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We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots
up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb
interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb
interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the
diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger
systems of electrons.
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I. INTRODUCTION

Strongly confined electrons offer a wide variety of complex
and subtle phenomena, which pose severe challenges to
existing many-body methods. Quantum dots, in particular (that
is, electrons confined in semiconducting heterostructures),
exhibit, due to their small size, discrete quantum levels. The
ground states of, for example, circular dots show similar shell
structures and magic numbers as seen for atoms and nuclei.
These structures are particularly evident in measurements of
the change in electrochemical potential due to the addition
of one extra electron �N = μ(N + 1) − μ(N ). Here, N is
the number of electrons in the quantum dot, and μ(N ) =
E(N ) − E(N − 1) is the electrochemical potential of the
system. Theoretical predictions of �N and the excitation
energy spectrum require accurate calculations of ground-state
and excited-state energies.

The above-mentioned quantum mechanical levels can, in
turn, be tuned by means of, for example, the application of
various external fields. The spins of the electrons in quantum
dots provide a natural basis for representing so-called qubits.1

The capability to manipulate and study such states is evidenced
by several recent experiments (see, for example, Refs. 2
and 3). Coupled quantum dots are particularly interesting
since so-called two-qubit quantum gates can be realized by
manipulating the exchange coupling, which originates from
the repulsive Coulomb interaction and the underlying Pauli
principle. For such states, the exchange coupling splits singlet
and triplet states, and depending on the shape of the confining
potential and the applied magnetic field, one can allow for
electrical or magnetic control of the exchange coupling. In
particular, several recent experiments and theoretical investiga-
tions have analyzed the role of effective spin-orbit interactions
in quantum dots4–7 and their influence on the exchange
coupling.

A proper theoretical understanding of the exchange cou-
pling, correlation energies, ground-state energies of quantum
dots, the role of spin-orbit interactions, and other proper-
ties of quantum dots as well requires the development of

appropriate and reliable theoretical few- and many-body
methods. Furthermore, for quantum dots with more than two
electrons and/or specific values of the external fields, this
implies the development of few- and many-body methods
where uncertainty quantifications are provided. For most
methods, this means providing an estimate of the error due
to the truncation made in the single-particle basis and the
truncation made in limiting the number of possible excitations.
For systems with more than three or four electrons, ab initio
methods that have been employed in studies of quantum dots
include variational and diffusion Monte Carlo,8–11 path integral
approaches,12 large-scale diagonalization (full configuration
interaction),13–16 and to a very limited extent coupled-cluster
theory.17–20 Exact diagonalization studies are accurate for a
very small number of electrons, but the number of basis
functions needed to obtain a given accuracy and the com-
putational cost grow very rapidly with electron number. In
practice, they have been used for up to eight electrons,13,14,16

but the accuracy is very limited for all except N � 3 (see, for
example, Refs. 15 and 21). Monte Carlo methods have been
applied up to N = 24 electrons.10,11 Diffusion Monte Carlo,
with statistical and systematic errors, provides, in principle,
exact benchmark solutions to various properties of quantum
dots. However, the computations start becoming rather time
consuming for larger systems. Hartree,22 restricted Hartree-
Fock, spin- and/or space-unrestricted Hartree-Fock23–25 and
local spin-density, and current density functional methods26–29

give results that are satisfactory for a qualitative understanding
of some systematic properties. However, comparisons with
exact results show discrepancies in the energies that are
substantial on the scale of energy differences.

Another many-body method with the potential of providing
reliable error estimates and accurate results is coupled-cluster
theory, with its various levels of truncations. Coupled-cluster
theory is the method of choice in quantum chemistry,
atomic and molecular physics,17,18,30 and has recently been
applied with great success in nuclear physics as well (see,
for example, Refs. 31–34). In nuclear physics, with our
spherical basis codes, we expect now to be able to perform
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ab initio calculations of nuclei up to 132Sn with more than 20
major oscillator shells. The latter implies dimensionalities of
more than 10100 basis Slater determinants, well beyond the
reach of the full configuration-interaction approach. Coupled-
cluster theory offers a many-body formalism that allows
for systematic expansions and error estimates in terms of
truncations in the basis of single-particle states.35 The cost
of the calculations scale gently with the number of particles
and single-particle states, and we expect to be able to study
quantum dots up to 50 electrons without a spherical symmetry.
The main advantage of the coupled-cluster method over, say,
full configuration approaches relies on the fact that it offers an
attractive truncation scheme at a much lower computational
cost. It preserves, at the same time, important features such as
size extensivity.

The aim of this work is to apply coupled-cluster theory
with the inclusion of triples excitations through the highly ac-
curate and efficient �-coupled-cluster singles-doubles (triples)
[�-CCSD(T)] approach36–39 for circular quantum dots up
to N = 20 electrons, employing different strengths of the
applied magnetic field. The results from these calculations
are compared in turn with, in principle, exact diffusion Monte
Carlo calculations. Moreover, this paper introduces a technique
widely applied in the nuclear many-body problem, namely,
that of a renormalized two-body Coulomb interaction. Instead
of using the free Coulomb interaction in an oscillator basis,
we diagonalize the two-electron problem exactly using a
tailor-made basis in the center-of-mass frame.15 The obtained
eigenvectors and eigenvalues are used, in turn, to obtain, via
a similarity transformation, an effective interaction defined
for the lowest 10–20 oscillator shells. These shells define our
effective Hilbert space where the coupled-cluster calculations
are performed. This technique has been used with great success
in the nuclear many-body problem, in particular, since the
strong repulsion at short interparticle distances of the nuclear
interactions requires a renormalization of the short-range
part.40,41 With this renormalized Coulomb interaction and
coupled-cluster calculations with triples excitations included
through the �-CCSD(T) approach, we obtain results in close
agreement with the diffusion Monte Carlo calculations. This
opens up many interesting avenues for ab initio studies of
quantum dots, in particular, for systems beyond the simple
circular quantum dots.

This paper is organized as follows. Section II introduces
(i) the Hamiltonian and interaction for circular quantum dots,
(ii) the basic ingredients for obtaining an effective interaction
using a similarity-transformed Coulomb interaction, then
(iii) a brief review of coupled-cluster theory and the �-
CCSD(T) approach, and finally (iv) the corresponding details
behind the diffusion Monte Carlo calculations. In Sec. III,
we present our results, whereas Sec. IV is devoted to our
conclusions and perspectives for future work.

II. COUPLED-CLUSTER THEORY AND DIFFUSION
MONTE CARLO

We present first our Hamiltonian in Sec. II A; thereafter,
we discuss how to obtain a renormalized two-body interaction
in an effective Hilbert space. In Sec. II C, we present our

coupled-cluster approach, and finally in Sec. II D, we briefly
review our diffusion Monte Carlo approach.

