure 3 shows that for Eb = 1kT , �ε = 0.2kT one
observes an entire defragmentation of a fractal, which is the
fastest fragmentation path. In this case the interaction energy
between the particles is relatively weak and the probability
to evaporate a particle from the fractal is much higher than
the probability of newly deposited particles to nucleate. This
fragmentation scenario can be realized in experiment if the
temperature of the system is rapidly elevated after the fractal
was created.

Figure 3 shows that for Eb � 2kT the fractal melts in a
number of compact droplets. Depending on the energies of
interparticle interactions the shape of the droplets becomes
different. Thus for Eb = 2kT , �ε = 0.4kT three large, almost
spherical, droplets of a similar size are formed. In this case
the binding energy Eb between the particles is rather small,
allowing relatively easy detachment of particles, but at the
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FIG. 4. (Color online) Time evolution of the number of fragments Nfr, 〈Rmax〉 introduced in Eq. (19), and of the 〈S/P 〉 ratio introduced in
Eq. (27) calculated for the fractal structure shown in Fig. 3. The fractal fragmentation has been analyzed at �μ = 2kT for different values of
the binding energy Eb and the barrier energy �ε. Plots (a)–(c) show the results of calculation obtained for �ε = 0.2Eb and the different values
of the binding energies between two particles. Lines 1–6 correspond to Eb = (1,2,3,4,5,6)kT , respectively. Plots (d)–(f) represent the results
obtained at Eb = 4kT for different values �ε = (0,0.4,0.8,1.0,3.2,4)kT . The direction of growth of �ε is shown in these plots.

same time it is large enough to make the characteristic
particle detachment time comparable with the characteristic
particle nucleation time, thereby preventing the system from
entire defragmentation, observed at Eb = 1kT . Thus the
fragmentation path at Eb = 2kT goes via the rearrangement
of the entire system, and the formation of large stable droplets.

A further increase of the interparticle interaction energy
leads to the change of the fractal fragmentation pattern. As
seen in Fig. 3 at Eb = 4–6kT the fractal fragments into
several compact droplets. The analysis of morphology of the
created patterns leads us to the following main conclusions:
(i) the growth of Eb leads to the increase of the number of
droplets on a surface (see Eb = 4kT and Eb = 6kT ) and to
the decrease of their average size. This happens because the
detachment of particles from the fractal becomes energetically
an unfavorable process, and the fractal fragments mainly due to
the peripheral diffusion of particles, initiated at the peripheral
defect sites. (ii) The increase of the peripheral diffusion barrier
energy �ε suppresses the diffusion of particles, resulting in a
slower evolution and fragmentation of the fractal shape. It is
remarkable that at Eb = 6kT and �ε = 1.2kT one observes
the formation of elongated islands on a surface, which follow
the direction of the fractal branches. A further increase of the
interparticle binding energy with the simultaneous lowering of
the barrier energy for the particle peripheral diffusion favors
the formation of elongated islands on a surface. Figure 3
illustrates this for Eb = 12kT and �ε = 1kT . In this case
the time scale for the particles to detach from the fractal
is significantly larger than that for the peripheral particle
diffusion.

A simultaneous increase of the interparticle binding energy
and the barrier energy for the particle peripheral diffusion
leads to the growth of the fractal life time. Figure 3 shows that
for Eb = 24kT and �ε = 12kT the fractal has no noticeable
changes in its morphology after 4 s of simulation. In the

case when the interparticle energies are large, the fractal
fragmentation is expected to occur on a larger time scale and
can be simulated numerically if the value of the simulation
time step is increased.

The important characteristic of the fractal fragmentation
is the number of fragments at a given time. The smallest
fragment is a single particle. The time evolution of the number
of fragments calculated for different sets of model parameters
is shown in Figs. 4(a) and 4(d). Curve 1 in Fig. 4(a) shows the
time evolution of the number of fractal fragments at Eb = 1kT .
The number of fragments in this case rapidly approaches the
asymptotic value, approximately equal to half of the total
number of particles in the fractal. This means that the system
dominantly consists of dimers. With increasing Eb the number
of fragments at the equilibrium decreases, as seen in Fig. 3. It is
interesting to note that at Eb = 2kT there are three dominating
large islands (see Fig. 3). The total number of fragments at the
end of the simulation in this case is equal to 100, being much
smaller than the total number of particles in the system. This
feature arises in the situation when a large number of single
particles detach from the large droplets but later stick back.
In this case the number of single particles fluctuates rapidly
resulting in the large fluctuations of Nfr(t) dependence shown
in Fig. 4(a) by curve 2. These results have been calculated for
a fractal on a 650 × 750-nm2 substrate with periodic boundary
conditions.

