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Lattice dynamics and thermal properties of phononic semiconductors
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An enhanced adiabatic bond charge model has been employed to study the lattice dynamics of phononic
metamaterials based on group-IV and group–III-V semiconductors. Using the full phonon spectrum and a
realistic Brillouin zone summation method, we have developed theories of phonon scattering rates from interface
formation and anharmonicity. Numerical results for specific-heat capacity and phonon conductivity of thin Si/Ge
and GaAs/AlAs superlattices are then presented and compared with available experimental measurements. The
roles of various phonon scattering mechanisms in controlling the thermal conductivity in different temperature
ranges have been quantified.
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I. INTRODUCTION

Nanostructured semiconductors show several fascinating
properties such as exceptionally low thermal conductivity,
low or negative phonon group velocity, and stop bands in the
phonon spectra. Such structures are of interest as, in such
systems, it is possible to engineer properties not inherent
to either of the two constituent materials, rendering them
very useful in future technological applications. These are
often referred to as metamaterials. Phononic crystals are an
important subclass of metamaterial1 that exhibit novel thermal
properties. These represent an example of acoustic metamate-
rials and are based upon periodic arrangement of two or more
different materials with contrasting vibrational properties, and
have been fabricated as solid-air2 and solid-fluid3 composites
on the scale of μm-mm. Technological advances have led
to the fabrication of nanophononic solid-solid composites.4

Such structures exhibit ultralow thermal conductivity along
growth direction when compared with either of the two
bulk constituents. For Si/Ge superlattices, there is a drop in
thermal conductivity of more than a factor of 100 at room
temperature and below.5 Engineering a metamaterial with a
very low thermal conductivity has exciting applications for
thermoelectrics.

What governs the low thermal conductivity of such materi-
als is still being investigated. For superlattices, a considerable
amount of work has been previously carried out. Experimental
measurements show that the thermal conductivity is clearly
dependent on the period of the superlattice, its constituent
materials, and the temperature. A thorough review of these
points was presented by Cahill.5 Several theoretical papers
have attempted to provide an explanation, but no consensus
has been reached. In our previous paper, we have presented
a further brief review of the various existing theoretical
discussions.6

To understand the low thermal conductivity of
nanophononic composite systems, we first refer to the simple
kinetic model for thermal conductivity κ:

κ = 1
3Cvv�, (1)

where Cv is the phonon heat capacity, v is the average phonon
velocity, and � is the average lifetime of the phonons in the
system. To understand the thermal properties of nanopatterned
acoustic metamaterials, one has to understand each of these

three terms. Each of these terms can be calculated from
the phonon dispersion relations in the system. For phonon
dispersion relations, the traditional theory in metamaterials
treats these systems as elastic media and deals with the
propagation of only longitudinal acoustic (LA) modes.4,7,8

Similarly, traditional theories of phonon lifetime and specific-
heat capacity are based on the continuum theory9–13 and fail
to account for the atomic behavior or confinement effects.
Most importantly, when explaining the thermal conductivity,
almost all approaches only focus on one of the terms
presented in Eq. (1) without considering the effect of the other
factors.

In this paper, we present a comprehensive study of each
of the terms presented in Eq. (1) and examine how they
help explain the low thermal conductivity of semiconductor
superlattices. In Sec. II, we have employed an extended adia-
batic bond charge model (EBCM) to present lattice dynamical
results of different types of nanostructured metamaterials,
based on tetrahedrally bonded semiconductors, in the form
of superlattices and embedded nanowires. We further discuss
the effects of the structuring of these materials on the group
velocity of the phonon modes. In Sec. III, we present, using the
full phonon spectrum (i.e., including acoustic as well as optical
phonons of both transverse and longitudinal polarizations)
an atomic-scale theory of phonon scattering to discuss the
lifetime term. In this paper, we discuss the effect the formation
of acoustic metamaterials will have on phonon scattering
due to interfaces and on anharmonic phonon scattering rates
(including both normal and umklapp processes). In Sec. IV, we
discuss the specific-heat capacity of several superlattice (SL)
systems, discussing the effects of periodicity and composition
of unit cells. We then present in Sec. V a comprehensive
discussion of the thermal conductivity of superlattices. The
theory has been applied to quantitatively explain experimen-
tally measured results for the thermal conductivity, and its
variation with period and temperature, of metamaterials in the
form of Si/Ge and GaAs/AlAs superlattices.

II. LATTICE DYNAMICS

The adiabatic bond charge model (BCM), originally de-
veloped by Weber,14 is one of the most successful and
physically appealing phenomenological atomic-scale lattice
dynamical theories for semiconductors. It has been applied
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to tetrahedrally bonded semiconductors and their surfaces
with remarkable ease.15 The quality of BCM results has
been favorably discussed for bulk,16 surfaces,17 and alloys.18

We have also presented an enhanced version of this model,
the EBCM or enhanced bond charge model, which has
successfully been applied to nanostructured semiconductor
structures.18 In the BCM, the valence charge density is
considered as point charges, called bond charges (BCs),
located along the bonds between nearest-neighbor atoms. The
location of a BC is chosen according to the polarity of the bond
under consideration. For a semiconductor of ionicity p, a BC
is located at a distance p% from the center of the bond toward
the more electronegative atomic species. The BCs are assumed
to have zero mass and are allowed to follow ions adiabatically.
Lattice dynamical equations of motion for the ions and the
BCs are set up by considering three types of interaction:
(i) Coulomb interaction between all particles within the
structure (ion-ion, ion-BC, BC-BC), which is evaluated using
the Ewald summation technique; (ii) short-range central force
interaction acting between nearest neighbors (ion-ion, ion-BC,
BC-BC); and (iii) a rotationally invariant Keating-type bond
bending interaction,19 depending on the BC ion–BC angle.
Such an approach requires four (six) parameters to model the
phonon dispersion relations of IV-IV (III-V) bulk semiconduc-
tors. In the EBCM, the parameters for the individual systems
studied here are taken from previous works.15 Interaction
parameters required for dealing with bonds at interfaces in
composite structures are taken as appropriately weighted
average values for the two constituent materials. While strain
effects may lead to some changes in phonon frequencies, the
overall effect is not expected to be significant, especially as
the modeled parameters produce phonon dispersion results
for SixGe1-x alloys in good agreement with experimental
measurements.20