A. Physical systems and model Hamiltonian

We will assume that our problem can be described entirely
by a nonrelativistic many-electron Hamiltonian Ĥ , resulting
in the Schrödinger equation

Ĥ |�〉 = E|�〉, (1)

with |�〉 being the eigenstate and E the eigenvalue. The
many-electron Hamiltonian is normally written in terms of
a noninteracting part Ĥ0 and and interacting part V̂ , namely,

Ĥ = Ĥ0 + V̂ =
N∑

i=1

ĥi +
N∑

i<j

v̂ij ,

where Ĥ0 is the (one-body) Hamiltonian of the noninteracting
system, and V̂ denotes the (two-body) Coulomb interaction. In
general, the Schrödinger equation (1) can not be solved exactly.

We define the reference Slater determinant |�0〉 as the
ground state of the noninteracting system by filling all
the lowest-lying single-particle orbits. Since we will limit
ourselves to systems with filled shells, this may be a good
approximation, in particular, if the single-particle field is the
dominating contribution to the total energy. The noninteracting
Schrödinger equation reads as

Ĥ0|�〉 = e0|�0〉, (2)

where

Ĥ0 =
N∑

i=1

ĥi =
N∑

i=1

[t̂i + v̂con(ri)].

The terms t̂i and v̂con(ri) are the kinetic-energy operator and the
confining potential (from an external applied potential field) of
electron i, respectively. The vector ri represents the position
in two dimensions of electron i. Due to the identical and
fermionic nature of electrons, the eigenstates of Eq. (2) are
Slater determinants, with the general form

|�〉 = |ijk . . . m〉 = â
†
i a

†
j â

†
k . . . â†

m|0〉,
with â† being standard fermion creation operators (and â being
annihilation operators). The single-particle eigenstates |i〉 =
â
†
i |0〉 and eigenenergies εi are given by the solutions of the

one-particle Schrödinger equation governed by the operator
ĥi . Since the total energy of the noninteracting system is given
by the sum of single-particle energies εi , we have

e0 =
N∑

i=1

εi,

the reference determinant |�0〉 is obviously the Slater deter-
minant constructed from those orbitals with single-particle
energies that yield the lowest total energy. In the particle-hole
formalism, orbitals in the occupied space are referred to as
hole states, while orbitals in the virtual space are denoted
particle states. In principle, any complete and orthogonal
single-particle basis can be used. However, since our coupled-
cluster approach involves the solution of a set of nonlinear
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equations, it is preferable to start from a basis that produces a
mean-field solution not too far away from the “exact” and fully
correlated many-body solution. Therefore, our main results
will be obtained using the Hartree-Fock basis as a starting point
for our coupled-cluster calculations. The Hartree-Fock basis is
obtained from a linear expansion of harmonic-oscillator basis
functions, such that the expectation value of the Hamiltonian
is minimized.

For the diffusion Monte Carlo calculations, it is also
necessary to start from a model wave function that is used
as importance function in the sampling, as we will discuss
later. The Slater determinant part, in this case, is built
starting from the self-consistent orbitals generated in a local
density approximation calculation in order to include as much
information as possible about both exchange and correlation
effects at the one-body level. Explicit two-body correlations
are then included as an elaborate Jastrow factor; see Sec. II D
for further details.

Our model Hamiltonian42 for a quantum dot consists of
a two-dimensional system of N electrons moving in the z =
0 plane, confined by a parabolic lateral confining potential
Vcon(r). The Hamiltonian is

Ĥ =
N∑

i=1

(
− h̄2

2mem∗ ∇2
i + Vcon(ri)

)
+ e2

ε

N∑
i<j

1

|ri − rj | .

In the above equation, m∗ is a parameter relating the bare
electron mass to an effective mass, and ε is the dielectric
constant of the semiconductor. In the following (if not
explicitly specified otherwise), we will use effective atomic
units, defined by h̄ = e2/ε = mem

∗ = 1. In this system of
units, the length unit is the Bohr radius a0 times ε/m∗, and the
energy has units of Hartrees times m∗/ε2. As an example,
for the GaAs quantum dots, typical values are ε = 12.4
and m∗ = 0.067. The effective Bohr radius a∗

0 and effective
Hartree H∗ are � 97.93 Å and � 11.86 meV, respectively. In
this work, we will consider circular dots only with N = 2,
6, 12, and 20 electrons confined by a parabolic potential
Vcon(r) = mem

∗ω2r2/2. The numbers N = 2, 6, 12, and 20
are so-called magic numbers corresponding to systems with
closed harmonic-oscillator shells, and hopefully a single-
reference Slater determinant yields a good starting point for
our calculations. Although the emphasis here is on closed-shell
systems, we show also results for systems with one particle
attached to or removed from a closed-shell system for N = 3,
5, 7, 11, and 13.

The one-body part of our Hamiltonian becomes

Ĥ0 =
N∑

i=1

(
−1

2
∇2

i + ω2

2
r2
i

)
,

whereas the interacting part is

V̂ =
N∑

i<j

1

|ri − rj | .

The unperturbed part of the Hamiltonian yields the single-
particle energies

εi = ω(2n + |m| + 1), (3)

where n = 0,1,2,3, . . . and m = 0, ± 1, ± 2, . . . . The index
i runs from 0,1,2, . . . . The shell structure is clearly deduced
from this expression. We define R as the shell index. We will
denote the shell with the lowest energy as R = 1, the shell
with the second lowest energy as R = 2, and so forth. Hence,

Ri ≡ εi−1

ω
(i = 1,2,3, . . .). (4)

In the calculations, we limit ourselves to values of ω =
0.28 a.u. (atomic units), ω = 0.5 a.u., and ω = 1.0 a.u. For
higher values of the oscillator frequency, the contribution to
the energy from the single-particle part dominates over the
correlation part. The value ω = 1.0 is an intermediate case,
which also allows for comparison with Taut’s exact solution
for N = 2 (see Ref. 43), while ω = 0.5 and 0.28 represent
cases where correlations are stronger, due to the lower average
electron density in the dot.

B. Effective interaction

Whenever a single-particle basis is introduced in order
to carry out a many-body calculation, it must be truncated.
The harmonic-oscillator basis is the de facto standard for
quantum dots and nuclear structure calculations. In nuclei, the
intrinsic Hamiltonian is most easily treated using this basis,
and for quantum dots, the confining potential is to a good
approximation harmonic.

However, the discrete Hilbert space H obtained from such
a truncation grows exponentially with the number of particles.
For example, allowing n single-particle states and N particles,

dim(H) =
(

n

N

)
.