Figure 4(d) shows that there is no dramatic change in Nfr(t)
dependence with the growth of �ε at a constant value Eb. This
analysis shows also that the growth of �ε preventing particles’
peripheral diffusion hinders the fast transformation of droplets
into compact islands, which eventually results in the increase
of the number of fragments on a surface.

As seen in Fig. 3, in the course of fractal fragmentation the
mobile particles can coalescence into islands, i.e., groups of
particles bound together. The size and the number of islands on
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the substrate depend on the binding energy Eb and the barrier
energy �ε. The important characteristic of the fragmentation
pattern on a surface is the average maximal radius of the created
islands, which reads as

〈Rmax〉 = 1

Nfr

Nfr∑
i=1

R(i)
max, (19)

where Nfr is the total number of islands on a surface, R(i)
max

is the maximal radius of the ith island. The dependencies of
〈Rmax〉(t) calculated at different values of Eb and �ε are shown
in Figs. 4(b) and 4(e). These figures show that on average
〈Rmax〉 approaches the equilibrium value at the chosen values
of model parameters except for Eb = 3kT , �ε = 0.6kT when
the large fluctuations of 〈Rmax〉 develop and grow with time.
This happens because at Eb = 3kT the rate of single-particle
detachment turns out to be so that only several particles are able
to overcome the detachment energy barrier at one simulation
step. The escaped particles freely diffusing over the surface
after a short period of time return to the same or some other
island. Although the number of fluctuating fragments on the
surface in this case is relatively small [see Figs. 4(a) and 5],
the fluctuations of 〈Rmax〉 become considerable because at
these conditions small islands can be spontaneously created
but most of them disappear just after several simulation time
steps. Thus, for example, for t1 = 3.484 s 〈Rmax〉1 = 21.5 nm,
while for t2 = 3.485 s 〈Rmax〉2 = 33.4 nm. The change of
the maximal radius �〈Rmax〉 in this case is 11.9 nm within
1-ms time interval. This happens because for the time frame
t1 there are N

(1)
S = 6 single particles and N

(1)
L = 10 fragments

of a larger size with approximately equal diameter on the
surface. For the time frame t2 the number of large fragments
is N

(2)
L , still equal to 10, while there are no single particles on

the surface (i.e., N
(2)
S = 0). With R

(1)
L = R

(2)
L = RL being the

characteristic radius of the large island, R
(1)
S = R

(2)
S = RS the

radius of a single particle, and N
(1)
L = N

(2)
L = NL, one derives

�〈Rmax〉 = �NSNL

N1N2
(RL − RS) , (20)

FIG. 5. (Color online) Dependence of Nfr (squares, left scale) and
〈Rmax〉 (dots, right scale) on the binding energy Eb calculated for the
barrier energy �ε = 0.2Eb after 4-s simulation, corresponding to the
dependencies shown in Figs. 4(a) and 4(b).

where �NS = N
(1)
S − N

(2)
S is the change of the number of

single particles, N1 = NL + N
(1)
S is the total number of

particles at instance t1, and N2 = NL + N
(2)
S is the total number

of particles at instance t2. Substituting values for �Ns , NL, N1,
and N2 in Eq. (20) for the special case considered one obtains

�〈Rmax〉 = 15

42
(RL − RS) . (21)

Substituting 〈RL〉 = 32 nm and RS = 1.25 nm in Eq. (21),
one derives �〈Rmax〉 = 11 nm. Equation (21) shows that
�〈Rmax〉 increases with RL, which grows with time until
it reaches the equilibrium value. Equation (20) can also be
rewritten as

�〈Rmax〉 = �NSNL

N2
1 (1 − �NS/N1)

(RL − RS) , (22)

which shows that for �NS � N1 the fluctuation of the average
radius �〈Rmax〉 can be several times larger than the the
value of the average radius. Note that although the largest
islands are observed for the model parameter Eb = 2kT (see
Fig. 3), the largest average maximal radius is expected for
Eb = 3kT as depicted in Fig. 5. This happens because the
number of single particles on the surface for Eb = 3kT is
about 10, while for Eb = 2kT it exceeds 100. Figure 4(e)
shows some dependence of 〈Rmax〉 on �ε. The growth of �ε

leads to the decrease of 〈Rmax〉, which is a natural result of a
lower peripheral mobility of particles.