We have successfully applied the EBCM to study the lattice
dynamics of several different systems, including bulk semicon-
ductors, semiconductor surfaces, nanostructures, and acoustic
metamaterials.18 In particular, for the results presented here,
we note good agreement with experimental measurements for
the location and size of the longitudinal acoustic and transverse
acoustic (LA-TA) gaps for Si(4 nm)/Si0.4Ge0.6(8 nm)[001]
(Ref. 4) and GaAs(23)/AlAs(9)[001] (Ref. 21) superlattices
(see Ref. 18). A further validation of the presently adopted
EBCM is established by noting very good agreement between

our results and previously understood trends for the highest
optical phonon mode in superlattices of various periods.22,23

Phonon frequencies in solids typically range between 0
and 50 THz, with acoustic modes not exceeding 30 THz
or so. For considerations of phonon generation, propaga-
tion, and detection, it is useful to consider the following
frequency categories: sonic range (below KHz), ultrasonic
range (KHz–MHz), hypersonic range (GHz–THz), and optical
range (several THz). The results will be discussed with two
specific features in mind: confinement of modes and frequency
gaps in dispersion curves. In particular, we will investigate
polarization gaps and full gaps arising from the formation of
the metamaterial structure. A polarization gap will be taken as
the frequency gap in the dispersion curve for a phonon branch
of a particular polarization (transverse or longitudinal) branch.
A full gap will indicate a gap common to all polarizations. It
will be helpful to further classify a full gap as one dimensional,
two dimensional, or three dimensional when it exists along
one, two, or three unrelated directions in the Brillouin zone for
the metamaterial. We may also refer to a structure as n-D
phononic if the full gap is n dimensional. It is important
to note, though, that all the systems discussed here are full
three-dimensional materials and are not confined systems
(such as isolated nanowires or nanodots).

A. Superlattices

We will consider superlattices A(m)/B(n) grown along the
[001] direction with each repeat period containing m atomic
layers of material A and n atomic layers of material B. Panels
(a) and (b) in Fig. 1 show the phonon dispersion curves
for bulk Si, bulk Ge, the Si(19)/Ge(5) superlattice, and the
Si(72)/Ge(30) superlattice. Both these superlattices have been
fabricated by Lee et al.,24 who have quoted their periods as 33
and 140 Å, respectively. A comparison of results for the super-
lattices and bulk materials clearly reveals that the superlattice
dispersion relations are characterized by zone-folded branches,
shallow dispersive acoustic branches, flat (dispersionless)
optical branches, and polarization gaps at the zone center
and the zone edge. The existence of two clear gaps has been
highlighted (in blue color) for the Si(72)/Ge(30) superlattice
in a narrow acoustic frequency range 18–38 cm−1. For a better
discussion of frequency gaps, we present in Fig. 2 the phonon
dispersion curves for the thin SLs Si(2)/Ge(2), Si(2)/Sn(2),
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FIG. 1. (Color online) Phonon dispersion curves for (a) bulk Si and Ge semiconductors, (b) Si(19)/Ge(5)[001] superlattice, and
(c) Si(72)/Ge(30)[001] superlattice. For clarity, for the superlattices we have highlighted the three acoustic branches in red and the folded
acoustic branches in blue, and the highest optical branch as a black dashed line.
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FIG. 2. (Color online) Phonon dispersion curves for the Si(2)/Sn(2), Ge(2)/Sn(2), GaAs(2)/AlAs(2), and AlN(2)/InN(2) superlattices
with [001] growth direction. For all systems, the results are shown only up to 5 THz (i.e., within the acoustic range) and the lowest acoustic
gaps (TA1 and LA1) are indicated.

Ge(2)/Sn(2), GaAs(2)/AlAs(2), and AlN(2)/InN(2) along the
growth direction [001].

By symmetry, transverse branches along the [001] direction
are twofold degenerate in bulk cubic semiconductors as well
as in superlattices. The superlattice formation opens gaps
in the TA and LA branches. Odd- and even-numbered gaps
appear at the zone edge and zone center, respectively. We can
denote these polarization gaps as TAj and LAj , with j taking
appropriate odd and even numbers. The lowest polarization
gaps, TA1 and LA1, have been highlighted in Fig. 2. For all the
A(2)/B(2) superlattices in Fig. 2, the lowest longitudinal gap
LA1 coincides with a transverse gap (a gap higher than TA1 but
lying within the acoustic-optical region). This clearly indicates
that all these ultrathin superlattices are one-dimensional (1D)
phononic systems, with a clear full phonon frequency gap in
the [001] direction. For Si(2)/Ge(2) and GaAs(2)/AlAs(2), the
clear gap occurs at 2.64 and 2.34 THz, respectively. The size of
polarization gaps, as well as of the clear full gap, increases with
increase in mismatch between the two constituent materials of
a superlattice, both in terms of force constants and masses.
The largest contributing factor for increase in the gap size is

the mass difference between the materials A and B. This can
be clearly seen by comparing the results for the three IV/IV
superlattices and noting that, while the force constant differ-
ence between Si, Ge, and Sn is smaller than 15%, the mass
ratios are M(Si) : M(Ge) : M(Sn) = 1.0 : 2.7 : 4.2. It has also
been shown in our previous work18 that the gap locations vary
inversely with the superlattice period. Consistent with this,
Fig. 1 shows clearly that Si(19)/Ge(5) shows a frequency gap
at a much lower frequency than that for Si(2)/Ge(2). It is also
worth noting that this gap is smaller than in the Si(2)/Ge(2)
case. It should be pointed out that, for all the systems studied
here, no polarization gaps are found for the phonon wave vector
pointing orthogonal to the growth direction. This, therefore,
clarifies that these superlattices are 1D phononic systems. It is
also readily apparent from Figs. 1 and 2 that the formation of
the gaps reduces the group velocity of phonon modes in the
direction of growth. In the plane perpendicular to the growth
direction (which we will call the layer plane), very little
group-velocity reduction is observed for all phonon modes.
As one changes direction from the layer plane to the growth
direction, the phonon mode velocities are slowly reduced.
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FIG. 3. (Color online) Phonon density of states for the
GaAs(2)/AlAs(2) superlattice, GaAs(3)/AlAs(3) superlattice, GaAs
bulk, and AlAs bulk.