As an example, if we distribute N = 6 electrons in the total
number of single-particle states defined by 10 major oscillator
shells, we have n = 110, resulting in dim(H) ≈ 2.3 × 1013

Slater determinants. This number is already beyond the limit
of present full configuration-interaction approaches. In our
coupled-cluster calculations, we perform studies up to some
20 major shells. For 20 shells, the total number of single-
particle states is n = 420, for which dim(H) ≈ 1.3 × 1018,
well beyond reach of standard diagonalization methods in the
foreseeable future. For 20 electrons in 20 shells, the number
of Slater determinants is much larger, 7.6 × 1033 in total.

But, even if we could run large configuration-interaction
calculations, the convergence of the computed energies as
a function of the chosen single-particle basis is slow for a
harmonic-oscillator basis, mainly due to the fact that this
basis does not properly take into account the cusp condition at
|ri − rj | = 0 of the Coulomb interaction. In fact, the error �E

in the energy for a quantum-dot problem, when increasing the
dimensionality to one further shell with a harmonic-oscillator
(HO) basis, behaves like

�E ∼ O
(
R−k+δ−1

HO

)
. (5)

Here, k is the number of times a given wave function � may
be differentiated weakly, δ ∈ [0,1) is a constant, and RHO is
the last oscillator shell. The derivation of the latter relation
is detailed in Ref. 21, together with extensive discussions
of the convergence properties of quantum-dot systems. For
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the ground state of the two-electron quantum dot, we have
precisely k = 1, while for higher electron numbers, one
observes k = O(1). This kind of estimate tells us that an
approximation using only a few HO eigenfunctions necessarily
will give an error depending directly on the smoothness k.

Although the coupled-cluster method allows for the in-
clusion of much larger single-particle spaces, the slow con-
vergence of the energy seen in full configuration-interaction
calculations applies to this method as well as it approximates
the configuration-interaction solution using the same set of
single-particle functions. For an overview of coupled-cluster
error analysis, see Refs. 35 and 44.

One way to circumvent the dimensionality problem is to
introduce a renormalized Coulomb interaction V̂eff defined for
a limited number of low-lying oscillator shells. Such tech-
niques have been widely used in nuclear many-body problems
(see, for example, Refs. 15,45 and 46). For quantum dots, this
was first applied to a configuration interaction calculation by
Navratil et al.,47 albeit for a different quantum-dot model. But,
the potential of this method has not been explored fully, except
for recent preliminary studies in Refs. 15,21, and 48, which
demonstrate a significant improvement of the eigenvalues.
Furthermore, we expect that the potential of this method
is of even greater interest when linked up with an efficient
many-body method such as the coupled-cluster approach.

The recipe for obtaining such an effective interaction is
detailed in several works (see, for example, Refs. 15,46, and
49). Here, we give only a brief overview.

The Hilbert space H is divided into two parts PH and QH,
where P and is the orthogonal projector onto the smaller,
effective model space, and Q = 1 − P . Note here that PH
will be the space in which we do our many-body computations,
and H is, in principle, the whole untruncated Hilbert space.
The interaction operator V̂ is considered a perturbation, and we
introduce a convenient complex parameter z and study Ĥ (z) =
Ĥ0 + zV̂ . Setting z = 1 recovers the original Hamiltonian.

Consider a similarity transformation of Ĥ (z) defined by

H̃ (z) ≡ e−X(z)Ĥ (z)eX(z), (6)

where the operator X(z) is such that the property

QH̃ (z)P = 0 (7)

holds. Equation (6) must not be confused with equations
from coupled-cluster theory. The idea is that X(z) should be
determined from perturbation theory, which gives an analytic
operator function with X(0) = 0.

The most important consequences of these equations are
that (i) H̃ have identical eigenvalues with Ĥ , (ii) that there
are D = dim(PH) eigenvalues, the eigenvectors of which
are entirely in the model space PH. Thus, the effective
Hamiltonian defined by

Ĥeff(z) ≡ PH̃ (z)P (8)

is a model-space operator with D exact eigenvalues. At z = 0,
these are the unperturbed eigenvalues, and these are continued
analytically as z approaches z = 1.

Equations (6) and (7) are not sufficient to determine
X(z) uniquely. The order-by-order expansion of X(z) must
be supplied with side conditions. One of the most popular

conditions is that X(z)† = −X(z) such that H̃ (z) is Hermitian,
and, additionally, that the effective eigenvectors are as close
as possible to the exact eigenvectors, i.e., that the quantity �

defined by

� ≡
D∑

k=1

‖|�k〉 − |�eff,k〉‖2 (9)

is minimized, where |�eff,k〉 are the eigenvectors of Ĥeff (see
Ref. 15). One can obtain a formula for X(z) in this case,
namely,

X = artanh(ω − ω†),

where ω = QωP is the operator such that exp(ω)P |�k〉 =
|�k〉.

Order-by-order expansion of H̃ (z) reveals that it contains
m-body terms for all m � N , even though V̂ only contains
two-body interactions. However, the many-body terms can be
shown to be of lower order49 in z. By truncating H̃ (z) at
terms at the two-body level, we obtain the so-called subcluster
approximation to the effective Hamiltonian. This can be
computed by exact diagonalization of the two-body problem,
a simple task for the quantum-dot problem.50

The one-body part of H̃ is always H0, so it is natural to
define the effective interaction by

Heff = H0 + Veff . (10)

The reader should, however, keep in mind that the sub-
cluster approximation always produces missing many-body
correlations when inserted in a many-body context. The size
of this source of error can only be quantified a posteriori, either
by comparison with experiment and/or exact calculations (see,
for example, Ref. 51) for a discussion on missing many-body
physics and the nuclear many-body problem.

C. Coupled-cluster method

The single-reference coupled-cluster theory is based on the
exponential ansatz for the ground-state wave function of the
N -electron system

|�0〉 = eT |�0〉,
where T is the cluster operator (an N -particle–N -hole ex-
citation operator) and |�0〉 is the corresponding reference
determinant (defining our chosen closed-shell system or
vacuum) obtained by performing some mean-field calculation
or by simply filling the N lowest-energy single-electron states
in two dimensions.

The operator T is a simple many-body excitation operator,
which in all standard coupled-cluster approximations is trun-
cated at a given (usually low) M-particle–M-hole excitation
level M < N , with N being the number of electrons. If all
excitations are included up to the N -particle–N -hole set of
Slater determinants, one ends up with solving the full problem.
The general form of the truncated cluster operator, defining
a standard single-reference coupled-cluster approximation
characterized by the chosen excitation level M , is

T = T1 + T2 + T3 + · · · + TM, (11)
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where

Tk = 1

(k!)2

∑
i1,...,ik ;a1,...,ak

t
a1...ak

i1...ik
â†

a1
. . . â†

ak
âik . . . âi1 .

Here and in the following, the indices i,j,k, . . . label occu-
pied single-particle orbitals while a,b,c, . . . label unoccupied
orbitals. The unknown amplitudes tai , tab

ij , etc., in the last
equation are determined from the solution of the coupled-
cluster equations discussed below. For a truncated T operator,
we will use the notation T (M), where M refers to highest
possible particle-hole excitations.

