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Magnetic field effects in few-level quantum dots: Theory and application to experiment
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We examine several effects of an applied magnetic field on Anderson-type models for both single- and two-level
quantum dots, and we make direct comparison between numerical renormalization group (NRG) calculations
and recent conductance measurements. On the theoretical side, the focus is on magnetization, single-particle
dynamics, and zero-bias conductance, with emphasis on the universality arising in strongly correlated regimes,
including a method to obtain the scaling behavior of field-induced Kondo resonance shifts over a very wide
field range. NRG is also used to interpret recent experiments on spin- 1

2 and spin-1 quantum dots in a magnetic
field, which we argue do not wholly probe universal regimes of behavior, and the calculations are shown to yield
good qualitative agreement with essentially all features seen in experiment. The results capture in particular the
observed field dependence of the Kondo conductance peak in a spin- 1

2 dot, with quantitative deviations from
experiment occurring at fields in excess of ∼ 5 T, indicating the eventual inadequacy of using the equilibrium
single-particle spectrum to calculate the conductance at finite bias.
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I. INTRODUCTION

Understanding electronic transport in quantum dots remains
a major challenge for theorists working on correlated electron
systems. Conductance at low energies is often dominated
by one of a number of Kondo effects,1 in which the strong
localized interactions on the dot(s) induce nontrivial many-
body physics. Over the years, a wide range of such Kondo
effects have been predicted and observed, in single and
multiple quantum dot devices of various geometries.2–6

Here we consider a single quantum dot, tunnel-coupled
to two leads7–11 in an effective one-channel fashion. While
the dot will in general hold many electrons in its quantized
levels, only those close to the Fermi level contribute in
practice to electronic transport provided the mean level spacing
is sufficiently large, and the rest can be neglected with
relative impunity. Typically just one level is important, but
occasionally one observes the case of two relevant levels,
where the physics is richer—including, e.g., a quantum phase
transition between Fermi liquid and underscreened Kondo
phases,12–26 which has been observed in several experimental
guises.27–29

We present and examine critically a number of results
falling under the umbrella of magnetic field (B) effects in these
single- and two-level quantum dots, the appropriate models for
which are specified in Sec. II. The paper consists of two related
parts. In the first (Secs. III and IV), using mainly Wilson’s
numerical renormalization group (NRG) method,30–32 we con-
sider magnetization, single-particle dynamics, and the zero-
bias conductance, with emphasis on the universality and scal-
ing behavior arising in the strongly correlated regimes of the
models.

Even for single-level quantum dots described by an Ander-
son impurity model,1,33 there are still open questions regarding
single-particle dynamics in the presence of a magnetic field,
our primary concern being the field-induced Kondo peak
splitting in the equilibrium single-particle spectrum. This has
been analyzed by a number of authors and techniques,34–42 but
the results are not in complete agreement.34,36,37,43 We show
that there exists an algorithm by which NRG can obtain the

universal behavior over many orders of magnitude of field
strength, but that, eventually, even the most accurate NRG
calculations cannot completely resolve the universal splitting
at very large fields. The corresponding situation for the two-
level model is considered in Sec. IV B. We also obtain the field
and temperature (T ) dependence of the zero-bias conductance,
and for T = 0 in particular generalize the Luttinger integral
analysis of Ref. 24 to encompass a finite magnetic field,
leading to an exact result for the conductance for any field,
and insight into the rather subtle differences between the limits
B = 0 and B → 0 for the underscreened triplet phase of the
model.

In the second part of the paper (Sec. V), we turn to a
comparison with experiment. Two recent sets of conductance
measurements on quantum dots in a magnetic field are
considered, from the groups of Kogan44 (on an effective
one-level dot) and Goldhaber-Gordon43 (on both effective one-
and two-level systems). From comparison to NRG results,
we are able to determine reliable bare model parameters for
the Anderson-type (as opposed to Kondo) models considered
in Secs. II–IV, as relevant to experiment. With these, our
NRG calculations are shown to yield very good qualitative
agreement with essentially all features observed in both
experiments.43,44 In particular, we show that theory can in
fact explain the evolution of the field-induced splitting of
the Kondo conductance peak observed in Ref. 44—including
a simple explanation for an observed crossing in the peak
splittings of two different quantum dots. The agreement is
essentially quantitative up to field strengths of around a couple
of Kondo scales, but beyond that, our calculations deviate
from the experimental data. This reinforces results from a
recent study using the scattering states NRG45 and earlier
renormalized perturbation theory and NRG calculations,38,46

showing that the commonly used approximation of calculating
the source-drain bias dependence of the conductance from the
equilibrium spectrum is unsuitable for making quantitative
comparisons to experiment sufficiently far out of equilibrium.
Indeed, until more progress in nonequilibrium theory is made,
we suggest that experiments should instead aim to make
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comparison with the magnetic field dependence of the zero-
bias conductance.

II. MODELS

Each model considered in this work consists of a single
interacting quantum dot region, tunnel coupled to a pair of
noninteracting metallic leads. As mentioned above, we focus
on the situation in which the mean level spacing of the dot is
sufficiently large compared to the dot-lead tunneling strength
that generally only one, or occasionally two, levels are involved
in transport.

When just one dot level is relevant, the standard model is
the Anderson impurity model (AIM).7,8,33 Here the dot itself
is described by

Ĥ AIM
D =

∑
σ

(
ε1σ + 1

2
Un̂1−σ

)
n̂1σ , (1)

where n̂1σ = d
†
1σ d1σ counts the σ spin electrons on the dot

level, U is the on-level Coulomb replusion/charging energy,
and ε1σ = ε1 − σh is the level energy. The latter includes a
Zeeman coupling to an external magnetic field B with h =
1
2gμBB and σ = +/− for ↑ / ↓-spin electrons. In the case of
two relevant dot levels, the dot Hamiltonian is naturally more
complex. We choose to work with the following two-level
model (2LM):

Ĥ 2LM
D =

∑
i,σ

(
εiσ + 1

2
Un̂i−σ

)
n̂iσ + U ′n̂1n̂2 − JH ŝ1 · ŝ2,

(2)

which has previously been shown to capture the key physics of
two-level quantum dots in the absence of a magnetic field.24

Here n̂i = ∑
σ n̂iσ is the total number operator for level i

(=1,2), and ŝi is the local spin operator with components
ŝα
i = ∑

σ,σ ′ d
†
iσ σ α

σσ ′diσ ′ (σ σσ ′ are the Pauli spin- 1
2 matrices).

In addition to the on-level Coulomb repulsion U (taken to be
identical for levels 1 and 2 for simplicity), the model includes
an interlevel Coulomb repulsion U ′ plus a ferromagnetic
(Hund’s rule) exchange coupling of the spins of the two levels,
parametrized by JH .

In each case, the dot Hamiltonian is supplemented by
coupling to two equivalent, noninteracting “left” and “right”
leads, themselves described by ĤL = ∑

ν

∑
k,σ εka

†
kνσ akνσ

(ν = L,R), where the most general tunnel coupling to the leads
is of form ĤT = ∑

ν

∑
i,k,σ Vikν(d†

iσ akνσ + H.c.) (the sum
over level index i involving just i = 1 in the case of the
AIM). The L and R lead chemical potentials are μL and μR ,
respectively, such that for μL �= μR a nonzero current flows.

Analyzing the interacting models out of equilibrium is a
formidable task (see, e.g., Ref. 47 for a recent discussion),
and in practice we consider the equilibrium situation. This has
an immediate benefit, for the AIM Hamiltonian then reduces
exactly to an effective one-lead model by defining ckσ =
(VikLakLσ + VikRakRσ )/Vik with V 2

ik = V 2
ikL + V 2

ikR (with i =
1), since the corresponding orthogonal combination of lead
states is entirely decoupled from the dot. The two-level dot
Hamiltonian under this transformation does not generally
separate so pristinely: except in the special case of VikL =

Vik cos θ , VikR = Vik sin θ , the dot remains coupled to two
leads.15 However, over a wide range of parameter space, the
second lead couples sufficiently weakly that it may in practice
be neglected on energy scales of practical interest.15 As such,
for both the AIM and 2LM we work with the effective one-lead
description embodied in

ĤL + ĤT =
∑
k,σ

εkc
†
kσ ckσ +

N∑
i=1

∑
k,σ

Vik(d†
iσ ckσ + H.c.)