The branch-folding and gap-opening effects upon super-
lattice formation create additional van Hove singularities in
the phonon density of states not present in either constituent
material. This can be appreciated from an inspection of
Fig. 3, in which we present the density of states for the
(GaAs)2(AlAs)2[001] superlattice, the (GaAs)3(AlAs)3[001]
superlattice, and the GaAs and AlAs bulk. Some of the peaks
due to the superlattice formation occur close to frequencies
0.5, 1, 4, 4.5, 5.5, 7, 10.5, and 11 THz. These new singularities
correlate with the near zero-group velocities of the phonon
modes at the edge of each polarization gap.

B. Embedded nanowires

As a second type of acoustic metamaterials, we consider
Ge and Sn nanowires embedded in Si host. Layers of Si/Sn
(Ref. 25) and Ge/Sn (Ref. 26) have successfully been grown
using modern growth techniques. This suggests that embedded
Ge/Si and Sn/Si nanowire structures are realizable in practice.
In this work, we considered Ge and Sn nanowires along [001]
and of cross-section area 0.27 nm × 0.27 nm embedded in a

cubic Si host of period 5.43 nm. The phonon dispersion results
for these systems are shown in Fig. 4.

The Ge nanowire exhibits a clear gap centered around 0.55
THz along the [110] symmetry direction, and is a 1D phononic
system. The Sn nanowire is also a 1D phononic system with
a clear gap at 0.5 THz but, unlike in the previous system,
this gap extends across nearly the entire x-y plane, resulting
in an almost two-dimensional (2D) phononic system with a
thin region of transmission in the [100] direction. We have
not incorporated atomic relaxation for any of the systems
considered in this work. Consideration of this effect will be
quite pronounced for the Sn nanowire system, as the atomic
sizes of Sn and Si are quite different. We anticipate, due to this,
a clear gap opening at the zone edge along the [100] direction,
thus making the Sn nanowire a 2D phononic system. Another
important result obtained is related to the location and size of
the gap at the zone edge along [110]. The gap location for the
Sn nanowire is at a lower frequency, and the size of the gap is
much bigger, than that for the Ge nanowire. These variations
are mainly due to the higher ghost (host) mass ratio of 4.23 for
Sn/Si than 2.58 for Ge/Si and is an expected general result
for acoustic metamaterials.

III. PHONON SCATTERING RATES

The main sources of phonon scattering in undoped bulk
semiconductors are sample size (boundary effects), impurities,
defects, and anharmonicity. Growth of nanostructured systems
consisting of two or more different materials leads to at least
two additional sources of phonon scattering: diffusion or mix-
ing of atoms across interfaces and strain-induced dislocations
or missing bonds at interfaces. Application of Fermi’s golden
rule is the usual procedure to estimate the lifetime for different
phonon modes from these scattering mechanisms. Expressions
for phonon relaxation rates in bulk materials due to boundaries,
defects, and dopant-related carriers have been derived and are
well documented.27,28 Although detailed full-scale expressions
for anharmonic relaxation rates due to three-phonon normal
and umklapp processes, based upon considerations of the
isotropic continuum model, are also available,28 these have
not been widely employed in calculations of lattice thermal
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FIG. 4. (Color online) Phonon dispersion curves for (a) a Ge nanowire embedded in Si host and (b) a Sn nanowire embedded in Si host.
Both nanowires extend along [001], have cross-section area 0.27 nm × 0.27 nm, and are embedded in a cubic Si host of period 5.43 nm.
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conductivity. Most researchers have ignored the contribution
from three-phonon normal (momentum-conserving) processes
and have employed grossly oversimplified expressions, con-
taining adjustable parameters, for umklapp (momentum-
nonconserving) scattering rate (see, e.g., Ref. 29).

In this paper, we present an atomic-scale theory of phonon
scattering rates due to mass defects, interface mixing, interface
dislocation (in the form of missing atomic bonds), and
anharmonic normal and umklapp processes in A(m)/B(n)
superlattices. We consider the total number of atoms in the
system as N + M = N0(m + n), where N0 represents the
number of unit cells in the system. Also, for the ith atom,
Mi and vi are the mass and velocity, respectively, and for the
ith atomic bond, ui and Ki are the relative displacements and
spring constants between atoms, respectively.

A. Scattering by mass defect

The scattering rate of a phonon mode qs (of wave vector
q and polarization s) due to isotopic mass defects within each
of the A and B materials of the superlattice A(m)/B(n) is
expressed, following the traditional theory,30 as

τ−1
MD[ω(qs)] = �π

6N0
ω2(qs)g[ω(qs)], (2)

where g[ω(qs)] is the density of states for the mode and � is
the isotopic mass parameter

� = Lf �(A) + (1 − Lf )�(B), (3)

with Lf = m/(n + m) as the fractional size of the constituent
material A. We express the isotopic mass parameter �(i) for
the ith material as

�(i) =
∑

j

fi,j fi,k(Mi,j + Mi,k − 2M̄i)

(2M̄i)2
, (4)

with fi,j being the fraction of the j th isotope in the ith material
and M̄i as the average atomic mass.

