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Theory of magnetic edge states in chiral graphene nanoribbons
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Using a model Hamiltonian approach including electron-electron interactions, we systematically investigate
the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of
magnetic edge states is an intrinsic feature of smooth graphene nanoribbons with chiral edges, and discover a
number of structure-property relations. Specifically, we study the dependence of magnetic moments and edge-state
energy splittings on the nanoribbon width and chiral angle as well as the role of environmental screening effects.
Our results address a recent experimental observation of signatures of magnetic ordering in chiral graphene
nanoribbons and provide an avenue toward tuning their properties via the structural and environmental degrees
of freedom.
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I. INTRODUCTION

Graphene and derived nanostructures exhibit a large num-
ber of novel electronic properties.1–3 One of such features
is the presence of electronic states localized at the edges of
this two-dimensional (2D) nanomaterial.4 These zero-energy
edge states were predicted to give rise to a novel type of
magnetic ordering5 that may lead to practical carbon-based
magnetic materials.6 Even more appealing is the prospective of
realizing the theoretical proposals of novel spintronic devices
based on graphene.7–11 While evidence for edge states has been
seen experimentally,12,13 no solid proof of edge magnetism in
graphene was presented until now.

A recent scanning-tunneling microscopy/spectroscopy
(STM/STS) study of graphene nanoribbons (GNRs) with
ultrasmooth edges showed the presence of edge states with
characteristic splitting in the dI/dV spectra—an unambigu-
ous indication of magnetic ordering.14 These GNRs, produced
by the chemical unzipping of carbon nanotubes,15 are chiral,
i.e., characterized by low-symmetry orientation of the edges
rather than by high-symmetry zigzag and armchair directions.
While the presence of edge states at the chiral graphene edges
is broadly recognized,4,16–18 theoretical investigations of mag-
netic ordering driven by electron-electron (e-e) interactions
have so far focused only on zigzag edges.

In this paper, we systematically study the electronic struc-
ture of chiral GNRs using a self-consistent model Hamiltonian
approach including e-e interactions. In particular, we investi-
gate GNRs characterized by a broad range of chiralities and
widths as well as address the effects of varying e-e interaction
strength. Our study reveals that spin-polarized edge states are
an intrinsic feature of chiral GNRs, in agreement with the
recent experimental observations. Moreover, we find a number
of structure-property relations and unambiguous signatures
of magnetic ordering of edge states, which opens new
prospectives for their further exploration and for developing
practical spintronic devices based on them.

The present paper is organized as follows. In Sec. II,
we describe computational methods and structural models of
chiral GNRs used in our work. Section III first presents the
results of tight-binding calculations, and then discusses the

results of calculations involving e-e interactions. Section IV
concludes our work.

II. COMPUTATIONAL METHODS

The method employed in our study is based on the mean-
field approximation to the Hubbard Hamiltonian

H = −t
∑

〈i,j〉,σ
[c†iσ cjσ + H.c.]

+U
∑

i

(ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉). (1)

The first term is the nearest-neighbor tight-binding Hamil-
tonian in which ciσ (c†iσ ) annihilates (creates) an electron
with spin σ at site i, 〈i,j 〉 stands for the nearest-neighbor
pairs of atoms, and t ∼ 3 eV.3 The second term accounts
for e-e interactions. The expectation values of the spin-
resolved density niσ = c

†
iσ ciσ depend on the eigenvectors

of H. Thus a self-consistent field procedure is used for
solving the problem. We assume the magnitude of the on-site
Coulomb repulsion parameter is comparable to the magnitude
of hopping integral t (U/t ∼ 1). Our choice of U/t is
justified by the experimental studies of neutral soliton states
in trans-polyacetylene–a one-dimensional (1D) sp2 carbon
system equivalent to a zigzag GNR of the smallest possible
width—from which U ≈ 3.0 eV has been obtained.19,20 The
assumed magnitude of U/t is further corroborated by the
values of U deduced from first-principles calculations based
on density functional theory.21–23 However, we point out that
this effective parameter may incorporate environmental factors
such as the enhancement of screening due to the proximity of
dielectric or metallic substrate.14 For this reason, we also study
the dependence of results on the magnitude of on-site Coulomb
repulsion by considering U/t = 0.5,1.0,1.5. The mean-field
approximation was shown to be accurate for the considered
range of magnitudes of U/t .24,25