(3)

with N = 1 for the AIM and N = 2 for the 2LM.
We consider the standard case1 of a symmetric, flat-band

lead of half-width D and density of states per orbital ρ0 =
1/(2D), and we take Vik ≡ V . The dot-lead coupling is then
embodied in the hybridization strength � = πρ|V |2 (with ρ =
Nρ0 the total density of states and N → ∞ the number of
lead orbitals). When presenting results, we use dimensionless
parameters defined in terms of �, viz.,

ε̃i = εi

�
, Ũ = U

�
, Ũ ′ = U ′

�
, J̃H = JH

�
, h̃ = h

�
. (4)

The bandwidth D is naturally taken to be the largest energy
scale in the problem, and for our NRG calculations in practice
we take D/� = 100.

To study the models described above, the central quantities
of interest are the dot Green functions Gij ;σ (ω; h) [↔
Gij ;σ (t ; h) = −iθ (t)〈{diσ (t),d†

jσ (0)}〉] with associated spec-

tral density Dij ;σ (ω; h) = − 1
π

ImGij ;σ (ω; h) [θ (t) denotes the
unit step function]. In the absence of an applied magnetic
field, Gij ;↑(ω; 0) = Gij ;↓(ω; 0), while for any finite h the ↑-
and ↓-spin Green functions are naturally distinct. In addition to
these spin-resolved quantities, we will later make use of their
spin-summed analogs, in particular the spin-summed spectrum

Dij (ω; h) = 1

2

∑
σ

Dij ;σ (ω; h). (5)

Moreover, in the case of the 2LM some of the physics is better
described in terms of the symmetrized combinations of dot
orbitals,24

deσ = 1√
2

(d1σ + d2σ ), doσ = 1√
2

(d1σ − d2σ ) (6)

from which follow the “even-even” and “odd-odd” Green
functions:

Gee;σ (ω) = 1
2 [G11;σ (ω) + G22;σ (ω) + 2G12;σ (ω)], (7)

Goo;σ (ω) = 1
2 [G11;σ (ω) + G22;σ (ω) − 2G12;σ (ω)]. (8)

The connection between theory and experiment is made
via the zero-bias differential conductance, G0

c(T ). For the
models considered above, this is obtained exactly from the
Meir/Wingreen approach,9 which gives

G0
c(T ; h) = 2e2

h
G0

∫ +∞

−∞
dω

−∂f (ω)

∂ω
Nπ�Dss(ω; h). (9)

Here f (ω) = (eω/T + 1)−1 (kB ≡ 1) is the Fermi function,
and Dss(ω; h) = 1

N

∑
i,j Dij (ω; h) is the spectral density of

the fully symmetric impurity channel [i.e., D11(ω; h) for the
AIM and Dee(ω; h) for the 2LM]. The dimensionless prefactor
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G0 = sin2 2θ reflects the relative coupling asymmetry to
the right and left leads and is maximal, G0 = 1, for equal
couplings.24

As alluded to above, present methods cannot give exact
results for the nonequilibrium situation of a finite source-drain
bias between the leads. While recent progress has been made
in addressing this (see, e.g., Refs. 45, 47, and 48), the
methods used are much more computationally intensive and
thus we make the standard approximation of neglecting the
Vsd dependence of the impurity self-energy. The result is that

Gc(T ,Vsd; h)

(2e2/h)G0
= −

∫ +∞

−∞
dω

[
λ

∂fL(ω)

∂ω

+ (1 − λ)
∂fR(ω)

∂ω

]
Nπ�Dss(ω; h), (10)

where fν(ω) = f (ω − μν) with μL = λeVsd and μR = −(1 −
λ)eVsd. The quantity λ ∈ (0,1) controls the partitioning of
the voltage split eVsd between the two leads, with λ = 1

2
corresponding to a symmetric voltage drop. In Sec. V, we use
Eq. (10) to interpret a number of recent experimental results,
where in particular we discuss critically the agreement between
this quasiequilibrium approximation and experiment.

Finally, our numerics are obtained from the full density
matrix (FDM)49,50 formulation of the NRG,30–32 using the
Oliveira discretization scheme51 and a generalization of the
self-energy method of Bulla et al.52 We find it sufficient to
keep ∼ 4000 states per NRG iteration, and employ an NRG
discretization parameter  = 3.

III. ZERO-FIELD PHYSICS AND LOW-ENERGY
EFFECTIVE MODELS

To put our finite-field results in context, we consider briefly
the zero-field physics of the two models; starting with the
AIM, which at zero field is well understood by a range of
complementary techniques (see, e.g., Ref. 1).

The AIM exhibits local Fermi liquid behavior for all � > 0,
as reflected in the RG description by a single stable fixed
point (FP): the strong-coupling (SC) fixed point.30,31 For fixed
U/�, the dot occupancy n1 = 〈n̂1〉 increases continuously
with decreasing ε1, starting close to n1 � 0 when ε1/� � 1,
and tending to a maximum of 2 when (ε1 + U )/� � 1. At the
point ε1 = −U/2, the model is invariant under a particle-hole
(p-h) transformation1 and hence n1 = 1 precisely.

When charge fluctuations are suppressed by a large U/� �
1, the dot occupancy tends toward integer values, increasing
more or less stepwise as ε1 is decreased (under a gate voltage in
practice, ε1 ∝ Vgate). In the singly occupied regime (n1 � 1),
the AIM reduces under a Schrieffer-Wolff transformation53

of Eqs. (1) and (3) to a low-energy effective Kondo model:
defining a p-h asymmetry parameter η = (1 + 2ε1/U ), for a
fixed −1 < η < 1 and Ũ = U/� � 1 this yields

ĤK =
∑
k,σ

εkc
†
kσ ckσ + J ŝ · Ŝ(0) + K

∑
σ

f
†
0σ f0σ , (11)

where ŝ is a spin- 1
2 operator describing the dot spin, Ŝα(0) =∑

σ,σ ′ f
†
0σ σ α

σσ ′f0σ ′ is the conduction band/lead spin density at
the dot, and f0σ = 1

N
∑

k ckσ . The Kondo exchange coupling

J and potential scattering strength K are given in terms of the
original model parameters by

ρ0J = 8

πŨ

1

1 − η2
, ρ0K = 2

πŨ

η

1 − η2
, (12)

such that at p-h symmetry (η = 0) the potential scattering
K = 0. Away from p-h symmetry, potential scattering is
nonvanishing, but, from Eq. (12), K/J = η/4 and hence for
fixed η the model is characterized by a single dimensionless
parameter ρ0J . This in turn means that for a given η, all AIMs
in the strongly interacting Ũ � 1 regime map onto the same
low-energy effective Hamiltonian, and thus exhibit universal
scaling of their physical properties in terms of the low-energy
Kondo scale TK ∼ D exp[−1/(ρ0J )].1

The physics of the 2LM is naturally more complicated. We
refer the reader to Ref. 24 for detailed discussion, and merely
summarize the key points here. When considering the model as
a function of the level energies ε1 and ε2, it is more convenient
to work with

x = ε1 + 1
2U + U ′, y = ε2 + 1

2U + U ′, (13)

since it can be shown that the model is p-h symmetric when
x = 0 = y, and that its phase diagram is symmetric under
reflection in the lines y = ±x.24 That the phase diagram itself
is nontrivial reflects the occurrence now of two stable FP’s:
the SC FP again, and the underscreened spin-1 (USC) FP of
Noziéres and Blandin.54 As for the AIM, the SC phase is a
local Fermi liquid, while the USC phase is a singular Fermi
liquid24,55 characterized by a free spin- 1

2 on the dot with a ln 2
residual entropy.

Close to p-h symmetry (x = 0 = y), the dot levels are each
singly occupied, and in the absence of coupling to the lead
naturally form a spin-triplet. On coupling to the lead, this
spin-1 is reduced to an effective spin- 1

2 by the underscreened
Kondo effect,54 whence a finite region surrounding the p-h
symmetric point belongs to the USC phase. On moving further
away from p-h symmetry [in any direction in the (x,y) plane],
the model eventually undergoes a quantum phase transition
to the SC phase (see Fig. 5 of Ref. 24). The transition is of
Kosterlitz-Thouless (KT) type,24 the Kondo scale in the SC
phase vanishing exponentially as the boundary to the USC
phase is approached. This holds generically except at points
of special symmetry (specifically along the line y = x, where
the transition becomes first-order24).