As an example, we list here the expressions for one-
particle–one-hole, two-particle–two-hole, and three-particle–
three-hole operators, labeled T1, T2, and T3, respectively,

T1 =
∑
i<εf

∑
a>εf

tai â†
aâi , (12)

and

T2 = 1

4

∑
ij<εf

∑
ab>εf

tab
ij â†

aâ
†
bâj âi , (13)

and finally

T3 = 1

36

∑
ijk<εf

∑
abc>εf

tabc
ijk â†

aâ
†
bâ

†
c âkâj âi . (14)

We will in this paper limit ourselves to a single reference Slater
determinant �0.

The cluster amplitudes t
a1...an

i1...in
are determined by solving a

coupled system of nonlinear and energy-independent algebraic
equations of the form〈
�

a1...an

i1...in

∣∣H̄ |�0〉 = 0, i1 < · · · < in, a1 < · · · < an (15)

where n = 1, . . . ,M . Here,

H̄ = e−T (M)Ĥ eT (M) = (Ĥ eT (M))C (16)

is the similarity-transformed Hamiltonian of the coupled-
cluster theory truncated at M-particle–M-hole excitations and
the subscript C denotes the connected part of the corresponding
operator expression, and |�a1...an

i1...in
〉 ≡ aa1 . . . aanain . . . ai1 |�〉

are the n-particle–n-hole or n-tuply excited determinants
relative to reference determinant |�0〉. The Hamiltonians H̄

and Ĥ are normal ordered.
If we limit ourselves to include only one-particle–one-hole

and two-particle–two-hole excitations, what is known as
coupled cluster of singles and doubles (CCSD), the method
corresponds to M = 2, and the cluster operator T (N) is
approximated by

T (M) = T (2) = T1 + T2, (17)

given by the operators of Eqs. (12) and (13).
The standard CCSD equations for the singly and doubly

excited cluster amplitudes t ia and t
ij

ab, defining T1 and T2,
respectively, can be written as〈

�a
i

∣∣H̄ (CCSD)|�0〉 = 0 (18)

and 〈
�ab

ij

∣∣H̄ (CCSD)|�〉 = 0, i < j, a < b (19)

where

H̄ (CCSD) = H̄ = e−T (2)Ĥ eT (2) = (Ĥ eT (2))C (20)

is the similarity-transformed Hamiltonian of the CCSD ap-
proach and the subscript C stands for connected diagrams
only.

The system of coupled-cluster equations is obtained in
the following way. We first insert the coupled-cluster wave
function |�0〉 into the N -body Schrödinger equation

Ĥ |�0〉 = �E0|�0〉, (21)

where

�E0 = E0 − 〈�0|Ĥ |�0〉
is the corresponding energy relative to the reference energy
〈�0|Ĥ |�0〉, and premultiply both sides on the left by e−T (N)

to
obtain the connected-cluster form of the Schrödinger equation

H̄ |�〉 = �E0|�〉, (22)

where

H̄ = e−T (2)Ĥ eT (2) = (H eT (2))C (23)

is the similarity-transformed Hamiltonian.
Next, we project Eq. (22), in which T is replaced by

its approximate form T (M) [Eq. (11)] onto the excited
determinants |�a1...an

i1...in
〉, corresponding to the M-particle–M-

hole excitations included in TM . The excited determinants
|�a1...an

i1...in
〉 are orthogonal to the reference determinant |�0〉,

so that we end up with nonlinear and energy-independent
algebraic equations of the form of Eq. (15).

Once the system of equations [Eq. (15)] is solved for TM

or t i1...in
a1...an

[or Eqs. (18) and (19) are solved for T1 and T2 or t ia

and t
ij

ab], the ground-state coupled-cluster energy is calculated
using the equation

E0 = 〈�0|Ĥ |�0〉+ E0�= 〈�0|Ĥ |�0〉 + 〈�0|H̄ |�0〉. (24)

It can easily be shown that if H contains only up to two-body
interactions and 2 � M � N , we can write

E0 = 〈�0|Ĥ |�0〉 + 〈�0|
[
Ĥ

(
T1 + T2 + 1

2T 2
1

)]
C
|�0〉.

(25)

In other words, we only need T1 and T2 clusters to calculate the
ground-state energy E0 of the N -body (N � 2) system, even
if we solve for other cluster components Tn with n > 2. As
long as the Hamiltonian contains up to two-body interactions,
the above energy expression is correct even in the exact case,
when the cluster operator T is not truncated (see, for example,
Refs. 17,18, and 30 for proof).

The nonlinear character of the system of coupled-cluster
equations of the form of Eq. (15) does not mean that the
resulting equations contain very high powers of TM . For
example, if the Hamiltonian Ĥ does not contain higher-than-
pairwise interactions, the CCSD equations for the T1 and T2

clusters, or for the amplitudes t ia and t
ij

ab that represent these
clusters, become〈

�a
i

∣∣[Ĥ (
1 + T1 + T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1

)]
C
|�〉 = 0,

(26)
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〈
�ab

ij

∣∣[Ĥ (
1 + T1 + T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1

+ 1
2T 2

2 + 1
2T 2

1 T2 + 1
24T 4

1

)]
C
|�〉 = 0. (27)

The explicitly connected form of the coupled-cluster
equations, such as Eqs. (15) or (26) and (27), guarantees that
the process of solving these equations leads to connected terms
in cluster components of T and connected terms in the energy
E0, independent of the truncation scheme M used to define TM .
The absence of disconnected terms in TM and E0 is essential
to obtain the rigorously size-extensive results.17,18 It is easy
to extend the above equations for the cluster amplitudes to
include triples excitations, leading to the so-called CCSDT
(Ref. 52) hierachy of equations. Defining

f =
∑
pq

fpq{a+
p aq}

with fpq the Fock matrix elements and

W = 1

4

∑
pqrs

〈pq||rs〉{a+
p a+

q aras},

where 〈pq||rs〉 are antisymmetrized two-body matrix el-
ements, the extension to triples gives the following
equations for the amplitudes with one-particle–one-hole
excitations:〈

�a
i

∣∣[f T1 + f
(
T2 + 1/2T 2

1

) + WT1 + W
(
T2 + 1/2T 2

1

)
+W

(
T1T2 + 1/6T 3

1 + T3)
]
C
|�〉 = 0,

and with two-particle–two-hole excitations〈
�ab

ij

∣∣[f T1 + f (T3 + T2T1) + W + WT1 + W
(
T2 + 1/2T 2

1

)
+W

(
T1T2 + 1/6T 3

1 + T3
)

+W
(
T1T3 + 1/2T 2

2 + 1/2T2T
2

1 + 1/24T 4
1

)]
C
|�〉 = 0,

and, with three-particle–three-hole excitations, we end up with〈
�abc

ijk

∣∣[f T3 + f
(
T3T1 + 1/2T 2

2

) + WT2 + W (T3 + T1T2)

+W
(
1/2T2 + T3T11/2T 2

1 + T1
)

+W
(
T2T3 + 1/2T 2

2 T1 + 1/2T3T
2

1 +1/6T2T
3

1

)]
C
|�〉 = 0.