B. Scattering by mass mixing across interfaces

We express the perturbed Hamiltonian of the A(m)/B(n)
superlattice system with interface mass mixing (IMS) as

H ′(IMS) = 1

2

N∑
i=1

(Mi |vi|2 − MA|vA|2)

+ 1

2

N+M∑
i=N+1

(Mi |vi|2 − MB |vB|2) (5)

at the interfaces. From the application of Fermi’s golden rule,
we derive the following expression6 for the scattering rate of
a phonon qs:

τ−1
IMS(qs) = απ

2N0(n + m)2

∫
dω(q ′s ′)g[ω(q ′s ′)]ω(qs)ω(q ′s ′)

× n̄(q ′s ′) + 1

n̄(qs) + 1
δ[ω(qs) − ω(q ′s ′)]

×
[(

1 − eAe′
A

eBe′
B

)2

+
(

1 − eBe′
B

eAe′
A

)2]
, (6)

where α is regarded as a parameter related to the amount of
mixing within three atomic layers on each side of the interface,
n̄qs is the Bose-Einstein distribution of phonon mode ω(qs)
at temperature T , and eB/eA is the ratio of the amplitudes of
eigenvectors of the mode ω(qs) in materials B and A.

We employ the diatomic linear chain model to express the
amplitude ratio eB/eA along the superlattice growth direction
as

eB

eA

=
[

1
M0

− 

(

1
M

)]
cos(lzqz){(

1
M0

)2
cos2(lzqz) + [



(

1
M

)]
2 sin2(lzqz)

} 1
2 − 


(
1
M

) ,

(7)
with M0 = 1

2 (1/MA + 1/MB), 
 (1/M) = 1
2 (1/MA −

1/MB), and lz as the period along the superlattice growth
direction. The ratio of amplitudes increases in magnitude with
increasing wave vector qz.

C. Scattering by dislocation at interfaces

The phonon scattering rate by dislocations has traditionally
been derived by regarding the crystal as an elastic continuum
(see, e.g., Ref. 27). Here, we use the atomic-scale terminology
and consider a dislocation as a series of randomly missing
bonds located near the interface, and write the perturbed
Hamiltonian as

H ′(IDS) = 1

2

N ′∑
i=1

(K0|ui|2 − KA|uA|2)

+ 1

2

N ′+M ′∑
i=N ′+1

(K0|ui|2 − KB |uB|2), (8)

where KA (KB) represents the interatomic spring constant in
the layer A (B), N ′ + M ′ is the total number of atomic bonds,
and K0 represents a spring constant in the dislocation region
(i.e., has a value equal to zero, or close to zero, for missing
or broken bonds). We further assume, for the present purpose,
similar spring constants in the layers A and B (i.e., KA ≈ KB).

Following the procedure for IMS, we have derived the
following expression6 for phonon relaxation due to interface
dislocation scattering (IDS):

τ−1
IDS(qs) = πω4

0

4N0

α′

(n + m)2

∫
dω(q ′s ′)

g[ω(q ′s ′)]
ω(qs)ω(q ′s ′)

× n̄(q ′s ′) + 1

n̄(qs) + 1
δ[ω(qs) − ω(q ′s ′)]

×
[

1 +
(

eAe′
A

eBe′
B

)2

+ 1 +
(

eBe′
B

eAe′
A

)2]
, (9)

where α′ is a measure of dislocation concentration, ω0 can be
approximated as the highest zone-center frequency, and the
rest of the symbols have their usual meaning. The expression
for the amplitude ratio eB/eA is already given in Eq. (7).

D. Anharmonic scattering

A formal atomic-scale expression for cubic anharmonicity
in crystal potential V3 is available in the literature.27,28
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Upon this basis, including phonon oscillation amplitude terms explicitly, we express V3 as

V3 = 1

3!

∑
qs,q ′s ′,q ′′s ′′

(a†
qs − a−qs)(a

†
q ′s ′ − a−q ′s ′ )(a†

q ′′s ′′ − a−q ′′s ′′ )�(qs,q ′s ′,q ′′s ′′)δG,q+q ′+q ′′ , (10)

where

�(qs,q ′s ′,q ′′s ′′) = i√
N0�

∑
bb′b′′
αβγ

(
h̄3

8MbMb′Mb′′ω(qs)ω(q ′s ′)ω(q ′′s ′′)

)1/2

�αβγ (qb,q ′b′,q ′′b′′)eα(b|qs)eβ(b′|q ′s ′)eγ (b′′|q ′′s ′′),

(11)

with � representing the unit-cell volume and e(b|qs), etc., representing the polarization vectors. The Fourier components of the
third-order interatomic force constant tensor �(qb,q ′b′,q ′′b′′) can be expressed as

�(qb,q ′b′,q ′′,b′′) =
∑
h′,h′′

�(0b,h′b′,h′′b′′)eiq ′ ·h′
eiq ′′ ·h′′

, (12)

where �(0b,h′b′,h′′b′′) is the third-order interatomic force constant tensor, and h′ and h′′ are lattice translation vectors for the
superlattice structure.

Following the notation in Ref. 28, we express the phonon relaxation rate due to three-phonon processes as

τ−1(qs) = πh̄ρ2
avγ

2

N0�c̄2

∑
q ′s ′,q ′′s ′′,G

ω(qs)ω(q ′s ′)ω(q ′′s ′′)DM(qs,q ′s ′,q ′′s ′′)

×
{ [

n̄(q ′s ′)[n̄(q ′′s ′′) + 1]

n̄(qs) + 1
δ[ω(qs) + ω(q ′s ′) − ω(q ′′s ′′)]δq+q ′,q ′′+G

]

+
[

1

2

n̄(q ′s ′)n̄(q ′′s ′′)
n̄(qs)

δ[ω(qs) − ω(q ′s ′) − ω(q ′′s ′′)]δq+G,q ′+q ′′

] }
, (13)

where ρav is the average mass density, c̄ is the average acoustic velocity, γ is the Grüneisen constant for the joint system, G
is a reciprocal lattice vector, and DM(q,q ′,q ′′) is the dual mass term (DMT) arising from the presence of two materials in the
superlattice.31 The DMT can be expressed as

DM(q,q′,q′′) = 1

64

⎧⎨
⎩

1

2ρ
3
2
A

⎡
⎣1 + ρ

1
2
A

ρ
1
2
B

(
eB

eA

+ e′
B

e′
A

+ e′′
B

e′′
A

)
+ ρA

ρB

(
eBe′

B

eAe′
A

+ e′
Be′′

B

e′
Ae′′

A

+ eBe′′
B

eAe′′
A

)
+ ρ

3
2
A

ρ
3
2
B

(
eBe′
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, (14)

where ρA and ρB are the mass densities of the materials A and B, respectively. Once again, we use Eq. (7) to express the ratio of
the amplitudes of oscillation eB/eA along the superlattice growth direction using the diatomic chain model.