Figure 6 shows the distributions of island sizes in the system
after 4 s of simulation. In order to improve the statistics, the
distributions shown in Fig. 6 have been averaged over a time
interval τ = 0.78 s as follows:

Nfr(t) = 1

τ

∫ τ/2

−τ/2
Nfr(t − x)dx. (23)

The histograms in Fig. 6 have been calculated with different
barrier energies. The maxima in the distributions show the
most abundant island sizes. Figure 6 shows that the sizes of
the islands created in the fractal post-growth fragmentation
process depend strongly on the binding energy Eb and the
barrier energy �ε. At some values of Eb and �ε one can
identify two maxima in the island size distributions. Especially
clear, this feature manifests itself at �ε = 0kT , �ε = 0.4kT ,
and �ε = 3.2kT . The presence of two maxima in the island
size distributions tells us that there are two groups of islands
on the surface having different preferential island size.

Let us also analyze the time evolution of the distributions
shown in Fig. 6. Figures 7 and 8 show distributions of the island
sizes calculated at different fragmentation stages for a fixed set
of the model parameters. Figure 7 illustrates the evolution of
the island size distribution simulated at Eb = 2kT and �ε =
0.4kT . After fast fragmentation of the fractal into a subset
of noncompact islands, which occurs on a time scale greater
than 0.04 s, the distribution of islands sizes has a Gaussian-
like shape with the maximum centered at 25 nm. In the
course of the fractal fragmentation process the magnitude and
the position of the maximum of the distribution change,
because the morphology of the system changes due to the
evaporation of single particles from the islands and the
nucleation of single particles. Figure 7 illustrates that small
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FIG. 6. (Color online) Distributions of island sizes formed on the substrate after 4 s of simulation. The distributions were calculated at the
fixed values of Eb = 4kT , and �μ = 2kT for different values of �ε as indicated.

islands nucleate into larger droplets resulting in a shift of the
maximum of the distribution toward larger island sizes. It is
interesting that the fragmentation/nucleation dynamics leads
in this case of study to the formation of two maxima, which
correspond to the presence in the system of the droplets of
different radii.

Figure 7 shows the evolution of the fractal fragmentation
process. The initial fragmentation of the fractal is very rapid.
It involves the rearrangement of single particles in the fractal,
which form the defects at the fractal periphery. The evolution
of the shape of the large droplets slows down with the
growth of their size due to the decrease of the droplets’
mobility [see Figs. 7(b) and 7(c)]. At the stage when only
a few large-size droplets remain, their dynamics is governed

to a large extent by the interchange of peripheral particles
from these droplets [see Figs. 7(d)–7(f)]. The large droplets
diffuse slowly over a surface and may eventually merge. The
characteristic time scale for diffusion of an entire large droplet
is significantly larger than the characteristic diffusion time of
single constituent particle, and therefore practically cannot be
resolved within the simulation time limit. However, note that
this motion can also be simulated with a larger time step.
The appropriate value of the time step can be estimated using
Eq. (8).

Figure 8 shows the slower evolution of the island size
distribution as compared to Fig. 7. The slowing down of the
process is caused by the increase of the binding energy Eb

between particles within the fractal. Figure 8 shows that, as

FIG. 7. (Color online) Size distributions of islands calculated at different stages of the fractal fragmentation (see Fig. 4) for Eb = 2kT ,
�ε = 0.4kT , and �μ = 2kT . The corresponding simulation time is given in the insets to the plots.
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FIG. 8. (Color online) Similar to Fig. 7, size distributions of
islands calculated at different stages of the fractal fragmentation
(see Fig. 4) for Eb = 4kT , �ε = 0.4kT , and �μ = 2kT . The
corresponding simulation time is given in the insets to the plots.

in Fig. 7, a Gaussian-like distribution of a large number of
droplets arises immediately after the fractal fast fragmentation.
The maximum of this distribution slowly drifts toward the
larger droplet sizes as the smaller islands nucleate [see
Fig. 8(b)]. Remarkably, at the later stages [t = 4 s, Fig. 8(d)]
several maxima arise in the distribution. It is worth noting that
this feature of the droplet size distribution was also observed
in experiment.84