Different approximations to the solution of the triples equa-
tions yield different CCSDT approximations. The CCSD
method scales (in terms of the most computationally expensive
contributon) as n2

on
4
u, where n0 represents the number of

occupied orbitals and nu the number of unoccupied single-
particle states. The full CCSDT scales as n3

on
5
u.

Coupled-cluster theory with inclusion of full triples CCSDT
is usually considered to be too computationally expensive
in most many-body systems of considerable size. Therefore,
triples corrections are usually taken into account perturba-
tively using the noniterative CCSD(T) approach described
in Ref. 53. Recently, a more sophisticated way of including
the full triples is known as the �-CCSD(T) approach.36–39

In the �-CCSD(T) approach, the left-eigenvector solution of
the CCSD similarity-transformed Hamiltonian is utilized in the
calculation of a noniterative triples correction to the coupled-

cluster ground-state energy. The left-eigenvalue problem is
given by

〈�0|�H̄ = E〈�0|� , (28)

were � denotes the de-excitation cluster operator

� = 1 + �1 + �2 , (29)

�1 =
∑
i,a

λi
aaaa

†
i , (30)

�2 = 1

4

∑
i,j,a,b

λ
ij

ababaaa
†
i a

†
j . (31)

The unknowns, λi
a and λ

ij

ab, result from the ground-state
solution of the left-eigenvalue problem (28). Using a single-
particle basis that diagonalizes the Fock matrix f witin the
hole-hole and particle-particle blocks simultaneously, and
utilizing the λi

a and λ
ij

ab de-excitation amplitudes together with
the cluster amplitudes tai and tab

ij , we get the noniterative �-
CCSD(T) energy correction to the coupled-cluster correlation
energy (see Refs. 36–39 for more details)

�E3 = 1

(3!)2

∑
ijkabc

〈�0|�(fhp + W )N
∣∣�abc

ijk

〉

× 1

γ abc
ijk

〈
�abc

ijk

∣∣(WNT2)C |�0〉 . (32)

Here, fhp denotes the part of the normal-ordered one-body
Hamiltonian that annihilates particles and creates holes, while

γ abc
ijk ≡ fii + fjj + fkk − faa − fbb − fcc (33)

is expressed in terms of the diagonal matrix elements of
the normal-ordered one-body Hamiltonian f . In the case of
Hartree-Fock orbitals, the one-body part of the Hamiltonian
is diagonal and fhp vanishes. The state |�abc

ijk 〉 is a three-
particle–three-hole excitation of the reference state. For a
further discussion of various approximations to the triples
correlations, see, for example, Refs. 17 and 18.

In this paper, we focus on the CCSD, the CCSD(T), and
the �-CCSD(T) approaches, using either a renormalized or
an unrenormalized interaction. In order to avoid an iterative
solution of the CCSD(T) and �-CCSD(T) equations, we start
from a self-consistent Hartree-Fock basis such that the Fock
matrix f is diagonal. Using such a basis, the computational
cost of the CCSD(T) and �-CCSD(T) energy corrections is
n3

on
4
u number of cycles, done only once. It is also important

to keep in mind, in particular, that when linking our coupled-
cluster theory with Monte Carlo approaches, a wave function-
based method such as coupled-cluster theory is defined within
a specific subset of the full Hilbert space. In our case, the
Hilbert space will be defined by all possible many-body wave
functions, which can be constructed within a certain number
of the lowest-lying single-particle states.

D. Diffusion Monte Carlo

The diffusion Monte Carlo method seeks the solution of the
equation

∂τ |�(R,τ )〉 = [Ĥ − E0]|�(R,τ )〉, (34)
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where R collectively indicates the degrees of freedom of
the system (the 3N electron coordinates, in this case). By
expanding the state |�(R,τ )〉 on the basis of eigenstates |φn〉
of Ĥ , a formal solution of Eq. (34) is given by

|�(R,τ )〉 = e−(Ĥ−E0)τ |�(R,0)〉
=

∑
n

e−(Ĥ−E0)τ |φn〉〈φn|�(R,0)〉

=
∑

n

e−(Ên−E0)τ |φn〉〈φn|�(R,0)〉 (35)

from which it is evident that, for τ → ∞, the only surviving
component is the ground state of Ĥ . Equation (34) can be
numerically solved by expanding the state to be evolved in
eigenstates |Ri〉 of the position operator (called “walkers”), so
that the evolution reads as∑

i

〈Ri |�(R,τ )〉 =
∑

i

〈R|e−(Ĥ−E0)τ |R′
i〉〈R′

i |�(R′,0)〉.

(36)

Formally, in terms of the Green’s function solution of Eq. (34),
the solution can be written as

�(R,τ ) =
∫

G(R′,R,τ )�(R′,0) dR′. (37)

The Green’s function G(R′,R,τ ) = 〈R| exp[−(Ĥ − E0)]|R〉
is, in general, unknown. However, in the limit �τ → 0, it can
be written in the following form:

G(R′,R,τ ) �
√(

mem∗

2πh̄2�τ

)d

e
(R−R′)2

2h̄2/mem∗�τ e−[V (R)−E0]�τ , (38)

that is, as the product of the free-particle Green’s function,
having the effect of displacing the d-dimensional walkers, and
a factor containing the potential, which is interpreted as a
weight for the estimators computed at the walker position,
and a probability for the walker itself to generate one or
more copies of itself in the next generation. Due to the
divergence of the potential at the origin, it is necessary to
modify the algorithm, introducing the so-called “importance
sampling.” In practice, the sampled distribution is modified
by multiplying by an approximate solution of the Schrödinger
equation �T (R), which is usually determined by a variational
Monte Carlo calculation

�T (R)�(R,τ ) =
∫

G(R′,R,τ )
�T (R)

�T (R′)
�T (R′)�(R′,0) dR′.

(39)

A final important observation is the fact that the procedure
described above is well defined only in the case of a totally
symmetric ground state. For a many-fermion system, it would
be necessary, in principle, to project on an excited state of
the Hamiltonian, which leads to a severe instability of the
variance on the energy estimation. This problem is usually
treated by artificially imposing, as an artificial boundary
condition, that the solution vanishes on the nodes of the trial
function �T (fixed-node approximation). Many other technical
details enter the real calculation. A thorough description of the
diffusion Monte Carlo (DMC) algorithm, as implemented for
the calculations of this paper, can be found in Ref. 54.