The effective low-energy model “deep” in the under-
screened triplet regime can be obtained by Schrieffer-Wolff on
the 2LM, Eqs. (2) and (3), valid formally for U/� � 1 with
fixed JH/U and U ′/U . The resulting model is spin-1 Kondo
with potential scattering,24 of the same form as Eq. (11) but
with ŝ now a spin-1 operator and J,K given by

ρ0J (x,y) = 4

π
(
Ũ + 1

2 J̃
)

[
1

1 − η(x)2
+ 1

1 − η(y)2

]
, (14a)

ρ0K(x,y) = 2

π
(
Ũ + 1

2 J̃
)

[
η(x)

1 − η(x)2
+ η(y)

1 − η(y)2

]
, (14b)

where (with z = x or y) the asymmetry is

η(z) = 2z

U + 1
2JH

. (15)
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The characteristic Kondo scale deep in the USC phase is56

T S=1
K ∼ D exp[−1/(ρ0J )] (i.e., has the same exponential

dependence on ρ0J as for the spin- 1
2 case).

In direct analogy to the AIM, the ratio of K to J is a function
solely of the asymmetries, conveniently expressed in terms of
a quantity η(x,y):

η(x,y) = 2K(x,y)

J (x,y)
= η(x) + η(y)

2 − [η(x)−η(y)]2

1−η(x)η(y)

. (16)

Sufficiently deep in the USC phase, one thus expects physical
properties of the 2LM to be universal in T/T S=1

K for fixed
η(x,y), as considered further in Sec. IV.

IV. FIELD-DEPENDENT STATICS AND DYNAMICS

We now turn to our main focus: the effect of a applied
magnetic field on the AIM and 2LM. While much is already
known for the AIM, certain aspects of its dynamics in a
magnetic field34–41 have not been fully understood, and in
Sec. IV B we present NRG results to clarify the situation. The
2LM model has been less widely studied, and we consider it
in somewhat more detail.

A. Magnetization

It is first instructive to consider the magnetization for level
i, here defined by

mi(h) = 〈n̂i↑〉 − 〈n̂i↓〉 (17)

=
∫ 0

−∞
dω[Dii;↑(ω) − Dii;↓(ω)]. (18)

This can be determined accurately using the FDM-NRG,32,49,50

the complete Fock space approach circumventing known
problems arising in the original NRG.34,35

Figure 1 shows the total dot magnetization m(h) = m1(h)
versus log(h/TK ) for the symmetric AIM with Ũ = 50 and
ε̃ = − 1

2 Ũ .57 The accuracy of the FDM-NRG is confirmed
by the clear agreement with the exact result known from the
Bethe ansatz56 for the Kondo model. At a field h ∼ TK , the
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FIG. 1. Magnetization of the AIM vs h/TK . Main: Ũ = −2ε̃ =
50. Comparison between FDM-NRG results (crosses) calculated via
Eq. (17), and the Bethe ansatz result56 (line) for the Kondo Model.
Inset: Ũ = −2ε̃ = 30 (solid), 20 (long dash), and 10 (short dash)
corresponding to TK/� ∼ 1.8 × 10−6,8.0 × 10−5, and 3.1 × 10−3.
Deviations from universality occur for h � O(�).
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FIG. 2. Upper: Total magnetization m(h) = m1(h) + m2(h) of the
2LM with Ũ = 2Ũ ′ = 4J̃H = 20, ε̃1 = − 1

2 Ũ − Ũ ′ = −20, and ε̃2 =
(a) −20, (b) −12, (c) −10.5, (d) −9.9, (e) −9.8, (f) −9.5, (g) −8, and
(h) −2. At zero field, (a)–(c) correspond to the USC phase; here an
infinitesimal field polarizes the underscreened impurity moment. For
larger ε2, the system is in the SC phase at zero field, and m(h → 0) →
0. Lower: Magnetization near the crossover for h̃ = 10−10 (solid),
10−4 (long dashed), 10−2 (short dashed), and 10−1 (dotted). The
h = 0 transition is marked by a dotted vertical line at ε̃2c = −9.94.
For h → 0, m jumps discontinuously at ε̃2c, while for finite fields this
step is smeared.

magnetization rises rapidly from its zero field (Kondo-
screened) value m(0) = 0, before turning over to a slow
asymptotic approach to saturation of form m(h) ∼ 1 −
[2 ln (h/TK )]−1. The inset to Fig. 1 gives results for Ũ =
30, 20, and 10, showing the inevitable deviation from the
universal Kondo magnetization curve at sufficiently high fields
h � O(�).

We now compare this behavior to that of the two-level
model of Eq. (2). The basic physics now reflects the destruction
of the quantum phase transition occurring for h = 0, and its
replacement by a smooth crossover. In terms of FPs, the spin
symmetry breaking associated with the magnetic field renders
the USC fixed point unstable for all h �= 0, and so ultimately all
NRG flows tend toward a SC fixed point (now supplemented
by spin-dependent potential scattering).

Figure 2 (upper) shows the total dot magnetization m(h) =
m1(h) + m2(h) for Ũ = 2Ũ ′ = 4J̃H = 20 and with fixed ε1 =
− 1

2U − U ′ [i.e., x = 0, see Eq. (13)], upon increasing ε2 (or y)
from its p-h symmetric value. In the following, it is useful to
bear in mind that on increasing ε2 at zero field, the model
undergoes the quantum phase transition from USC to SC at a
critical ε̃2c � −9.94.

Curves (a)–(c) in Fig. 2 correspond to ε2 < ε2c and hence
the USC phase at h = 0. At finite field, these curves show
m(h) → 1 as h → 0: an infinitesimal field fully polarizes the
free spin- 1

2 local moment associated with the USC fixed point
(for h = 0 identically, by contrast, the magnetization vanishes
by symmetry). On increasing h, the magnetization increases
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monotonically, crossing over toward m(h) = 2 on the scale
h ∼ T S=1

K as the field destroys the underscreened Kondo effect
and singles out the Sz = +1 component of the dot triplet
state.58 As shown in Ref. 24, T S=1

K increases upon moving
away from the center of the USC phase, hence the higher field
required to destroy the underscreened Kondo effect for (c)
compared to (a).

For larger level separations, ε2 > ε2c [curves (d)–(h)], the
zero-field phase is SC. Here the low-field behavior more
closely resembles that of Fig. 1. At zero field, the dot is fully
screened by the lead and remains essentially so until h on the
order of the SC phase Kondo scale, TK , above which the spin- 1

2
Kondo effect is progressively destroyed, and m(h) crosses over
to m(h) ∼ 1 associated with a spin-polarized spin- 1

2 on the dot.
As in curves (a)–(c), increasing the field further then causes a
second marked increase in m(h) when the Sz = +1 component
of the two-electron triplet state is favored.

Figure 2 (lower) shows the magnetization at various fixed
values of h/� as a function of ε̃2 (focusing on the vicinity
of the zero-field transition at ε̃2c). At any finite field, the
magnetization decreases monotonically with increasing ε̃2,
and as h/� → 0 the curve approaches the step function
m(ε2) → θ (ε̃2c − ε̃2).19 In the absence of the field, however,
the magnetization naturally vanishes, and hence the limit of
h → 0+ and h = 0 are quite distinct.

As for the spin- 1
2 Kondo effect in Fig. 1, the magnetization

deep in the USC phase (where the low-energy effective model
is spin-1 Kondo) is a universal function of h/T S=1

K . Figure 3
illustrates scaling of the magnetization for Ũ = 2Ũ ′ = 4J̃H =
30, 20, and 15 at the p-h symmetric point (x,y) = (0,0) where
〈n̂i〉 = 1 for i ∈ {1,2,e,o} [see Eq. (6)]. The main figure shows
m(h), the total impurity magnetization. Results for different
values of the bare parameters clearly display scaling, onto a
different universal form than for the AIM.56,59

Figure 3 (inset) shows also the magnetization of the even
and odd impurity orbitals [such that m(h) = me(h) + mo(h)]
for the Ũ = 20 case. The o orbital is clearly polarized to a
greater extent than the e orbital by an infinitesimal field, and

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

-4 -2 0 2 4 6 8

m
(h

)

log(h/TK
S=1)

0.4

0.6

0.8

1.0

-4 -2 0 2 4 6

m
x
(h

)

FIG. 3. Magnetization m(h/T S=1
K ) for the two-level model at p-h

symmetry (ε1 = ε2 = −U

2 − U ′), deep in the USC phase. Ũ = 2Ũ ′ =
4J̃H = 30 (solid), 20 (long dash), and 15 (short dash), corresponding
to T S=1

K /� = 1.0 × 10−6,7.7 × 10−5, and 6.8 × 10−4. As with the
AIM, m(h/T S=1

K ) exhibits universal scaling.56,59 Inset: Comparison
of mx(h), x ∈ {1,e,o} (solid, long dash, short dash) for the Ũ = 20
case.
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FIG. 4. Magnetization away from p-h symmetry, deep in the USC
phase. Main: m(h) = m1(h) + m2(h) for the same systems as Fig. 3
but with η(x) = 0 and η(y) = 0.5. Clear universality is observed.
Inset: The Ũ = 30 case on the y = −x line, for x = 0 (line) and
x/� = −6 (crosses). The resultant universal m(h) is found to be the
same in both cases, i.e., to be independent of asymmetry.

mo(h) reaches saturation more quickly than me(h) [or indeed
m1(h)]. This reflects the fact that the o orbital does not couple
directly to the conduction band,24 only interacting with it via
the e orbital, which couples directly, the o orbital as such
contributing more to the local moment than the e orbital.