Another useful quantity for the characterization of surface
structures is the ratio between the area and the perimeter of
the structure (S/P ratio).14 This ratio characterizes the island
topology. Thus the S/P ratio for a linear chain of N spherical
particles is equal to

S

P
= d0

4
, (24)

where d0 is the diameter of a particle. Note that the S/P ratio
for a linear chain is always a constant. The S/P ratio for a
compact droplet of the radius Rd is equal to

S

P
= Rd

2
. (25)

It can be easily expressed via the number of particles N in the
droplet:

S

P
= d0

4

√
N. (26)

In this case the S/P ratio increases as
√

N with the growth of
the system size. The S/P ratio for a fractal consisting of N

particles should be larger than in Eq. (24) and smaller than in
Eq. (26). Let us now analyze the time evolution of the average
〈S/P 〉 ratio of the system during the fractal fragmentation.
The 〈S/P 〉 ratio for a system of N islands is defined as

〈S/P 〉 = 1

Nfr

Nfr∑
i=1

Si

Pi

, (27)

where Si and Pi are the area and the perimeter of ith island,
and Nfr is the number of islands in the system. The 〈S/P 〉 ratio
is a useful characteristic for the structure’s morphology, often
used in experiment.14

The dependence of the 〈S/P 〉 ratio on time calculated for
different sets of the model parameters is shown in Figs. 4(c)
and 4(f). Curve 1 in Fig. 4(c) shows the time evolution of the
〈S/P 〉 ratio during the fractal relaxation in the case of the
relatively small binding energy between the particles being
equal to 1kT . The 〈S/P 〉 ratio in this case rapidly decreases
until it reaches the minimum value 0.78 nm, i.e., the S/P ratio,
which is slightly smaller than the value for a dimer of particles
with d0 = 2.5 nm. Figure 4 shows that the 〈S/P 〉 dependencies
to a large extent follow the dependencies calculated for 〈Rmax〉.

The performed analysis provides a lot of useful information
on the dynamical evolution of the system during fragmen-
tation. However, its direct comparison with experimental
measurements is rather difficult because the calculated distri-
butions vary with time, but the experimental measurements are
usually performed for stationary (or quasistationary) systems.
Nevertheless, the comparison with experiment is possible if
the average lifetime Tl of the studied configuration is greater
than the characteristic measurement time Tm:

Tl � Tm. (28)

Here, Tl is defined as the characteristic time period at which an
observable characteristic, e.g., the number of fragments in the
system, changes within the statistical uncertainty, and Tm is
the minimal time period required to perform an experimental
measurement.

An important characteristic of the system’s stability is the
total number of fragments Nfr in the system. At the equilibrium
Nfr fluctuates around the average constant value. Note that Nfr

may have similar behavior in a so-called kinetically trapped
state, or a quasiequilibrium state, which is separated from
the equilibrium state by an energy barrier. The energy barrier
between the kinetically trapped state and the equilibrium state
may be significantly larger than the thermal vibration energy,
therefore the trapped system may spend a noticeable lifetime
in the kinetically trapped state. This lifetime can be sufficient
for experimental measurements and for holding Eq. (28). This
means that the quasiequilibrium value of Nfr may come out
different for different initial distributions of particles on a
surface, demonstrating that different evolution paths may lead
the system to different final quasiequilibrium states. Below we
analyze two examples supporting this hypothesis.

Figure 9 depicts the time evolution of the number of
fragments/nucleation islands Nfr calculated (line 1) for the
fractal having the initial shape as plotted in Fig. 2(a), and
(line 2) during the nucleation process of randomly distributed
particles. The total number of constituent particles in both
cases is equal to 5182. The size of the substrate used in the
simulation is identical in both cases, equal to 650 × 750 nm2.
Figure 9 shows that the interparticle interaction influences
significantly the system dynamics. Thus in the case of the weak
bonding between particles (i.e., Eb = 1kT , �ε = 0.2kT ), see
Fig. 9(a) line 1, the fractal fragments into ∼2320 islands,
i.e., most of the particles in the system are bound in a form
of dimers. Remarkably, at these model parameters particles
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FIG. 9. (Color online) Time evolution of the number of frag-
ments/nucleation islands on a surface, Nfr, during the fractal fragmen-
tation process (line 1) and during the nucleation process of randomly
distributed particles (line 2). The calculations have been performed
for a 650 × 750-nm2 substrate with periodic boundary conditions.
Plots (a) and (b) have been calculated at different values of the model
parameters: (a) Eb = 1kT , �ε = 0.2kT , �μ = 2kT ; (b) Eb = 4kT ,
�ε = 0.4kT , �μ = 2kT . The insets show the morphology of the
system at the end of the simulation.