The fixed-node DMC calculations depend on the quality of
the trial wave function �T (R), which is usually built starting
from a parametrized ansatz. The values of the parameters
are computed by minimizing the expectation value of the
Hamiltonian on �T (R). The trial wave functions we use have
the form10

�(R)L,S = exp[φ(R)]
Nconf∑
i=1

αi�
L,S
i (R), (40)

where the αi are variational parameters. Because in this paper
we are considering only closed-shell dots that have L = 0 and
S = 0, the sum in Eq. (40) reduces to a single term

�L=0,S=0 = D↑D↓, (41)

where the Dχ are Slater determinants of spin-up and spin-down
electrons, using orbitals from a local density approximation
calculation with the same confining potential and the same
number of electrons. The function exp[φ] in Eq. (40) is a
generalized Jastrow factor of the form

lφ(R) =
N∑

i=1

[
6∑

k=1

γkJ0

(
kπri

Rc

)]

+
N∑

i<j

1

2

(
aij rij

1 + b(ri)rij

+ aij rij

1 + b(rj )rij

)
, (42)

where

b(r) = b
ij

0 + b
ij

1 tan−1[(r − Rc)2/2Rc�]. (43)

It explicitly includes one- and two-body correlations and
effective many-body correlations via the spacial dependence
of b(r). The quantity Rc represents an “effective” radius of the
dot, which is optimized in the variational procedure. The b0 and
b1 parameters depend only on the relative spin configuration
of the pair ij . The parameters aij are fixed in order to satisfy
the cusp conditions, that is, the condition of finiteness of
the local energy Ĥ�/� for rij → 0. For a two-dimensional
system, aij = 1 if the electron pair ij has antiparallel spin, and
aij = 1/3 otherwise. The dependence of aij on the relative spin
orientation of the electron pair introduces spin contamination
into the wave function. However, the magnitude of the spin
contamination and its effect on the energy has been shown to
be totally negligible in the case of well-optimized atomic wave
functions,55 and we expect that to be true here as well.

Also, the coefficients γk in the one-body term, the coeffi-
cients �, b0, and b1 in the two-body term, and the coefficients
αi multiplying the configuration state functions are optimized
by minimizing the variance of the local energy.56

III. RESULTS

We start our discussion with the results for the two-electron
system since these can, for certain values of the oscillator
frequency, be compared with the exact results of Taut.43

These results are presented in the next section using both
a renormalized two-body Coulomb interaction and the bare
Coulomb interaction. Thereafter, we present coupled-cluster
results with singles and doubles excitations for systems with
N = 6 and 12 electrons with the bare Coulomb interaction.
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The slow convergence as a function of the number of
oscillator shells with the bare interaction serves to motivate the
introduction of an effective Coulomb interaction. In the main
result section, we present CCSD, CCSD(T), and �-CCSD(T)
results for N = 6, 12, and 20 electrons using an effective
two-body Coulomb interaction and compare with diffusion
Monte Carlo (DMC) calculations for the same systems.

A. Results for two electrons

In this section, we limit our attention to the two-electron
system and compare our DMC results with coupled-cluster cal-
culations with CCSD correlations only. The results presented
here serve to demonstrate the reliability of using an effective
Coulomb interaction.

The CCSD approach gives the exact eigenvalues for the
two-particle system. We have employed a standard harmonic-
oscillator basis using the frequencies ω = 0.5 and 1.0 a.u. Our
results are listed in Table I. The variable R represents the num-
ber of oscillator shells in which the effective interaction case
represents the model space for which the effective Coulomb
interaction is defined. The calculations labeled CCSD-V
represent the results obtained with the unrenormalized or bare
Coulomb interaction, while the shorthand CCSD-Veff stands
for the results obtained with an effective interaction. Since
the latter, irrespective of size of model space (number of
lowest-lying oscillator shells in our case) always gives the
exact lowest-lying eigenvalues by construction (a similarity
transformation preserves always the eigenvalues), these results

TABLE I. Ground-state energies for two electrons in a circular
quantum dot within the CCSD approach with (CCSD-Veff ) and
without (CCSD-V ) an effective Coulomb interaction. The diffusion
Monte Carlo (DMC) results are also included. For ω = 1, Taut’s exact
result from Ref. 43 is 3 a.u. All energies are in atomic units. There
are no triples corrections for the two-body problem. The variable R

represents the number of oscillator shells.

ω R CCSD-V CCSD-Veff DMC

0.5 2 1.786 914 1.659 772
4 1.673 874 1.659 772
6 1.667 259 1.659 772
8 1.664 808 1.659 772
10 1.663 535 1.659 772
12 1.662 762 1.659 772
14 1.662 244 1.659 772
16 1.661 875 1.659 772
18 1.661 599 1.659 772
20 1.661 378 1.659 772 1.659 75(2)

1.0 2 3.152 329 3.000 000
4 3.025 232 3.000 000
6 3.013 627 3.000 000
8 3.009 237 3.000 000
10 3.000 895 3.000 000
12 3.000 654 3.000 000
14 3.000 505 3.000 000
16 3.000 406 3.000 000
18 3.000 335 3.000 000
20 3.000 282 3.000 000 3.000 00(3)

are unchanged as a function of the number of oscillator shells
R. For the two-body problem, coupled-cluster theory at the
level of singles and doubles excitations yields the same as exact
diagonalization in the same two-particle space. In our case,
the number of two-body configurations is given by all allowed
configurations that can be constructed by placing two particles
in the single-particle orbits defined by the given number
of oscillator shells R. For ω = 1.0 a.u., Taut’s exact result
from Ref. 43 is reproduced. The noninteracting part of the
Hamiltonian gives a contribution of 2 a.u. to the ground-state
energy, while the two-particle interaction results in 1 a.u.

We notice also that the DMC results agree perfectly (within
six leading digits) with our CCSD-Veff calculations. The
standard error in the DMC calculations is given in parentheses.

If, on the other hand, we use the bare Coulomb interaction,
we see that the convergence of the CCSD-V results as a
function of R is much slower and in line with the analysis
of Ref. 21 and our discussion in Sec. II B. One needs at least
some 16–20 major oscillator shells (between 272 and 420
single-particle states) in order to get a result within three to four
leading digits close to the exact answer. The slow convergence
of the bare interaction for the two-electron problem may be
even more prevalent in a many-body system, in particular,
for small values of ω, where correlations are expected to be
more important. With more particles, we may expect even
worse convergence. In Table II, we present for the case of
ω = 1.0 a.u. CCSD results for N = 6 and 12 electrons. The
bare Coulomb interaction in an oscillator basis is used. The
diffusion Monte Carlo results are for N = 6, 20.1597(2) a.u.,
and for N = 12, 65.700(1) a.u. Using the bare interaction
thus results in a slow convergence, as will be demonstrated in
the next section. The result of 20.1737 a.u. obtained with an
effective Coulomb at the CCSD level for N = 6 and R = 20
is much closer to the DMC result, as can be seen from
Table III. These results serve the aim of motivating the
introduction of an effective two-particle interaction. In the
next section, we will make further comparisons between our
results with and without an effective interaction. In particular,

TABLE II. Ground-state energies for N = 6 and 12 electrons in
a circular quantum dot within the CCSD approach using the bare
Coulomb interaction. All energies are in atomic units. There are no
triples corrections. Results are presented for an oscillator frequency
ω = 1.0 a.u. The variable R represents the number of oscillator shells.
For N = 12, the first three shells are filled and there are no results for
two shells only.