The situation deep in the USC phase, but away from p-h
symmetry, is illustrated in Fig. 4. As mentioned in Sec. III,
universal behavior of m(h) is expected for systems with
different bare parameters, at least for fixed asymmetry η(x,y)
[i.e. from Eq. (15) the same ratio of potential scattering K to
Kondo coupling J ]. To this end, consider first the line y = −x

for all points on which η(x,y) = 0 [Eqs. (16) and (15)].
Figure 4 (inset) shows the universal m(h) at the p-h symmetric
point x = 0 = −y (line) considered also in Fig. 3, compared
to that obtained some distance away from p-h symmetry at x =
6� = −y (crosses). The two scaling curves clearly coincide.

The main panel of Fig. 4 illustrates universality for
nonvanishing asymmetry, showing m(h) versus h/T S=1

K for the
same Ũ = 2Ũ ′ = 4J̃H values as Fig. 3, but now with η(x) = 0
and η(y) = 0.5 [i.e., η(x,y) � 0.29]. The three curves scale
perfectly in the universal regime, beginning to deviate only
at high fields, h ∼ O(�). Moreover, the resultant universal
m(h) is found numerically to be identical to that arising for
η(x,y) = 0, and as such thus appears to be independent of
asymmetry η(x,y), a result we have further confirmed for a
wide range of η values.

B. Field-dependent dynamics

We turn now to the field dependence of single-particle
dynamics for the AIM and 2LM. Much is already known34–42

about the former case, but it serves as a useful comparison
to the 2LM and both are experimentally relevant. The spin-
resolved impurity spectrum is first considered, with a twofold
focus: the field-induced redistribution of weight in the Hubbard
satellites, and the shift of the spectral maximum from zero.

Figure 5 shows results for Dss;↓(ω; h) and a range of fields
h � 0, for both the AIM (inset) and the 2LM. The level
energies and interaction strengths have been chosen so that
both models are deep in the Kondo regime (for the AIM)
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FIG. 5. Redistribution of spectral weight in the Hubbard bands.
Main: 2LM with Ũ = 2Ũ ′ = 4J̃H = 20 at p-h symmetry, with
h/ωS=1

K = 0 (dotted), 1 × 10−6 (dashed), and 1 (solid), ωS=1
K being

the Kondo scale defined as the HWHM of the zero-field Kondo
resonance. Inset: AIM with Ũ = 20 also at p-h symmetry with
h/ωK = 0 (dotted line), 1 × 10−6 (dashed), and 1 (solid). The result
for h/ωK = 1 × 10−6 is coincident with that for zero field on the
scale shown.

or underscreened triplet (2LM), and are p-h symmetric [such
that Dss;↑(ω; h) = Dss;↓(−ω; h)]. In each case, the familiar
three-peak structure is evident: upper and lower Hubbard
satellites due to local charge excitations on the impurity,
and a central low-energy Kondo resonance. We denote the
half-width at half-maximum of the h = 0 Kondo resonance by
ωK : the low-energy Kondo scale, proportional to the Kondo
temperature TK .

In both cases, increasing the applied field causes spectral
weight to be redistributed from the lower to the upper
Hubbard satellite, corresponding to the destabilization of
↓-spin electrons on the dot. The striking difference between
the two is that for the 2LM (main figure), a significant
redistribution occurs upon introducing an infinitesimal field
(e.g., h/ωS=1

K = 1 × 10−6), whereas for the AIM this occurs
only when h/ωK ∼ O(1) (inset). This reflects directly the
behavior of the magnetization in Fig. 2 [see Eq. (18)]: the
free spin associated with the USC FP is fully polarized
by an infinitesimal field, while a finite h ∼ ωK is required
to disrupt the Kondo singlet associated with the SC FP of
the AIM.

The above high-frequency behavior is relatively straight-
forward compared to that at lower energies ω ∼ ωK , as
now addressed, beginning with the AIM. The low-frequency
behavior of the AIM spectrum in a magnetic field has received
significant attention using various techniques,34–42 yet there
is still some disagreement in the literature. Here we present
results from accurate NRG calculations, with the aim of
clarifying the issue.

At zero field, the Kondo resonance at p-h symmetry is
centered on ω = 0, symmetric to reflection about ω = 0, and
satisfies the Fermi liquid pinning condition π�D11;σ (ω =
0) = 1. Introduction of a finite h is well known to shift the
resonance in D11;σ (ω; h) away from ω = 0 and diminish its
height.34 We define �σ as the magnitude of this shift, as shown
in the inset of Fig. 6.

The spin-summed spectrum D11(ω; h) [=
1
2

∑
σ D11;σ (ω; h)] is distinct from the individual D11;σ (ω; h),
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FIG. 6. Kondo resonance splitting in the spin-summed D11(ω; h)
for the AIM, on application of a magnetic field. Ũ = 20, ε̃ = −10,
and (top to bottom) h/hC = 0, 1/2, 1, 4/3, 2, and 3 with hC = 0.27ωK

and ωK/� = 1.7 × 10−3. Inset: Kondo peaks in D11(ω; h) (solid) and
D11;↓(ω; h) (dashed).

since the σ =↑ and ↓ Kondo resonances are shifted in
opposite directions by the field. At sufficiently high fields,
the two resonances are far apart and D11(ω) contains two
peaks separated by 2� (see Fig. 6, inset). As h is reduced,
these peaks approach each other and are known34 to coalesce
at a field we denote hC (Fig. 6, main). Our FDM-NRG
calculations yield a universal value hC � 0.27ωK in the
Kondo regime (U/� � 1). In terms of the quasiparticle
weight Z = [1 − ∂�11(ω = 0)/∂ω]−1, easily extracted from
FDM-NRG results for the dot self-energy �11(ω), we obtain
hC � 0.40Z�. This is in good agreement with the exact result
of Ref. 46, hC/Z� = 0.39 . . ..

We have performed accurate NRG calculations to determine
the universal scaling behavior of �σ/h and �/h as a function
of h/ωK . Before discussing these results, it is worth explaining
the calculational procedure itself. We find that to calculate �σ

and � accurately over a wide range of h/ωK , it is necessary
to combine results from different values of Ũ . For a given Ũ ,
one cannot obtain universal results for arbitrarily high h/ωK ,
because universality arises only when h is much smaller than
the nonuniversal scales � and U . Since ωK is small but finite
for a given Ũ , there will always be a (large) h/ωK at which h

itself becomes comparable to the nonuniversal scales and the
results then deviate from universality.

Since ωK decreases exponentially with increasing Ũ , this
might suggest working with a very large Ũ , for then one
can reach very high values of h/ωK before h itself becomes
nonuniversal. However this is subject to a second problem,
at the opposite end of the field scale. The energies that enter
the Hamiltonian involve combinations of h, U , and �, and the
double-precision arithmetic used in NRG thus places a lower
limit on the size of h relative to U and �. If ωK is too small,
then low values of h/ωK shift the dot energy levels by so little
that they cannot be accurately represented in double precision.

As such, for a given Ũ there is a range of fields encompass-
ing in practice around four to five orders of magnitude, over
which the universal scaling curve can be determined by the
NRG. By combining results for different values of Ũ , the full
scaling curve can then be built up, and by choosing Ũ ’s such
that the calculations overlap, one can obtain a measure of the
accuracy of the calculation.
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FIG. 7. (Color online) Universality in the field dependence of
the spectral maximum, �σ (h), in D11;σ (ω; h) for the symmetric AIM.
See text for discussion. Horizontal arrow indicates the exact low-
field asymptote �σ /h = 4

3 . Dashed line shows the high-field form
a log (h/ωK ) + c. Solid line shows �(h), the position of the maxima
in the spin-summed D11(ω; h); the vertical arrow indicates the exact
hC .