randomly distributed over a surface nucleate to approximately
the same quasiequilibrium value Nfr [line 2 in Fig. 9(a)].
The insets in Fig. 9(a) illustrate the distribution of particles
at the instant t = 4 s in the case of nucleation and at t = 2.8 s
for the fragmentation. Figure 9(a) shows that the system can
evolve from the very different initial states to the same final
state.

The fragments’ number evolution with time depend on
the interparticle interaction as seen from Fig. 9(b), obtained
at larger Eb, Eb = 4kT , �ε = 0.4kT . The quasiequilibrium
value of Nfr in this case depends on the initial distribution of
particles on a surface. The inset to Fig. 9(b) shows that both
systems have evolved in a group of droplets, whereby the size
of the droplets created from the initial fractal distribution of
particles is larger than the size of the droplets created via the
nucleation.

Figure 9 shows that for the chosen model parameters
the number of fragments in the system becomes constant
or changes slowly with time at sufficiently large t value.
The resulting static or quasistatic distributions of particles
can be compared with experimental observations. In the
cases when the initial distribution of particles on a surface
influences the final morphology of the system means the
system occupies one of the kinetically trapped states. Although
the quasiequilibrium kinetically trapped states do not have
the lowest free energy, they may live for sufficiently long
time to perform experimental measurements of the system
characteristics. The asymptotic behavior of the fragments
distribution with time is well seen in Fig. 10. Figure 10
shows the time evolution of the island size distributions
calculated for the processes depicted in Fig. 9(b). The island
size distribution characterizing the period 0–2 s experiences
significant variation, while the distribution during 2–4 s is
almost static, with only a minor change.

Figure 11 shows the island size distributions and the
corresponding S/P ratio distributions calculated for the fractal
fragmentation of 650 × 750 nm2 with periodic boundary
conditions. The distributions plotted in Figs. 11(a) and 11(b)
have been obtained with the model parameters Eb = 3kT ,

FIG. 10. (Color online) Time evolution of the island size distri-
butions calculated for the nucleation process of randomly distributed
particles (a) and for the fractal fragmentation process (b). The
distributions have been calculated for the same values of the model
parameters as in Fig. 9(b). The initial fractal shape has been chosen
the same as in Fig. 2(a).

�ε = 0.6kT , �μ = 10kT at t = 4 s, i.e., well after the fractal
fragmentation when the system evolves in the almost stationary
equilibrium or quasiequilibrium state. In this case diffusion
of particles along the fractal periphery is the dominating
process. The increased rate of particle peripheral diffusion
leads to the faster island rearrangement, and the formation
of islands of different size, as seen in Fig. 11(b). The insets
in Figs. 11(a) and 11(b) show the results of experimental
measurements obtained for silver fractal fragmentation via

FIG. 11. (Color online) S/P ratio distributions calculated after
the fractal fragmentation with different sets of the model parameters
and the corresponding distributions of island sizes. Distributions (a)
and (b) are calculated with Eb = 3kT , �ε = 0.6Eb, �μ = 10kT ;
(c) and (d) with Eb = 4kT , �ε = 0.4Eb, �μ = 2kT . Insets show
the results of experimental measurements for silver fractal fragments
created via annealing (a) and (b), and by adding oxide impurities to
silver clusters (c) and (d) (Ref. 14).
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annealing at 600 K. The experimentally measured distribution
of the silver cluster island sizes is rather broad, with the most
probable radius of silver islands ∼25 nm. A close value of
23 nm follows from the theoretical analysis. The discrepancy
may arise due to the thinner branches of the fractal used in the
simulations as compared to the ones analyzed in experiment.

Figures 11(c) and 11(d) show the island size distribution
and the corresponding S/P ratio distributions calculated with
Eb = 4kT , �ε = 0.4kT , �μ = 2kT . The results of numerical
calculation are compared with the experimental data shown in
the insets to Figs. 11(c) and 11(d) on silver fractals grown with
the oxidized silver nanoparticles.14 In the experiment the most
abundant radius of the silver cluster islands is 18 nm, being
in good agreement with the results of our calculations as seen
from Fig. 11(d).