Two parameters determine the structure of smooth GNRs:
(i) the crystallographic direction of the edge and (ii) the width.
In general, the direction of the nanoribbon’s edge is defined
by some translation vector (n,m) of the graphene lattice. For
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FIG. 1. (Color online) (a) Atomic structure of a model of chiral
graphene nanoribbon. The structure shown corresponds to θ = 10.9◦

chiral GNR characterized by edge repeat vector (4,1) and width w =
6. Zigzag and armchair units of the edge are indicated. (b) Chirality
angles θ of the considered (n + 1,1) and (n + 1,n) series of chiral
GNRs.

high-symmetry zigzag and armchair edges, these vectors are
(1,0) and (1,1), respectively. Since graphene edges specified
by (n,m) and (m,n) are structurally equivalent, we present here
results for edges with n > m. The edge of (n,m) nanoribbon
is a repeating structure composed of n − m zigzag units and
m armchair units as illustrated for the particular case of a
(4,1) GNR in Fig. 1(a). In our work, we have not considered
possible reconstructions of graphene edges and assume that
the undercoordinated edge atoms are terminated by simple
functional groups with electronegativity similar to the one of
carbon (e.g., hydrogen atoms). The length of repeat vector
a = (n,m) = a0

√
n2 + nm + m2, where a0 = 0.246 nm is the

lattice constant of graphene. Alternatively, chirality can be
described by the chirality angle

θ = arcsin

√
3

4

(
m2

n2 + nm + m2

)
. (2)

Zigzag and armchair edges are characterized by θ = 0◦ and
θ = 30◦, respectively, while for chiral edges 0◦ < θ < 30◦.
We consider chiral GNRs defined by edge translational vectors
(n + 1,1) and (n,n + 1) (n � 1). These two series cover the
whole range of chirality angles θ and converge to θ = 0◦
and 30◦, respectively, with increasing n [see Fig. 1(b)]. The
configurations of chiral GNRs considered in this study cover

4.7◦ < θ < 25.3◦. The width W = √
3wa0 cos θ of a GNR

is defined by vector (−w,2w) pointing along the armchair
direction as shown in Fig. 1(a).

III. DISCUSSION OF RESULTS

A. Tight-binding model results

We start our discussion by considering the evolution
of tight-binding band structures of GNRs (neglecting e-e
interactions, U/t = 0) upon the change of chirality from
zigzag (θ = 0◦) to armchair (θ = 30◦) via the series of
intermediate chiral configurations at fixed nanoribbon width
(w = 12). High-symmetry zigzag nanoribbon [see Fig. 2, left
panel] exhibits a flat band at the Fermi level (E = 0), which
spans one-third of the 1D Brillouin zone (BZ), that is, the
corresponding density of edge states per edge length per spin
ρ(θ = 0◦) = 1/(3a0). Armchair GNRs [see Fig. 2, right panel]
are either metals or semiconductors with no electronic states
localized at the edges. This result can be rationalized within
the infinite-width picture by considering the 2D band structure
of graphene projected onto the 1D BZ of periodic edge.26 In
the case of an armchair GNR, both Dirac points (K and K ′)
of graphene’s band structure are projected onto the � point
of 1D BZ. However, for a zigzag GNR, points K and K ′ are
projected onto k = 2π/(3a) and k = −2π/(3a), respectively,
with a zero-energy flat band connecting these two points [see
Fig. 2, insets]. The band structures of chiral GNRs in the
infinite-width limit can be obtained by continuous rotation
of the band structure of graphene which leads to the known
result16:

ρ(θ ) = 2

3a0
cos

(
θ + π

3

)
. (3)

That is, in the limit of large width, only armchair GNRs show
no edge states. The density of edge states is largest for zigzag
nanoribbons and shows almost linear dependence on θ . The
tight-binding band structures of w = 12 chiral GNRs (see
Fig. 2; the x axis scales correspond to the 1D BZ dimensions)
confirm this picture. Two important comments should be made:
(i) in finite-width GNRs with edge orientation close to the
armchair direction, zero-energy edge states are partially or
even completely suppressed, and (ii) in GNRs with edge
orientation close to the zigzag direction, the flat edge-state