The points in Fig. 7 show the resultant �σ (h)/h obtained
from a series of NRG calculations for Ũ = 20, 40, 60, and
100. Results for different values of Ũ indeed overlap when
plotted versus h/ωK , indicating universal scaling behavior.
At low field �σ/h → 4/3 as h → 0, recovering the exact
result from Fermi liquid theory.37,60 The splitting �σ/h

increases with h/ωK , undergoing a rapid crossover around
h/ωK ∼ 1 and tending asymptotically to the limiting form
�σ/h ∼ a log(h/ωK ) + c, which behavior agrees with results
obtained from the local moment approach.37

We believe the low-h/ωK behavior of the points in Fig. 7
to be numerically exact, having repeated our calculations
significantly more accurately and obtained the same results.
The numerics also agree with recent NRG calculations42

performed in the narrow region −0.9 � log(h/ωK ) � 0.6.
As the field (and hence location of the spectral maximum)
increases further, however, it becomes progressively more
difficult to obtain accurate NRG results for �σ . This is a
direct consequence of the broadening procedure employed to
obtain NRG spectra: broadening is necessarily performed on a
logarithmic scale due to the inherent logarithmic discretization
of the technique, so sharp spectral features at finite frequencies
become increasingly difficult to resolve as they move away
from ω = 0. The problem can be resolved to some extent by
using z-averaging51 and calculating the self-energy directly,52

but presently available computing power limits the extent to
which this approach can be pushed. In Fig. 7, the points were
obtained by averaging results from 10 z’s, with a broadening
parameter32 b = 0.1. Increasing the number of z’s to 20 and
working with b = 0.07 and 0.05 gives the dot-dashed and
dot-dot-dashed lines in Fig. 7. The results are clearly sensitive
to the broadening at high fields, although in each case they
show qualitatively similar high-field behavior.

Figure 8 (right) shows analogous results for the spectral
shift in Dee;σ (ω; h) for the two-level model at p-h symmetry.
Here we find the results to be even more sensitive to the NRG
broadening procedure. The points show the splitting obtained
from averaging 10 z’s with b = 0.7 (using four different bare
values of U/� as before), while the short-dashed, long-dashed,
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FIG. 8. (Color online) Field-induced shift of the underscreened
Kondo resonance in the p-h-symmetric 2LM model. Left panel: the
spectrum Dee;↓(ω) for h = 0 (short dashed line), and for h/ωS=1

K =
0.366 with two different broadening parameters: b = 0.7 (dashed
line) and b = 0.2 (solid line). Right panel: �σ /h as a function of
h/ωS=1

K for b = 0.7 (points), b = 0.4 (short-dashed), b = 0.2 (long-
dashed), and b = 0.1 (solid), as discussed in the text. The results
appear to be converging to �σ /h = 2 for all h/ωS=1

K ; this limit is
marked as a vertical dotted line in the left panel for the case h/ωS=1

K =
0.366.

and solid lines are from 20 z’s with b = 0.4, 0.2, and 0.1,
respectively. As the accuracy of the calculation increases, the
splitting appears to be approaching �σ/h = 2 for all h, in
marked contrast to the behavior of the AIM in Fig. 7.

To pursue this further, the left-hand panel of Fig. 8 shows
Dee;↓(ω; h) for a representative low-field case, h/ωS=1

K �
0.0366: the long-dashed line shows the spectrum obtained with
broadening b = 0.7, while the solid line shows the b = 0.2
result. The figure clearly illustrates the sensitivity of the
finite-h spectrum to the value of b employed, and in line with
our conjecture above it appears that in the limit b → 0 the
peak position would lie at 2h (marked as a vertical dotted line
in the figure).

The short-dashed line in Fig. 8 shows also the cor-
responding h = 0 spectrum for comparison, the form of
which (including its zero-frequency cusp) has been discussed
previously.24,61 It is reasonable to conjecture that the finite-h
spectrum has a qualitatively similar form but shifted so that
the cusp occurs at ω = 2h, although at present it is not
possible to confirm or refute this using currently feasible NRG
calculations.

We conclude here with a point pursued further in Sec. V.
Our discussion has concerned purely the following question:
how does the equilibrium spectrum evolve with magnetic field
in single- and two-level dots? Here we have deliberately not
related the equilibrium spectrum to the finite-bias conductance,
because Eq. (10) is approximate and (as shown explicitly later
in relation to recent experiments) can give quantitatively wrong
results for field strengths in excess of a few Kondo scales.38

The figures shown here should not, therefore, be translated
naively into quantitative predictions of conductance splittings.
The only predictions for experiment that can currently be
made with real certainty are those involving the zero-bias
conductance. These are now discussed.
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FIG. 9. (Color online) Scaling of zero-bias conductance for
the 2LM at finite temperature and field. Top to bottom: h/ωS=1

K =
0, 0.1, 1, and 10. U = 2U ′ = 4J with Ũ = 30, 20, and 15 (red, blue,
and green) corresponding to ωK/� = 2.06 × 10−5, 1.64 × 10−3, and
1.47 × 10−2. Inset: G0

c(T ,h) vs h/ωS=1
K for Ũ = 20 and T/ωS=1

K =
0, 0.1, 1, 10. G0

c(T ,h = 0) vs T/ωS=1
K (dashed), as in the main figure,

is shown for comparison.

C. Zero-bias conductance

Figure 9 illustrates universality in the zero-bias conductance
for the 2LM, as functions of h/ωS=1

K and T/ωS=1
K . For

specificity, we consider the p-h symmetric point (x,y) = (0,0)
(which applies also to points along the line y = −x deep
in the USC phase, see Sec. III). The interactions are set
at U = 2U ′ = 4JH , and different values of Ũ = U/� are
considered. For fixed h/ωS=1

K (the values 0, 0.1, 1, and 10 are
shown explicitly in Fig. 9), the zero-bias conductance G0

c(T ,h)
is seen to be universal in T/ωS=1

K , as is evident from clear
scaling collapse of the different Ũ curves. Scaling naturally
breaks down at nonuniversal scales T ∼ min(�,U ), and for
T ∼ U the curves show peaks associated with incoherent
sequential tunneling.

Notice that at finite temperature for a given, sufficiently
large h/ωS=1

K (in excess of ∼ 0.1 in Fig. 9) there is a universal
peak in the zero-bias conductance at a temperature T ∼ h.
This is analogous to the peak at finite frequency in the T = 0
equilibrium spectrum, Sec. IV B. Yet here the peak exists in
a quantity that is both directly measurable by experiment and
calculable exactly by theory. Until theory is able to capture
accurately the nonequilibrium conductance as a function of
source-drain bias, we suggest that the field dependence of
this peak in the zero-bias conductance, and more generally
the h and T dependence of G0

c , be touchstones by which the
universality of experiment is assessed.

The inset to Fig. 9 shows another way of viewing the
universal conductance curves. Here we fix T/ωS=1

K (at values
0, 0.1, 1, and 10, top to bottom) and vary the magnetic field
h/ωS=1

K over many orders of magnitude. Notice that there is
no incoherent peak at large h, in contrast to that in the T

dependence for fixed h. This is because at large fields the
dot is completely spin-polarized, and its conductance is thus
weak.

Before moving to particular experiments, we consider
specifically the T = 0 zero-bias conductance. For h = 0, this
is related to the scattering phase shift, δ, via Eq. (9) and the
relation 2π�Dee(0) = sin2 δ. In previous work,24 we derived

an exact Friedel-Luttinger sum rule

δ = π

2
nimp + IL (19)

relating δ to the excess charge induced by the impurity, nimp

(equivalent to 〈n̂1 + n̂2〉 in the infinite bandwidth limit), and
the Luttinger integral IL defined by

IL = Im Tr
∫ 0

−∞
dω

∂�(ω)

∂ω
G(ω). (20)

We showed24 that while IL = 0 as usual for the screened
Fermi liquid phase, |IL| = π/2 is by contrast characteristic
of the USC phase (regardless of the bare model parameters),
reflecting the lack of adiabatic continuity of the USC phase to
the noninteracting limit.