R N = 6 N = 12

2 22.219 813
3 21.419 889 73.765 549
4 20.421325 70.297531
6 20.260 893 66.452 006
8 20.221 750 65.889 324
10 20.216 128 65.887 965
12 20.206 257 65.848 353
14 20.199 986 65.825 018
16 20.195 658 65.809 710
18 20.192 497 65.798 902
20 20.189 900 65.789 460
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TABLE III. Ground-state energies for N = 6 electrons in a circular quantum dot within various coupled-cluster approximations utilizing an
effective Coulomb interaction and the diffusion Monte Carlo (DMC) approach. The coupled-cluster results have been obtained with an effective
two-body interaction using a self-consistent Hartree-Fock basis and the CCSD, the CCSD(T), and the �-CCSD(T) approaches discussed in
the text. EHF is the Hartree-Fock energy, while R stands for the number of major oscillator shells. All energies are in atomic units.

ω R EHF CCSD CCSD(T) �-CCSD(T) DMC

0.28 10 7.9504 7.6241 7.6032 7.6064
12 7.9632 7.6245 7.6023 7.6057
14 7.9720 7.6247 7.6016 7.6052
16 7.9785 7.6249 7.6012 7.6048
18 7.9834 7.6251 7.6008 7.6046
20 7.9872 7.6252 7.6006 7.6044 7.6001(1)

0.5 10 12.1927 11.8057 11.7871 11.7892
12 12.2073 11.8055 11.7858 11.7880
14 12.2173 11.8055 11.7850 11.7873
16 12.2246 11.8055 11.7845 11.7868
18 12.2302 11.8055 11.7841 11.7864
20 12.2346 11.8055 11.7837 11.7862 11.7888(2)

1.0 10 20.6295 20.1766 20.1623 20.1633
12 20.6461 20.1753 20.1602 20.1612
14 20.6576 20.1746 20.1589 20.1600
16 20.6659 20.1742 20.1580 20.1592
18 20.6723 20.1739 20.1574 20.1586
20 20.6773 20.1737 20.1570 20.1582 20.1597(2)

we will try to extract convergence criteria for both approaches
and link our numerical results with the predictions made by
Kvaal in Eq. (5).

B. Results with an effective Coulomb interaction

We present here our final and most optimal results for
N = 6, 12, and 20 electrons using the CCSD, the CCSD(T),
and the �-CCSD(T) approaches. We list the CCSD(T) triples
results as well. This method has for a long time been considered
as the calculational gold standard in quantum chemistry due
to its low computational cost and accuracy. We emphasize,
however, that the �-CCSD(T) approach is an improvement
of the standard CCSD(T) approach, and should therefore be
considered as our best and most accurate coupled-cluster
calculation in this work. In all calculations, we employ an
effective Coulomb interaction and a self-consistent Hartree-
Fock basis for different values of the oscillator frequency
ω and the model space R. The results are compared with
diffusion Monte Carlo calculations.57 In addition to the values
of ω = 1.0 and 0.5, which serve more as a reference for
earlier calculations, we present results for ω = 0.28 a.u.,
which corresponds to 3.32 eV, a frequency which should
approximate the experimental situation in Ref. 58. The role
of correlations is also more important for smaller values
of ω, allowing us therefore to test the reliability of our
single-reference CCSD and �-CCSD(T) calculations. As the
system becomes more and more correlated, contributions
from clusters beyond the T (3) (beyond three-particle–three-
hole correlations) level might become non-negligible. For
values of ω > 1, the single-particle part of the Hamil-
tonian dominates and correlations play a less prominent
role.

Our results for N = 6, 12, and 20 electrons are displayed
in Tables III, IV, and V, respectively. We present also the

mean-field energies (that is, the Hartree-Fock ground-state
energies). These are labeled as EHF in the tables. For all
values of ω with R = 20 major oscillator shells, our best
coupled-cluster results, the �-CCSD(T) calculations, are very
close to the diffusion Monte Carlo calculations. Even for 10
major shells, the results are close to the DMC calculations,
suggesting thereby that the usage of an effective interaction
provides a better starting point for many-body calculations.
The convergence of the coupled-cluster calculation in terms of
the number of major oscillator shells is also better than the re-
sults shown in Table II with the bare Coulomb interaction. This
discussion will be further elaborated at the end of this section.

In R = 20 major shells, the �-CCSD(T) results are very
close to the DMC results. As an example, consider the ω = 1
results for N = 6 in Table III. The CCSD result is 20.1737
a.u., while the �-CCSD(T) number is 20.1582 a.u. The
corresponding DMC energy is 20.1597(2) and very close to our
�-CCSD(T) result. With R = 20 shells, our coupled-cluster
calculations are almost converged at the level of the fifth
or sixth number after the decimal point. At the end of this
section, we discuss the convergence properties of the various
coupled-cluster approaches as functions of the number of
oscillator shells R.

In Tables III, IV, and V, we see that the CCSD(T) results are
in most cases overshooting the diffusion Monte Carlo results.
From numerous coupled-cluster studies in quantum chemistry,
it has been found that CCSD(T) tends to overestimate the role
of triples and thereby often overshoots the exact energy. The
�-CCSD(T) approach has, on the other hand, been found to
give highly accurate correlation energies, and even in some
cases performing better than the full CCSDT approach (see
Refs. 36–39). This is also consistent with our findings for the
CCSD(T) and �-CCSD(T) correlation energies in quantum
dots.
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TABLE IV. Same caption as in Table III except the results are for N = 12 electrons.