π

π

π

π

FIG. 2. (Color online) Evolution of the tight-binding band structures (no e-e interactions) of graphene nanoribbons (w = 12) upon the
change of chirality from zigzag (θ = 0◦) to armchair (θ = 30◦) via the series of intermediate chiral configurations. The scales of the plots
account for the varying Brillouin-zone dimensions. The insets schematically illustrate the projection of points K and K ′ of the 2D BZ of ideal
graphene onto the 1D band structures of zigzag and armchair GNRs.
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band spans the whole 1D BZ and becomes multiple degenerate
due to band folding.

B. Mean-field Hubbard model results

We now discuss the effects of e-e interactions on the
electronic spectra of chiral GNRs. Figure 3(a) shows the band
structure and the density of states (DOS) plot for a zigzag
GNR (w = 12) obtained within the mean-field Hubbard model
(U/t = 1) compared to the tight-binding results (U/t = 0). In
the presence of e-e interactions, the electronic ground state of
the zigzag GNR exhibits an interesting magnetic ordering:
ferromagnetic (FM) along the edges and antiferromagnetic
(AFM) across the nanoribbon.5 The magnetic moment per
edge unit length M = 0.313 μB/a0. Spin-polarization lifts
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FIG. 3. (Color online) (a) Effects of the electron-electron inter-
actions on the band structure (left panel) and the density of states
(right panel) of a zigzag GNR (w = 12). Dashed and solid curves
correspond to the tight-binding model (U/t = 0) and the mean-field
Hubbard model (U/t = 1), respectively. (b) and (c) Respective band
structure and density-of-states plots for (2,1) and (6,1) chiral GNRs.
(d) Spin-density distribution in (6,1) chiral GNR (w = 4). Circle
areas correspond to the local magnetic moments from the mean-field
Hubbard model solution obtained at U/t = 1.

the degeneracy of edge states and opens an electronic band
gap �0. While the tight-binding DOS has only one van Hove
singularity related to the presence of 1D edge states at E = 0,
the mean-field Hubbard model solution shows two pairs of
peaks split by �0 and �1. We note that Hamiltonian (1)
respects electron-hole symmetry. The presence of band gap �0

is related to the AFM correlation between the opposite edges,
while the larger splitting �1 is due to the FM correlation
along one single edge of most strongly localized electronic
states at k = π/a.7,28,29 Thus the presence of band gap
�0 and splitting �1 constitute independent signatures of
magnetic ordering across the nanoribbon and along its edge.
The rest of electronic spectrum (|E| > 0.18t) is negligibly
affected by the Hubbard term. Van Hove singularities at
|E| ≈ 0.2t and higher energies correspond to the bulklike
states subjected to quantum confinement in 1D GNRs of
the given width. The mean-field Hubbard model electronic
spectra of chiral GNRs show all the features characteristic
of zigzag GNRs provided the ground state is spin polarized.
Both splittings, especially �1, are reduced in the case of
(2,1) GNR (θ = 19.1◦) due to the smaller magnetic moment
M = 0.096 μB/a0 [see Fig. 3(b)]. Nanoribbons with chirality
close to θ = 0◦ show additional pairs of van Hove singularities
due to splittings of the multiple degenerate edge-state bands
at k = 0 and k = π/a [see Fig. 3(c) for θ = 7.6◦ (6,1)
GNR]. Figure 3(d) shows the distribution of spin density in

FIG. 4. (Color online) (a) Magnetic moment per edge unit length
M as a function of chirality angle θ for three different nanoribbon
widths w from the mean-field Hubbard model (U/t = 1) calculations.
The dotted line shows magnetic moments in the limit of infinite
width [see Eq. (3)]. (b) Electronic band gap �0 and maximum energy
splitting �1 as a function of θ for different values of w (mean-
field Hubbard model, U/t = 1). Crosses indicate the tight-binding
band gaps �g. The values of (c) M and (d) �0 and �1 obtained
using the mean-field Hubbard model at different values of U/t and
w = 6.
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FIG. 5. (Color online) Variation of the local density of states
(LDOS) (a) across the (6,1) chiral GNR (x axis is oriented along the
edge, y = 0 corresponds to the outermost edge atom) and (b) along
its edge obtained using the mean-field Hubbard model (U/t = 1). (c)
and (d) Log-linear plots of LDOS at the energies indicated in panel
(a) across the (6,1) chiral GNR and along its edge, respectively. The
dashed lines correspond to the tight-binding LDOS at E = 0. The
inset in panel (d) superimposes the edge structure with the plot.