On applying a magnetic field, the analysis of Ref. 24 readily
generalizes to the case of broken spin symmetry. Now one
has 2π�Dee;σ (0; h) = sin2δσ , with separate phase shifts for
σ =↑ , ↓ of the form

δσ = πnimp,σ + ILσ , (21)

where

ILσ = Im Tr
∫ 0

−∞
dω

∂�σ (ω)

∂ω
Gσ (ω), (22)

and such that19 [via Eq. (9)]

G0
c(T = 0)

(2e2/h)G0
= 1

2
[sin2 δ↑ + sin2 δ↓]. (23)

As mentioned in Sec. IV A, the USC fixed point is unstable
for any h > 0, which means that all NRG flows terminate at
the SC fixed point. Since the SC fixed point is characteristic
of adiabatic continuity to the noninteracting limit, for any
finite h one would expect the two Luttinger integrals ILσ to
vanish. This we have indeed confirmed by direct numerical
calculation.

The Luttinger integrals thus change discontinuously on
introducing an arbitrarily small magnetic field at any point
within the USC phase. One naturally then wonders whether
this has consequences for the conductance. To answer this,
one can write the phase shifts in terms of the excess charge
and magnetization19 defined by

n = nimp,↑ + nimp,↓,
(24)

m = nimp,↑ − nimp,↓

(with n ≡ 〈n̂1 + n̂2〉 and m ≡ m1 + m2 in the infinite band-
width limit), from which Eqs. (21) and (23) give

G0
c(T = 0)

(2e2/h)G0
= 1

2
{1 − cos[πn(h)] cos[πm(h)]} (25)

for any point in the (x,y) plane when h > 0. But at points
corresponding to the USC phase at zero field, m(h = 0+) = 1
(see, e.g., Fig. 3), i.e., it too jumps discontinuously on intro-
ducing an infinitesimal field. Substituting this into Eq. (25)
gives

G0
c(T = 0)

(2e2/h)G0
= cos2

(
πn

2

)
(h = 0+), (26)

115308-8



MAGNETIC FIELD EFFECTS IN FEW-LEVEL QUANTUM . . . PHYSICAL REVIEW B 84, 115308 (2011)

which is precisely the conductance obtained24 in the USC
phase for h = 0. In other words, although both the Luttinger
integrals and magnetization change discontinuously in the
USC phase on applying a field—and hence the cases h = 0
and h = 0+ are different—the conductance itself contains no
signature of these abrupt changes.

V. EXPERIMENTAL RESULTS

A. Semiconductor quantum dots

Turning now to experiment, we begin by considering the
work of Liu et al. in Ref. 44, where the magnetic field
dependence of the spin- 1

2 Kondo effect was measured in a
GaAs device. In the experiment, the gates were adjusted to
produce two different realizations of a quantum dot from
the same device, referred to as configurations I and II, with
different dot-lead tunnel barriers.44

We adopt the simplest theoretical model of the device, the
single AIM in Eq. (1), and parametrize it using experimental
data.44 At T = 0, the equilibrium model is characterized by
the two dimensionless parameters62 U/� and ε1/�, with the
experimental U = 1.4 meV.44 The level energy ε1 is as usual
taken to depend linearly on the applied gate voltage Vg: we
write ε1 + U/2 = αeδVg , with δVg the difference between the
experimental gate voltage and its value in the center of the
Coulomb blockade valley, and α is a dimensionless constant.
Finally, comparison to experimental splittings at finite bias
requires the dimensionless quantity λ (Sec. II), which controls
the partitioning of the source-drain bias Vsd between the leads.

The values of U/� and α appropriate to experiment could
in principle be obtained by comparing experimental and theo-
retical curves for TK/T 0

K versus ε1 + U/2 over a sufficiently
wide δVG range, where T 0

K is the Kondo scale at the center of
the Coulomb valley (i.e., ε1 + U/2 = 0). We find, however,
that the range of available data in Ref. 44 is insufficient to
determine U/� reliably in this way, since near the middle
of the Coulomb valley where the experimental results have
been obtained, the functional form of the theoretical Kondo
scale depends only on the ratio α2U/�, and hence U/�

and α cannot be obtained separately. We have therefore used
both the zero- and finite-field behavior to parametrize the
model, choosing the best values of U/�, α, and λ to agree
with the available experimental data. After analyzing a wide
range of parameter space, we obtain the values shown in
Table I.

Before showing our NRG results, we comment further on
the origin of these parameters. The values of U/� and λ were
determined first, simply by optimal fitting to the finite-field
data at the center of the Coulomb blockade valley (shown in
Fig. 10), using the approximate Eq. (10). Then to obtain α,
we compared the experimental TK/T 0

K versus gate voltage to

TABLE I. Parameters obtained for the two dot configurations of
Ref. 44, by comparison to NRG results.

Configuration U/� α λ T̃ 0
K (K)

I 8.0 0.020 0.7 0.2
II 7.2 0.017 0.65 0.3
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FIG. 10. (Color online) Splitting of the Kondo conductance peak
on application of a magnetic field, at the center of the Coulomb
blockade valley (ε1 = −U/2). The open squares and filled circles
are experimental data,44 while the blue (solid) and red (dot-dashed)
lines are NRG calculations for U/� = 8, λ = 0.7 and U/� = 7.2,
λ = 0.65, respectively. The dashed line is �G = 0 and the dotted line
is �G = kBT with the experimental T = 55 mK.

our corresponding theoretical results, themselves taken from
explicit NRG calculations. We observe that the values of α

so obtained are in line with the experimental estimate44 α �
0.024. Noting that the quantity denoted “�” in Ref. 44 is
2� here, the ratios of U/� determined therein are 5.3 and
4.0 for configurations I and II, respectively. Our values are a
little larger than these, contributory factors being (a) that in
determining � from the widths of the charging peaks one must
bear in mind their many-body broadening,63,64 which typically
gives them a half-width at half maximum of around 1.5 − 2�

(rather than �, as arises in the noninteracting limit), and (b)
fitting Kondo scales to the Haldane formula used in Ref. 44
underestimates U/�, since it applies asymptotically in the
limit U/� � 1. Given the U/�, and the experimental U =
1.4 meV,44 we then calculate the Kondo temperatures T̃ 0

K as
shown in Table I, with T̃ 0

K defined (as in experiment44) such that
G0

c(T̃ 0
K,0)/G0 = e2/h at ε1 = −U/2. Given the sensitivity of

absolute Kondo scales to the bare model parameters, our values
are in good agreement with the experimental estimates of 0.3
and 0.63 K (configurations I and II, respectively).44

To add further support to these parameters, we note that
a consistent, independent determination of λ can be obtained
from the experimental conductance map, Fig. 1(a) of Ref. 44.
The slopes of the diagonal sequential tunneling peaks, when
plotted with Vsd as the horizontal axis, are readily shown65 to
be proportional to 1/λ and 1/(1 − λ), and hence their ratio
yields λ/(1 − λ). From the experimental data,44 we extract
λ ≈ 0.7, in agreement with our values listed above.

With the parameters thus chosen, Fig. 10 compares the
size of the peak splittings �G (defined as half the peak
to peak splitting in the finite-bias conductance, using the
notation of Ref. 44) from theory—using the approximate
Eq. (10)—and experiment,44 both obtained in the center of the
Coulomb valley (ε1 = −U/2). We have plotted the data in the
form employed in Ref. 44, subtracting the Zeeman splitting
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gμBB = 2h from the actual splitting �G to emphasize the
deviation of the two. The open squares and filled circles are
the experimental data for dots I and II, respectively (as in Fig. 4
of Ref. 44), while the blue (solid) and red (dot-dashed) lines
are the corresponding theoretical results. The latter have been
obtained at T = 0: we note that the experimental splittings
are generally somewhat in excess of T (see the dotted line in
Fig. 10), and hence temperature does not play an important
role in the analysis. Note also that for fields very close to the
coalescence point where �G vanishes (i.e., when the splittings
approach the dashed curve in Fig. 10), it is difficult to extract
the precise value of the splitting, and hence we show only the
sections of the curves for which the splitting can be determined
reliably.

The agreement between theory and experiment is very
good. In both cases, theory reproduces well the low-field
splittings, and the curves track the experimental results up
to fields of around 5 T, corresponding to Kondo peak splittings
of around 1–2T 0

K . At higher fields, the theoretical curves
certainly deviate from experiment, which we take to be a
sign of the breakdown of the quasiequilibrium approximation
in Eq. (10). Recently, Schmitt and Anders have extended
their nonequilibrum scattering-states NRG approach to the
Anderson model in a magnetic field.45 This approach offers
a promising means of determining peak splittings out of
equilibrium, and further work comparing its predictions with
those of Eq. (10) should help to establish the regimes of
the model where nonequilibrium effects play a large role.
One interesting question to be pursued here is the effect of
left-right asymmetry in the coupling to the leads,45 since
within the quasiequilibrium approximation this affects only
the dimensionless G0 in Eq. (10) and thus simply rescales the
conductance uniformly.