E. Numerical procedure

For numerical calculations of the phonon relaxation rates
from the various scattering processes discussed in the previous
sections, we adopted the following procedure. The Brillouin
zone summation of a function f (qs) was carried out using the
concept of special q points.32 Accordingly, we expressed

∑
q

f (qs) = N0

Nsp∑
j=1

Wjf (qj s), (15)

where Nsp is the number of special points within the first
Brillouin zone, the functions {f (qj s)} [which are functions of
phonon frequencies {ω(qj s)}] were evaluated for a set {qj }
of special phonon wave vectors from the lattice dynamical
calculation described in Sec. II, and W (qj ) is the non-
negative weight factor associated with a special point qj . The

momentum-conservation conditions q + q ′ ± q ′′ = G were
expressed as

|qx + q ′
x ± q ′′

x − Gx | � 
1,

|qy + q ′
y ± q ′′

y − Gy | � 
2,

|qz + q ′
z ± q ′′

z − Gz| � 
3, (16)

with 
i chosen as the smallest |qi | in the set of special
wave vectors. It was sufficient to consider only the first- and
second-shell reciprocal lattice vectors {Gi} when dealing with
three-phonon umklapp processes. The Dirac delta functions
energy conservation conditions were expressed in Gaussian
form using

δ(x) = lim
ε→0

1

ε
√

π
exp(−x2/ε2). (17)
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F. Effect of metamaterial formation on relaxation rates

From the formulas presented in Sec. III, it is clear that the
phonon relaxation rates due to the IMS, IDS, and anharmonic-
ity depend on several factors, including the amplitude ratio
eB/eA, phonon frequency, superlattice period, the interface
parameters α and α′, and the anharmonicity parameter γ .
Among these parameters, the amplitude ratio eB/eA varies
most sensitively with the phonon wave vector qz along the
metamaterial growth direction: while eB/eA is unity at the zone
center, it rises toward infinity at the zone edge (lzqz = π/2).
We can make a few qualitative statements regarding phonon
relaxation rates from different scattering sources.

We can expect that interfaces will weakly scatter long-
wavelength modes. For phonon modes near the zone edge in
the growth direction, the two layers (i.e., the two material
regions) in each superlattice unit cell will act out of phase and,
hence, traveling phonons will be scattered more strongly by
the presence of the interfaces. For both IMS and IDS scattering
mechanisms, optical modes in superlattices will be scattered at
the interface more strongly than acoustic modes. Sharp peaks
in the density of states in the optical range, due to strongly
confined modes with much reduced velocities, will result in
the scattering rate of optical modes being greater than for their
acoustic counterparts. The factor 1/(n + m)2 in Eqs. (7) and
(9) implies that phonon interface scatterings (IMS and IDS) are
greatest for thin superlattices and decrease as the superlattices
become thicker. The parameter α in Eq. (9) gives an indication
of the amount of mixing that occurs at the interface, and is
expected to increase with increasing period, but not by a
dramatic amount. The parameter α′ in Eq. (9) indicates the
number of dislocations and distortions of the crystal at the
interfaces and is also proportional to interface area. The ratio
of α and α′ gives a clear indication of the interface quality and
dominant type of disorder present.

We will consider three-phonon interactions to empha-
size the effect of metamaterial formation on phonon relax-
ation rates. Figure 5(a) shows the room-temperature three-
phonon relaxation rates of various phonon modes in the
Si(0.543 nm)/Ge(0.543 nm)[001] superlattice. For compar-
ison, we show in Fig. 5(b) a similar set of relaxation-rate
curves for the fictitious superlattice of the same periodicity

with DM = 1/ρ3
av . The first and clearest feature to notice is

that the relaxation rate of almost all of the phonon modes
is increased in the real superlattice structure compared to its
fictitious bulk counterpart. This increase in the relaxation rate
is directly a result of the DMT. For easy comparison, we note
that, for the longitudinal acoustic branch, the ratio of τ−1

s=LA,SiGe

with [τ−1
s=LA,Si + τ−1

s=LA,Ge]/2 is 2.28 at X/2.
There are two contributing factors inside the DMT that lead

to the increase in the phonon relaxation rate: the amplitude
ratio eB/eA and the density ratio ρA/ρB (or, the mass ratio
MA/MB). As mentioned earlier, toward the edge of the
Brillouin zone, the ratio eB/eA grows exponentially, leading
to a much greater increase in the relaxation rate for zone-edge
modes compared to zone-center modes. For bulk materials
and the fictitious bulk superlattice, the exponential rise in the
relaxation rate does not occur at the zone edge.