(6,1) GNR (w = 4) obtained using the mean-field Hubbard
model at U/t = 1. Similarly to the case of zigzag GNRs,
local magnetic moments are mostly localized on the edge
atoms. However, the illustration also reveals the modulation
of spin-density distribution along the edge. The magnetic
moments are mostly localized on the zigzag segments of chiral
edge while spin density is largely suppressed at the armchair
segments.

Figure 4 summarizes the calculated magnetic moments
and energy splittings for GNRs of various chiralities and
widths, and different magnitudes of U/t . At U/t = 1, spin-
polarized ground states of few-nm-wide GNRs span almost
full range of chiralities [see Fig. 4(a)]. The magnetic moments
per unit length M follow closely the dotted curve that
corresponds to the complete spin-polarization of edge states in
the infinite-width limit (3), but appear to be negatively shifted
by nearly constant amounts that are moderately dependent
on width. Splitting �1 shows a similar dependence on θ

and it is independent of w [see Fig. 4(b)]. On the contrary,
the magnitude of �0 is largely insensitive to the variations
of θ in broad ranges of this parameter, but shows a clear
dependence on w analogous to the case of zigzag GNRs.27

This is in good agreement with the STM/STS data obtained
for several GNRs of different chiralities and widths.14 As the
chiral angle θ approaches 30◦, magnetic moments vanish and
the tight-binding band gaps �g quickly rise reaching their
maximum values for the corresponding armchair GNRs.30

Figure 4(c) reveals a moderate dependence of M(θ ) on the
strength of e-e interactions while the magnitudes of �0 and
�1 are both approximately proportional to U/t [see Fig. 4(d)].
Such a behavior can be understood by the fact that even weak
e-e interactions are able to trigger a complete spin polarization
of the zero-energy edge states thus leading to a direct relation
between the magnetic moments and the density of edge states.
However, the magnitudes of splittings �0 and �1 are also
related to the magnitude of the spin-dependent potential, which
depends on U/t .

Finally, we turn our attention to the spatial variation of
electronic spectra of magnetic graphene edges in relation to the
experimental observations.14 As a case study, we investigate
the mean-field Hubbard model (U/t = 1) local density of
states (LDOS) evaluated across the (6,1) chiral GNR (w = 12,
W = 5 nm) [see Fig. 5(a)] and along its edge [see Fig. 5(b)].
We find that both pairs of contributions to the total DOS due
to the edge states seen in Fig. 3(c) are localized at the edge.
However, the higher-energy LDOS peak at E = 0.1t decays
very fast being confined within the 1-nm-wide edge region
while the lower-energy feature at E = 0.035t penetrates deep
into the middle of GNR. The series of peaks at E � 0.2t

repeated in energy by ≈0.1t correspond to the bulklike
graphene states subjected to quantum confinement. The total
density of edge states from the tight-binding calculations
shows pronounced oscillations along the GNR edge [dashed
curve in Fig. 5(d)]. The oscillation period corresponds to the
edge periodicity a = 1.6 nm. The E = 0.1t LDOS peak from
the mean-field Hubbard model follows this trend. In contrast,
the lower-energy peak (E = 0.035t) shows weak variations of
LDOS. This behavior was found to be generic to all studied
chiral and zigzag magnetic GNRs.

IV. CONCLUSIONS

To summarize, our model Hamiltonian investigation
showed that the presence of magnetic edge states is an intrinsic
feature of smooth graphene nanoribbons with chiral edges. The
study also revealed a number of structure-property relations
such as the dependence of magnetic moments and edge-state
energy splittings on the nanoribbon width and chiral angle. The
described relations can serve as spectroscopic signatures of
edge-state magnetism in graphene nanoribbons and provide an
avenue toward controlling magnetic and electronic properties
of these nanostructures.
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