The final point to note here is that theory reproduces the
crossing of the two curves identified in the experiment. We
find this to be entirely a consequence of the slightly different
λ’s for dots I and II: if one repeats the calculations with equal
λ’s, the curves do not cross. This, in fact, is a special case of a
more general finding: for a given λ, our calculations show that
curves with different U/� never cross (even if one or both
curves correspond to nonuniversal parameter regimes). Hence
the crossing of the two curves should not be taken44 to indicate
the breakdown of universal scaling per se.

B. Carbon nanotube quantum dots

We now turn to an analysis of the experiments of Quay
et al.,43 in which the magnetic field dependences of both spin- 1

2
and spin-1 Kondo effects were measured in different Coulomb
valleys of a carbon nanotube device.

1. Spin- 1
2 Kondo valley

In the spin- 1
2 valley, conductance maps were obtained43

at zero and finite B as a function of gate and source-drain
biases, and the evolution of the finite-bias conductance was
also measured as a function of B. The splitting of the Kondo
resonance at finite bias was compared to various theoretical
predictions in the literature, the level of agreement being rather
poor.43 In this section, we explain why the experiment did not

recover the expected behavior. First, we again parametrize the
model from zero-field experimental data.

As before, the spin- 1
2 Kondo effect in experiment is

captured well by the Anderson impurity model, Eq. (1). By
comparing to the experimental conductance maps in Ref. 43,
we find the value U/� = 8.5 gives optimal agreement with
the experimental data at both zero and finite fields. The
value of λ � 0.58 can separately be extracted as described
in the previous section,65 and the experimental U can be
determined from the Coulomb peak position in Fig. 2(d) of
Ref. 43: it is readily seen to be approximately 2 meV, and
hence � � 0.24 meV. From NRG calculations at T = 0, we
then find T̃ 0

K = 0.094� � 0.022 meV � 0.25 K, lower than
the experimentally estimated value of 2 K. This means that the
temperature of the device (T = 352 mK)43 is then on the order
of the Kondo scale, rather than being somewhat less than it.
We believe this to be more consistent with experiment, as is
now explained.

The magnitude of the experimental Kondo scale can be
gauged by inspection of Fig. 2(d) of Ref. 43. If these results
were obtained at a temperature somewhat below T̃ 0

K , the Kondo
resonance would hardly be eroded by temperature, and instead
one would naturally attribute the diminution of the zero-bias
conductance from the unitarity limit of 2e2/h to the asymmetry
of the left and right dot-lead couplings (manifest in a G0 ≈
0.4). But it is then difficult to explain the heights of the Kondo
resonance relative to that of the Coulomb peaks since [with
the caveat that Eq. (10) is approximate] we would expect63

the latter to be around a quarter of the height of the former
for T � T̃ 0

K . We believe it much more likely that T̃ 0
K is closer

to the temperature of the device, eroding more the Kondo
resonance and thus reducing its height to something closer to
that of the Coulomb peaks.

Moving on to our conductance results, Fig. 11(a) shows the
theoretical conductance map, calculated from Eq. (10), to be
compared to Fig. 2(a) of Ref. 43. The general agreement is
good; the theory reproduces the intense sequential tunneling
peaks when the dot level is resonant with one of the lead
chemical potentials, the somewhat weaker Coulomb diamond,
and the narrower Kondo resonance at zero bias near the center
of the Coulomb blockade valley. Figure 11(b) shows the
effect of switching on a magnetic field h/� = 0.5: again, the
qualitative agreement with experiment is very good, including
now a clear “ellipsoidal” ring around the center of the Coulomb
blockade valley resulting from the splitting of the Kondo
resonance by the field.

The field dependence is shown in more detail in Figs. 11(c)
and 11(d), which both show the field dependence of the
conductance in the center of the Coulomb blockade valley. We
again recover the key features of the experiment [Figs. 2(c)
and 2(d) of Ref. 43]. For fields sufficiently small compared to
the zero-field Kondo scale (h/� � 0.2), the Kondo resonance
remains intact, while for larger fields it is progressively split
and ultimately destroyed with increasing h, eventually leading
to a region of almost zero conductance around zero bias.
Comparing the slices through the data in Fig. 11(d) to those of
the experiment, we again observe good qualitative agreement
between the two.

We should point out at this stage that the value of h/� = 0.5
chosen in Fig. 11(b) corresponds, in physical units, to a field
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FIG. 11. (Color online) Spin- 1
2 conductance maps at zero and

finite magnetic field: to compare with Fig. 2 of Ref. 43. An AIM is
used with Ũ = 8.5 (giving ωK/� � 0.15), with T = ωK and G0 = 1.
(a) Zero-field conductance: a clear Kondo ridge is seen at zero bias
voltage. (b) A finite field, h̃ = 0.5, splits this ridge into twin peaks
away from zero bias. (c) Evolution of the Kondo peaks with field at
the middle of the Coulomb valley (p-h symmetry). (d) Vertical slices
through (c) with (top to bottom) h̃ = 0, 0.1, 0.2, . . . ,0.9, offset by
0.02 2e2h−1 per slice.

of about 2 T, around half the experimental field. This again we
attribute primarily to the breakdown of the quasiequilibrium
approximation Eq. (10) at fields larger than a couple of TK : as
seen earlier in Fig. 10, the approximation tends to overestimate
the splitting at these high fields, and hence a smaller h/� must
be used in the calculation to obtain the same absolute splitting
as the experiment. Based on the comparison of the previous
section, noting the theoretical value here of T̃ 0

K = 0.094�,
we would estimate that the quasiequilibrium approximation
begins to break down for this experiment at fields B � 1 T.

While the latter means we cannot compare quantitatively
our NRG predictions at finite field to those of the experiment
over the whole range of fields measured, we nonetheless be-
lieve the parametrization of the experiment to be reliable at low
magnetic fields. This allows us to make order-of-magnitude
predictions that explain the significance of the experimental
results and the reason for the apparent disagreement with
theory,43 as is now explained.

To summarize the analysis of Ref. 43, first the splitting of
the Kondo peak with field was extracted from the experimental
data and plotted versus B. It was found that half the splitting
tends to the form δ = gμBB at high field (with g � 2.07).
Direct comparison was then made between the full field
dependence of the splitting obtained from several theories,
and experiment.

We point out that there are two basic problems with making
this comparison. First and foremost, if one is interested in
the universal form of the Kondo splitting, the experimental

parameters need to satisfy both U/� � 1 and h � min(�,U ).
The former condition is necessary to ensure that the experiment
is well-described by an effective Kondo model at low energies,
and arises because the Schrieffer-Wolff transformation that
maps the full Anderson model onto the Kondo model is
formally valid in the asymptotic limit U/� � 1. The latter
condition defines what is meant here by “low energies”: even
if U/� is large, the effective Kondo description will always
break down at energies of the order of the nonuniversal scale
�, and the results on such an energy scale will simply not show
universal Kondo form.

One could argue that the U/� � 8.5 here is sufficiently
large for the experiment to be well described by a Kondo
model at zero field, although we believe this to be a somewhat
more borderline case. The main problem, however, is that the
experimental U and � are too small for the high-field results to
be universal. This can in fact be seen directly from Fig. 2(d) of
Ref. 43 [see also Figs. 11(b) and 11(d)]: even at moderate fields
of 2–3 T, the Kondo (“Zeeman”) peaks are already overlapping
significantly the nonuniversal Coulomb peaks. More formally,
to be universal for some given h/TK requires h/� � 1, the
experimental U = 2 meV,43 and � � 0.2 meV as above, from
which gμBB � � when B � 2 T.

The second problem is that the predictions for the theo-
retical conductance34,36,37 have all been made using (either
explicitly or implicitly) the approximation of Eq. (10), rather
than from a full-blown nonequilibrium approach. Even when
we use the appropriate nonuniversal parameters in our NRG
calculations, the comparison to both the present experiment
and that of the previous section suggests that Eq. (10) is
quantitatively reliable only for fields smaller than a few Kondo
scales,38 and even then is strongly dependent on the value of λ.
Until nonequilibrium approaches such as the scattering-states
NRG45 become more feasible, the quantitative, universal form
of the conductance splitting for h � T̃ 0

K is an open question;
one should certainly not expect a priori to obtain quantitative
agreement between experiment and Eq. (10).