In general, for superlattice systems, the relaxation rate of
the lowest-lying acoustic modes increases with an increase
in wave vector q (due to ω increasing with q). This increase
is also observed in bulk materials for the same reason. From
� to X, the relaxation rate of the folded acoustic branches
decreases with wave vector, which is due to two bulklike
features. These are as follows: (i) smaller decrease in frequency
with increasing wave vector and (ii) folded zone-edge modes
have fewer decay routes than the zone-center folded modes.
For optical modes, the phononic properties (i.e., the gap) of
the system become more important in addition to the DMT.
If one ignores the effects of DMT for a moment, the effects
of gap formation and band splitting can be considered more
clearly. In bulk systems, for phonon modes at the zone edge X,
there exists only one available phonon energy (for a particular
phonon polarization), whereas in a phononic crystal, this mode
energy is split and, hence, there are two possible energies
to satisfy the energy conservation law. Initially, this would
lead one to believe that there would be a slight increase
in the number of allowed interactions and, hence, a slight
increase in the relaxation rate in general. This is not true,
as the effect of creating a band gap is to reduce the number
of allowed interactions (due to the stop bands and energy
gaps) and hence the relaxation rate, if only these factors
were taken into account, would appear to be reduced by up
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FIG. 5. (Color online) Three-phonon relaxation rates at 300 K for (a) the Si(0.543 nm)/Ge(0.543 nm)[001] superlattice; (b) a fictitious
Si(0.543 nm)/Ge(0.543 nm)[001] superlattice for which the relaxation rate was calculated using the average density of Si and Ge. The results
for the three acoustic branches [longitudinal (LA) and two transverse (TA)] are shown in dark grey (red online) and the folded branches (FA)
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FIG. 6. (Color online) The ratio of three-phonon umklapp and
normal scattering rates at 300 K in the Si(0.543 nm)/Ge(0.543
nm)[001] superlattice for various phonon branches with modes across
the Brillouin zone along the growth direction.

to 10% compared to the bulk results. However, this effect
is overshadowed by the dominant DMT, which creates an
effective increase in the relaxation rate. Comparison of the
fictitious bulk superlattice with the average relaxation rate of
Si and Ge {that is, [τ−1

Si (q,b) + τ−1
Ge (q,b)]/2} confirms this

result. The effect of DMT is by far the most important and
dominant feature and is, in effect, due to the two-layer nature
of the system.

The larger periodicity along the growth direction leads to
the participation of shorter reciprocal lattice vectors (G) for
umklapp processes in superlattices than in bulk materials.
The combination of superlattice periodicity and the DMT
results in a more dramatic effect for three-phonon umklapp
processes than their normal-processes counterparts. Figure 6
shows the relaxation-rate ratio between the umklapp processes
and normal processes for phonon modes. Clearly, for acoustic
modes, normal and umklapp processes have comparable
contributions near the zone center, but umklapp processes
become increasingly dominant toward the zone edge. This
is the same as in bulk materials. At the zone edge, the ratio
decreases for higher branches: for example, at 300 K, the
highest optical modes are dominated by normal processes. By
comparing the results for the real superlattice with the bulk
materials and the fictitious bulk superlattice, we can draw
two conclusions: (i) The DMT increases the ratio τ−1

s,U /τ−1
s,N

by approximately 2 to 4 across the Brillouin zone (excluding
the zone edge X). This is because umklapp processes tend
to involve longer wave vectors than normal processes, which
means the amplitude ratio in the DMT is greater for these
processes. This also explains the exponential growth in Fig. 6
at the zone edge as eB

eA
+ eA

eB
tends to infinity. (ii) The gaps in

the dispersion relations lead to little noticeable change in the
ratio τ−1

s,U /τ−1
s,N .

IV. SPECIFIC HEAT

The specific heat of a superlattice system is determined by
three factors: atomic species of the constituent materials, its
period, and the relative thicknesses of the constituent material
layers within a unit cell. Here, we use our numerical results to
present a study of each of these factors.

A. Material constituents

In Fig. 1, we presented the phonon dispersion of a few
ultra thin A(m)/B(n) superlattices. In Fig. 7, we present the
specific-heat capacity Cv of these structures as a function of
temperature. It is worth emphasizing that these superlattice
structures consist of the same period and have equal number
of layers of materials A and B. We can clearly observe three
features for all the superlattices presented: (i) Cv increases
as T 3 at low temperatures, as one would expect for bulk
systems; (ii) the Cv for each superlattice is slightly lower than
the average of the two bulk materials; and (iii) the denser
the material (i.e., the higher the mass density), the lower the
specific heat. None of these features are unexpected and are
what one would predict from a simple Debye-type model.

B. Superlattice periodicity

Figure 8 shows the results for the specific heat of the
GaAs(2)/AlAs(2)[001] and GaAs(3)/AlAs(3)[001] superlat-
tices. The first observation we make is that the result for the
specific heat is practically identical for the two superlattices
at all temperatures. This holds true for superlattices of greater
period as long as the layer thicknesses of the materials A

and B remain the same. We also find that the low-temperature
(below 100 K) values of the specific heat of the superlattices are
practically the same for either of the constituent bulk materials.
This is not surprising, as at such temperatures, only phonons
in the acoustic frequency range are significantly populated and
that both GaAs and AlAs show similar frequency dispersion
relations in the long-wavelength limit. At higher temperatures,
the specific heat of the superlattices is slightly lower than the
average of the two bulk values. For example, at 1000 K, the
specific heat of the superlattices is approximately 3% smaller
than the average of the bulk values.

C. Relative thicknesses of constituent material layers

In Fig. 9, we present the specific-heat capacity of a Si(20-
n)/Ge(n)[001] superlattice as a function of temperature. We
first note that, unlike GaAs and AlAs, the low-temperature
values of Cv are different for bulk Si and Ge. Although the
variation of Cv in the low-temperature regime for both Si and
Ge is as T 3, Ge at low temperatures has a higher specific-heat
capacity than Si. However, this behavior switches at around
60 K, and Si has a greater Cv than Ge. The specific-heat
capacity of the Si(20-n)/Ge(n)[001] superlattices, regardless
of the value of n, also is greater than Cv of Ge above 60 K.

It is interesting to note that the average of the specific-
heat capacities of bulk Si and Ge lies between n = 6 and
8, but not the symmetric value n = 10. For example, at
high temperatures, the specific-heat capacity (per kg) of the
Si(10)/Ge(10) superlattice is approximately 14% below the
average of the values for the bulk Si and Ge crystals.