Note that the width and the position of the maximum in
the calculated distributions shown in Fig. 11 are rather close
to the experimentally observed ones while the absolute value
of the experimental and theoretical distributions differ quite
significantly. This happens because we analyze the dynamics
of a single fractal, while the experimental measurements deal
with many fractals on a surface.

IV. CONCLUSION

We have performed theoretical analysis of the post-growth
processes occurring in a nanofractal on a surface using a
method that models the internal dynamics of particles in a
fractal and accounts for their diffusion and detachment. We
have demonstrated that these kinetic processes are responsible
for the shape of the islands created on a surface after the
post-growth relaxation.

The suggested theory is general and can be used in
studies of the formation and relaxation processes of different
nanostructures deposited on a surface. The developed model
includes three parameters, which are determined by inter-
atomic interactions in the system and could in principle be
theoretically calculated for each particular case on the basis of
the full atomistic approach for the dynamics of a single particle
on a surface. The model parameters can also be obtained from

experiment and are specific for different types of substrates
and deposited materials. In the present paper we analyze the
fractal dynamics on a surface at various values of the model
parameters within a wide range of values and reveal the main
fragmentation scenarios of the system.

The paper presents a significant advance in the understand-
ing of paths of the fragmentation of deposited nanosystems. It
opens a broad spectrum of questions for further investigations.
Thus it is interesting to explore the link of the model
parameters with the structural properties (both electronic
and geometrical) of the deposited particles and substrates
as well as their thermal, mechanical, electromagnetic, etc.,
properties. Thus, for instance, introduced model parameters
can be determined from the molecular-dynamics simulations
of different diffusion processes occurring on a surface.

In the performed analysis the deposited particles are as-
sumed to be stiff, i.e., without any internal degrees of freedom.
However, the particle diffusion over a surface may change
quite significantly when the particle experiences deformation
or changes its phase state. Accounting for the detail internal
structure and dynamics of particles in the context of their
diffusion is one of the next obvious steps toward better
understanding of the very complex process discussed in this
work.

In the present paper we have studied particle dynamics
in two dimensions. Another obvious important extension of
the model is to investigate the role of the third dimension in
the process of fractal formation and fragmentation. This is
especially interesting to do, because there are many examples
of three-dimensional fractal systems in biology,85,86 where the
dendritic shapes are rather common. Understanding of the
growth evolution and fragmentation of such systems is very
important and may have applications in medicine.
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P. A. Thiel, Proc. Natl. Acad. Sci. 108, 989 (2011).

7J. Evans, P. Thiel, and M. Bartelt, Surf. Sci. Rep. USA 61, 1
(2006).

8V. Solovyeva, K. Keller, and M. Huth, Thin Solid Films 517, 6671
(2009).

9I. Sarkar et al., Appl. Phys. Lett. 97, 111906 (2010).
10V. Solovyeva and M. Huth, Synthetic Metals 161, 976 (2011).
11P. Jensen, Rev. Mod. Phys. 71, 1695 (1999).
12G. P. Zhang, M. Hupalo, M. Li, C. Z. Wang, J. W. Evans, M. C.

Tringides, and K. M. Ho, Phys. Rev. B 82, 165414 (2010).
13P. A. Thiel, M. Shen, D.-J. Liu, and J. W. Evans, J. Phys. Chem. C

113, 5047 (2009).
14A. Lando, N. Kébaı̈li, P. Cahuzac, A. Masson, and C. Bréchignac,
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32R. Q. Hwang, J. Schröder, C. Günther, and R. J. Behm, Phys. Rev.
Lett. 67, 3279 (1991).

33T. A. Witten Jr. and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).
34T. Irisawa, M. Uwaha, and Y. Saito, Europhys. Lett. 30, 139 (1995).
35J. A. Stroscio and D. T. Pierce, Phys. Rev. B 49, 8522 (1994).
36L. Bardotti, M. C. Bartelt, C. J. Jenks, C. R. Stoldt, J.-M. Wen,

C.-M. Zhang, P. A. Thiel, and J. W. Evans, Langmuir 14, 1487
(1998).

37C. R. Stoldt, C. J. Jenks, P. A. Thiel, A. M. Cadilhe, and J. W. Evans,
J. Chem. Phys. 111, 5157 (1999).
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