2. Spin-1 Kondo valley

Finally, we consider the effect of magnetic field on the
conductance of the two-level model, Eq. (2), to make a com-
parison with the spin-1 Kondo valley experiments of Ref. 43.
Since there are more interactions in the two-level Hamiltonian
than the AIM, it is obviously harder to parametrize the model
from the available data in a fully systematic manner. We have
thus endeavored to choose physically reasonable parameter
values that reproduce qualitatively the experimental results (cf.
those used for the experimental comparison of Ref. 24), from
which we find U/� = 12, U ′/� = 6, JH /� = −0.5, and
(ε2 − ε1)/� ≡ �ε/� = 4.5. For simplicity, we take T = 0,
λ = 1

2 , and G0 = 1. Choosing a reasonable value of � ∼
0.25 meV gives, e.g., a charging energy U ∼ 3 meV and
level spacing �ε ∼ 1 meV, both of which are within typical
experimental estimates.

Figure 12(a) shows the resultant splitting of the “under-
screened Kondo” conductance peak at a point in the USC phase
near the zero-field USC/SC phase transition [as indicated by
the tail of the arrow in the phase diagram Fig. 12(c)]. The
figure is qualitatively similar to that for the spin- 1

2 Kondo peak
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FIG. 12. Conductance maps for the 2LM close to the h = 0 phase
transition, for Ũ = 12, Ũ ′ = 6, J̃H = −0.5, and �ε̃ = 4.5. To be
compared to Figs. 5(a) and 5(b) of Ref. 43. (a) USC phase for y =
−x = 2.25� (x = ε1 + 1

2 U + U ′ and y = x + �ε, with ε1 ∝ Vgate).
The conductance peak splits on applying a field. (b) SC phase for
(x,y) = (1.25�,5.75�). The h = 0 Kondo antiresonance is “filled
in” for h > 0; full discussion in text. (c) h = 0 phase diagram for
the above parameters as a function of x/� and y/�, with the arrow
showing the “trajectory” taken in going from (a) to (b). (d) Zero-bias
cut through (b) (crosses), along with the total dot occupation number
n(h) (dashed), magnetization m(h) (dotted), and G0

c/(2e2/h) as given
by Eq. (25) (solid).

in a magnetic field [Fig. 11(c)] but, as noted in the case of a
stretched spin-1 molecule,28 the field at which the zero-bias
peak is destroyed is a somewhat smaller fraction of the Kondo
scale. This naturally reflects the sharper USC Kondo resonance
(see Fig. 8, left) compared to the spin- 1

2 Kondo case.
The Kondo scale ωS=1

K for the chosen parameters is ωS=1
K �

0.66� � 0.2 meV � 2 K, which again appears roughly in line
with the widths of the Kondo peaks in the experimental con-
ductance maps.43 This means it is perhaps misleading to refer
to the basic phenomenology here as “underscreened Kondo”
physics, since resonance widths on the order of � imply the
model is far from being well described by an effective spin-1
Kondo model per se. As for the semiconducting quantum dot
analyzed previously,24 it also appears that the experimental
trajectory as a function of gate voltage (ε1 ∝ Vgate) just cuts
the “edge” of the USC phase where the USC-phase Kondo
scale is relatively high.

Just across the phase boundary into the SC Fermi liquid
phase, we obtain the conductance map shown in Fig. 12(b).
Here we have kept the interactions and �ε fixed, but increased
ε1 by 3.5� from its value in Fig. 12(a) [the head of the
arrow in Fig. 12(c) gives the precise location relative to the
phase boundary]. The qualitative agreement between theory
and experiment [Fig. 5(b) of Ref. 43] is again very good. We
recover all basic features seen in experiment:43 at zero field,
the conductance peaks at around ±2� � ±0.5 meV, reflecting
at zero bias the antiresonance in the equilibrium spectrum
just inside the SC phase.14,24 These peaks move toward each

other, cross, and ultimately move apart with increasing field,
which can be loosely associated with a crossing of the isolated
dot singlet and lowest triplet states, with a finite-field Kondo
effect taking place at the crossing point (again, the “Kondo”
scale here is rather large, and as such one cannot describe
the low-energy behavior in terms of a pure spin- 1

2 Kondo
model). We note that in our calculations, the crossing takes
place at h ∼ 0.7� � 0.2 meV and hence B ∼ 3 T, again in
good agreement with experiment. One can also make out
various weaker features in the conductance, parallel to the
main features and again seen experimentally, which mirror
transitions from the isolated dot singlet to the higher energy
triplet states.43

The zero-bias conductance is analyzed further in Fig. 12(d),
which is a cut through Fig. 12(b) at eVsd = 0 [crosses are the
NRG data from Fig. 12(b)]. With increasing field, G0

c/(2e2/h)
increases from its zero-field value of ∼ 1

2 , passes through a
maximum at h/� ∼ 0.7 [as is evident from Fig. 12(b)], and
decreases monotonically thereafter. Also shown are the total
dot occupation n(h) and magnetization m(h) [see Eq. (24)],
both of which increase smoothly and monotonically as the
ground state evolves with increasing field. At zero field, the
dot is in a mixed-valent regime, with n(h = 0) � 1.5 (and
m = 0). But with increasing field, the dot ground state becomes
progressively more like the simple Sz = 1 component of the
isolated-dot triplet, with both total charge and magnetization
tending to 2 for h/� � 1 (i.e., nimp,↑ � 2, nimp,↓ � 0).

While the zero-bias conductance shown above is calculated
using Eq. (9), and as such probes single-particle spectra,
its field dependence shown in Fig. 12(d) should equally be
explicable from Eq. (25) (Sec. IV C), expressed solely in terms
of the dot charge and magnetization. That this is indeed so is
shown directly in Fig. 12(d): the solid line is calculated from
Eq. (25), and seen to be in very good agreement with the direct
NRG calculations.

VI. CONCLUDING REMARKS

In this paper, we have considered in some detail the
effects of an applied magnetic field on single- and two-level
quantum dots tunnel-coupled to a metallic lead, including
magnetization, single-particle dynamics, and conductance,
and highlighting for the two-level model in particular the
rather subtle differences between the limits h = 0 and h → 0.
We have used NRG to analyze critically the field-dependent
shift of the Kondo resonances in the two models, providing
an algorithm that, in principle, can generate the universal
scaling behavior over arbitrarily large h/ωK ranges, limited
in practice only by the logarithmic broadening inherent to
NRG. For the single-level AIM, calculations can now be
performed sufficiently accurately to achieve convergence up
to fields of around h ∼ 100ωK ; for the two-level model,
convergence is slower, but it appears to indicate a con-
stant spectral shift �σ = 2h for all fields in the universal
regime.

We have also made a direct comparison between NRG
calculations and two recent sets of conductance experiments
on quantum dots in a magnetic field,43,44 using Anderson-type
models for the dots to determine bare parameters corre-
sponding to the experimental realizations. Agreement between
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theory and experiment is found to be very good qualitatively
(essentially all salient experimental features are captured by
the models), and even quantitatively—see, e.g., Fig. 10—
provided the system is not “too far out of equilibrium.”
Since NRG provides in essence numerically exact results,
the deviation of calculations from experiment provides a
measure of the quantitative reliability of the quasiequilibrium
approximation in Eq. (10), used throughout to calculate
conductance; we find it typically breaks down when the
field-induced splitting exceeds somewhat the zero-field Kondo
scale.

We have argued that neither experiment43,44 considered
has measured the universal conductance splitting of the
spin- 1

2 Kondo effect, and we have emphasized (Sec. V A)
the considerable sensitivity of the field dependence of the
conductance peak to the partitioning of the bias potential
between the leads (embodied in λ)—over which, to our

knowledge, there is relatively little experimental control. In
addition, as above, Eq. (10) for the conductance is approximate
out of equilibrium, and until nonequilibrium approaches such
as the scattering states NRG45 are sufficiently developed to
become the mainstay, the present theoretical tools are limited
in that respect.

In view of the above, we suggest that more experimental
attention should be given to the equilibrium, zero-bias con-
ductance. Given exactly by Eq. (9), and independent of λ,
its field dependence can be calculated exactly (see, e.g., Sec.
IV C). We believe it presents a better prospect for ascertaining
universality in the magnetic field dependence of spin- 1

2 and
spin-1 Kondo effects in real quantum dots.
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