V. THERMAL CONDUCTIVITY

For discussing the lattice thermal conductivity of metama-
terials, we will employ the concept of single-mode relaxation
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FIG. 7. Temperature variation of the lattice specific heat for the Si(2)/Sn(2), Ge(2)/Sn(2), GaAs(2)/AlAs(2), and AlN(2)/InN(2)
superlattices with [001] growth direction.

time.28,30 Within this concept, the expression for the thermal
conductivity tensor can be expressed as

κij = h̄2

N0�kBT 2

∑
q,s

ω2(qs)vi(qs)vj (qs)τ (qs)n̄(qs)[n̄(qs)+1].

(18)

For numerical calculations of the conductivity tensor, we
will perform the sum

∑
q over the Brillouin zone of the

metamaterial. Such a sum will be carried out by utilizing the
special q-points scheme32 in the same manner as discussed
in Sec. III E. This thus requires calculations of phonon
frequencies {ω(qi s)}, phonon group velocities {v(qi s)}, and
phonon relaxation rates {τ−1(qi s)} for a set of special points
{qi} with weight factors {W (qi)}.

In view of the fact that the amount of interface mass mixing
and the nature and density of broken bonds (or dislocations) at
the interfaces are generally uncontrollable and not known with
certainty, we treated α and α′ as adjustable parameters. We also
treated the anharmonicity coefficient γ as a mode-averaged
and temperature-independent adjustable parameter.

A. Results for the Si/Ge[001] superlattices

We have applied our method to explain the low-
temperature thermal conductivity of two Si/Ge superlattices:
Si(19)/Ge(5)[001] and Si(72)/Ge(30)[001]. These SLs have
been fabricated and their thermal conductivity measured
by Lee et al.24 In Fig. 10, we present the results of our
numerical calculations for κzz, the conductivity of these SLs
along the growth direction. As these are low-temperature
results, phonon-phonon scattering is ignored (γ = 0). For the
boundary scattering, the sizes of the samples are taken as
the same as those measured by Lee et al.24 and the scattering
due to the isotopic mass defects is calculated a priori from the
relative isotopic abundances.

For the thinner superlattice, for majority of phonon modes
across the frequency spectrum, IMS is the dominant scattering
mechanism and the contribution of IDS is negligible (α ≈
550 and α′ ≈ 0.0). This suggests that the relative number
of dislocations is small and the quality of the interfaces
between the layers of the thinner superlattice in Ref. 24 is
relatively clean. This is further supported by other exper-
imental studies,33 which suggest that stable forms of thin
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FIG. 8. (Color online) The lattice specific heat of ultrathin
GaAs/AlAs[001] superlattices compared with the results for GaAs
and AlAs bulk crystals.

Si/Ge superlattices can be fabricated without the presence of
many interface dislocations or missing bonds. In contrast, for
the thicker superlattice, the dominant scattering mechanism
is IDS, indicating that the interfaces have several broken
or distorted bonds (as α ≈ 107 and α′ ≈ 10−4). For large
period superlattices, much of the region in each constituent
material layer mimics its individual bulk lattice constant at
the cost of increase in the strain at the interface due to lattice
mismatch, thus leading to the development of a greater amount
of dislocations and other defects or imperfections.

The interplay between the IMS and IDS in controlling the
phonon lifetime in such superlattices is helpful in explaining
the apparent collapse of the thermal conductivity measured
by Lee et al. for superlattice period larger than approximately
70 Å. In essence, in samples with a small periodicity, the
strain on the structure is very small, hence, the contribution
from IDS will be very small. In contrast, samples of thicker
periods (larger than 70 Å) are of poor quality. This is due to the
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FIG. 10. (Color online) The thermal conductivity κzz of the
Si(19)/Ge(5)[001] and Si(72)/Ge(30)[001] superlattices along the
growth direction as a function of temperature. The lines are the
theoretical fits and stars show the measured results from Lee et al.
(Ref. 24).

total strain energy of the superlattice increasing with period,
whereas the dislocation energy remains relatively constant
leading to plastic deformation.35 In the language of the present
work, for thicker periods, the IDS contribution dramatically
increases leading to the collapse of the conductivity. After
this point, the contribution of IDS no longer increases as
fast as the lifetime contribution decreases due to increasing
period [see Eqs. (7) and (9)]. For much thicker superlattices
(several microns in period), one anticipates the conductivity
rising to the average of the two constituent material’s bulk
values. This is further verified below when discussing the
results for GaAs/AlAs superlattices, where the two are lattice
matched and IDS has no major contribution to play. Hence, for
non-lattice-matched superlattice structures of large periodicity,
IDS will result in a dip, or collapse, in thermal conductivity. In
lattice-matched structures where only IMS is present, no such
drop can be expected. This is evident from the measurements
presented by Capinski et al.34 for GaAs/AlAs superlattices.

The anisotropic behavior of the thermal conductivity upon
superlattice formation can be appreciated from the results
presented in Fig. 11. At low temperatures, the ratio κzz/κxx

tends to unity for the thicker superlattice, whereas it remains
much greater than unity for the thin superlattice. These
behaviors can be explained. At low temperatures, only low-
lying modes are populated. Thus, in the thicker superlattice, the
large amounts of zone folding means that, at low temperatures,
phonon modes both at the zone center and the zone edge are
populated. Conversely, for thinner superlattices with less zone
folding, the zone-edge modes are not populated until higher
temperatures. As zone-edge modes are scattered more strongly
than zone-center modes, both IDS and IMS become highly
anisotropic scattering mechanisms at low temperatures for the
thin superlattice, but less so for the thicker superlattice.

In the Introduction, we mentioned that the lattice thermal
conductivity of a material can be controlled by three factors:
the heat capacity, the phonon group velocity, and the phonon
lifetime. The results presented here have clearly shown that
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FIG. 11. (Color online) The thermal conductivity ratio κxx/κzz

for the superlattices Si(19)/Ge(5)[001] and Si(72)/Ge(30)[001] as a
function of temperature.

the formation of the superlattice structure has little or no effect
on the heat capacity, and the phonon group velocity (while
showing a reduction) is not the factor that is responsible for
the largest reduction in the conductivity compared to the bulk
systems. Hence, it is the phonon scattering by the interfaces
due to the IMS and IDS mechanisms that is responsible for the
low thermal conductivity for the Si/Ge superlattice samples
fabricated and studied by Lee et al.24

B. Results for GaAs/AlAs[001] superlattices

In Fig. 12, we have plotted the variation of the ther-
mal conductivity tensor components κzz and κxx for the
GaAs(2)/AlAs(2)[001] superlattice. Also shown are the re-
sults of experimental measurements by Capinski et al.34 of the
conductivity along the growth direction κzz in the temperature
range 100–400 K. An effective boundary length value of
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FIG. 12. (Color online) Temperature variation of the thermal
conductivity components κzz and κxx for the GaAs(2)/AlAs(2)[001]
superlattice. Theoretically calculated results are shown with symbols
(squares and triangles) and lines, and the experimentally measured
results from Capinski et al. (Ref. 34) are shown by filled blue circles.
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FIG. 13. (Color online) Role of different scattering processes in
determining the thermal conductivity components κzz and κxx for the
GaAs(2)/AlAs(2)[001] superlattice. The experimentally measured
results from Capinski et al. (Ref. 34) are shown by the square symbols.

453 nm was considered, as given in the paper by Capinski
et al.34 The Grüneisen constant γ was set at 0.5. As GaAs
and AlAs are much better lattice matched, the IDS was not
considered and should not be necessary as there should be
very few, if any, broken bonds. We also needed to consider a
much smaller value of the interface mass diffusion parameter
α = 0.01 than that required for the Si/Ge superlattices. This is
expected as much less mixing at the interface occurs in these
lattice-matched materials. Our theoretical results also suggest
that, at low temperatures, particularly below 10 K, boundary
scattering becomes the dominant scattering mechanism. The
relative roles of the boundary scattering, isotopic mass defect
scattering, the IMS, the IDS, and anharmonic scattering can
be appreciated from an inspection of the results presented
in Fig. 13. In particular, the role of superlattice formation is
crucial to understanding these results. The additional scattering
mechanism (IMS) and the modification to the phonon-phonon
scattering are clearly shown to be vitally important for describ-
ing the exceptionally low thermal conductivity of superlattice
structures. The phonon-phonon interaction dominates the form
of the temperature dependence, but on its own is insufficient to
account for the magnitude. Likewise, the IMS can only account
for very low temperature behavior and can not account for the
observed decrease at high temperatures.

Apart from producing good agreement with the experimen-
tal results, our theoretical results suggest that the conductivity
components exhibit a rather broad peak centered around 40 K.
At room temperature and above, the in-plane component κxx is
predicted to be almost twice the value of the growth-direction
component κzz. At lower temperatures, this ratio is found
to be slightly reduced. This indicates that an increase in
the IMS and anharmonic scatterings is responsible for the
larger difference in the in-plane and along-growth components
of the conductivity. As discussed earlier, the GaAs/AlAs
superlattices are latticed matched and, hence, the contribution
due to IDS is small or negligible and thus there is no dip in
thermal conductivity with superlattice period for the reason
discussed earlier.
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We have also performed calculations of the conductivity
tensor for the GaAs(3)/AlAs(3)[001] superlattice. In agree-
ment with the experimental measurement by Capinski et al.,34

our calculations suggest that the conductivity of the (3,3)
superlattice is larger than that of the (2,2) superlattice for
all temperatures above the conductivity peak. In particular, at
room temperature, our computed ratio of κzz(3,3)/κzz(2,2) =
1.45 is in good agreement with the ratio of 1.65 obtained from
the experimental measurements.

VI. SUMMARY

In this paper, we have shown that the key component
to understanding the thermal conductivity of nanostructured
superlattices is the phonon scattering strength. In order to
establish this point, we have discussed the contribution from
relevant scattering mechanisms in such structures.

To start with, we have discussed a consistent theoretical
approach for lattice dynamics (i.e., phonon dispersion rela-
tions) and thermal properties (e.g., specific heat and phonon
conductivity) of acoustic metamaterials. Results of phonon
dispersion curves have been presented for semiconductor
metamaterials in the form of superlattices and also embedded
nanowires. The presence of phonon polarization gaps, as well
as clear phononic gaps, have been presented and discussed.
Results have also been presented for lattice specific heat for
superlattices and differences from bulk results identified.

Considering realistic phonon dispersion results, we have
developed a theory of phonon scatterings from inter-
face mass mixing, interface dislocation, and anharmonic
interactions involving three-phonon normal and umklapp

processes in acoustic metamaterials. The role of dual mass
term and the formation of interfaces in controlling phonon
lifetime and eventually lattice thermal conductivity has been
carefully discussed. Using our theoretical results, we have
successfully explained existing experimental measurements
of the thermal conductivity of thin and thick Si/Ge[001]
superlattices and ultrathin GaAs/AlAs[001] superlattices. It
is found that, beyond 100 K, the conductivity of Si/Ge
superlattices is largely controlled by interface mass mixing
and dislocation effects and the thermal conductivity of thin
GaAs/AlAs superlattices is largely controlled by anharmonic
effects.

It is clear from the results for the Si/Ge and GaAs/AlAs
samples that the dip in thermal conductivity of the non-
lattice-matched superlattices is due to strain effects, whereas
the thermal conductivity of lattice-matched samples do not
show this feature. It is also readily apparent that, without the
modification shown here to the phonon-phonon interaction,
one can not explain the high-temperature dependence of
the thermal conductivity in lattice-matched superlattices. The
theory outlined in this paper can be applied, with suitable
extension, to study the vibrational and thermal properties of
many other forms of nanostructured acoustic metamaterials.
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