ω R EHF CCSD CCSD(T) �-CCSD(T) DMC

0.28 10 26.3556 25.7069 25.6445 25.6540
12 26.3950 25.7066 25.6388 25.6491
14 26.4221 25.7074 25.6363 25.6470
16 26.4410 25.7081 25.6346 25.6456
18 26.4551 25.7085 25.6334 25.6446
20 26.4659 25.7089 25.6324 25.6439 25.6356(1)

0.5 10 39.9948 39.2218 39.1659 39.1721
12 40.0409 39.2203 39.1599 39.1667
14 40.0709 39.2197 39.1565 39.1635
16 40.0922 39.2195 39.1543 39.1615
18 40.1080 39.2194 39.1527 39.1601
20 40.1202 39.2194 39.1516 39.1591 39.159(1)

1.0 10 66.6596 65.7552 65.7118 65.7149
12 66.7106 65.7484 65.7017 65.7051
14 66.7445 65.7449 65.6961 65.6996
16 66.7686 65.7430 65.6926 65.6963
18 66.7867 65.7417 65.6903 65.6941
20 66.8006 65.7409 65.6886 65.6924 65.700(1)

Let us briefly discuss the error in our coupled-cluster
calculations. There are two sources of error, the first coming
from the finite size of the single-particle basis, and the
other from truncation of the cluster amplitude T at the T (3)
excitation level (three-particle–three-hole excitations). We are
presently not able to provide a mathematical error estimate on
truncations in terms of the number of particle-hole excitation
operators in the cluster operator T . However, several studies
from quantum chemistry (see Ref. 18 and references therein)
and in nuclear physics32,34 have shown that the CCSD approach
gives about 90% of the correlation energy, while CCSDT
gives about 99% of the full correlation energy. Assuming that
the DMC results are to be considered as exact results, we

can calculate the percentage of correlation energy our CCSD
and �-CCSD(T) calculations give for different numbers of
electrons N and values ω of the confining harmonic-oscillator
potential. In Table VI, we list the amount (in percentage) of
correlation energy obtained at the CCSD and �-CCSD(T)
level; the coupled-cluster calculations were done in a model
space of R = 20 major oscillator shells.

As we see from Table VI, the CCSD approximation gives
90%, or more, of the full correlation energy, while the
�-CCSD(T) approximation is at the level of 99%–100% of the
full correlation energy for R = 20. The CCSD approximation
is clearly performing better for larger values ω of the confining
potential, but this is expected since the system becomes

TABLE V. Same caption as in Table III except the results are for N = 20 electrons.

ω R EHF CCSD CCSD(T) �-CCSD(T) DMC

0.28 10 63.2588 62.2851 62.1802 62.1946
12 63.2016 62.0772 61.9503 61.9692
14 63.2557 62.0634 61.9265 61.9466
16 63.3032 62.0646 61.9214 61.9423
18 63.3369 62.0656 61.9181 61.9395
20 63.3621 62.0664 61.9156 61.9375 61.922(2)

0.5 10 95.2872 94.0870 93.9864 93.9971
12 95.3407 93.9963 93.8818 93.8944
14 95.4164 93.9921 93.8700 93.8833
16 95.4676 93.9904 93.8632 93.8771
18 95.5043 93.9895 93.8588 93.8730
20 95.5320 93.9891 93.8558 93.8702 93.867(3)

1.0 10 157.4356 156.0128 155.9324 155.9381
12 157.5613 155.9868 155.8978 155.9042
14 157.6437 155.9740 155.8795 155.8863
16 157.7002 155.9669 155.8687 155.8758
18 157.7413 155.9627 155.8618 155.8690
20 157.7725 155.9601 155.8571 155.8646 155.868(6)
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TABLE VI. Percentage of correlation energy at the CCSD level
(�E2) and at the �-CCSD(T) level (�E3), for different numbers of
electrons N and values of the confining harmonic potential ω. All
numbers are for R = 20.

ω = 0.28 ω = 0.5 ω = 1.0

N �E2 �E3 �E2 �E3 �E2 �E3

6 94% 99% 96% 100 % 97% 100%
12 91% 99% 94% 100 % 96% 100%
20 90% 99% 93% 100% 95% 100%

less and less correlated for larger values of ω. This shows
that our coupled-cluster calculations of circular quantum
dots are within or even better than the accuracy seen in
different applications in both quantum chemistry and nuclear
physics. The fact that the (perturbative inclusions of triples)
CCSD(T) and the �-CCSD(T) methods work that well even
for small values of the oscillator energy, is due to the fact that
correlations beyond the Hartree-Fock and CCSD levels are
still small, not exceeding 10% of the correlation energy.

As previously discussed, DMC results reported in this
paper are still affected by the fixed-node approximation.
The extent of the error only depends on the nodal surface
of the wave function. Because we use a single product of
Slater determinants, given the circular symmetry of the dots
considered, the nodes depend only on the set of single-particle
functions used. Previous tests performed changing the set of
single-particle orbitals show that differences are of the order
of one millihartrees or less.10 The optimization of the Jastrow
factor only influences the variance of the energy, which is
typically of the order of 0.5% of the total energy. Therefore,
for circular quantum dots, we can conclude, assuming that
the DMC calculations are as close as possible to the exact
energies, that with an effective two-body interaction, a finite
basis set of R = 20 major oscillator shells, and at most
three-particle–three-hole correlations in the cluster amplitude,
the remaining many-body effects are almost negligible as we
are within 99%–100% of the full correlation energy.

In order to study the role of correlations as a function of the
oscillator frequency ω and the number of electrons, we define
the relative energy

ε =
∣∣∣∣∣EDMC − 〈Ĥ0〉

EDMC

∣∣∣∣∣ , (44)

where 〈Ĥ0〉 is the expectation value of the one-body operator,
the so-called unperturbed part of the Hamiltonian. For N = 6,
this corresponds to an expectation value 〈Ĥ0〉 = 10ω for the
one-body part of the Hamiltonian, while for N = 12 and 20,
the corresponding numbers are 〈Ĥ0〉 = 28ω and 〈Ĥ0〉 = 60ω,
respectively. Assuming that the diffusion Monte Carlo results
are as close as possible to the true eigenvalues, the quantity ε

measures the role of the two-body interaction and correlations
caused by this part of the Hamiltonian as functions of ω and
N , the number of electrons. The results for ε are shown in
Fig. 1. Results for N = 2 are also included.

We see from this figure that the effect of the two-body
interaction becomes increasingly important as we increase
the number of particles. Moreover, the interaction is more

FIG. 1. Relative correlation energy ε defined in Eq. (44) for
different values of h̄ω and number of electrons. The DMC numbers
are obtained from Tables I–V using R = 20.

important for the smaller values of the oscillator frequency ω.
This is expected since the contribution from the one-body
operator is reduced due to smaller values of ω. Including
more electrons obviously increases the contribution from
the two-body interaction. Since our optimal coupled-cluster
results are very close to the DMC results, almost identical
results are obtained if we replace the DMC results with the
�-CCSD(T) results.

We can also study the role of correlations beyond the
Hartree-Fock energy EHF. In order to do this, we relate the
Hartree-Fock energy EHF in Tables III–V to the optimal
coupled-cluster calculation, namely, the �-CCSD(T) results.
The relative difference between these quantities conveys
thereby information about correlations beyond the mean-field
approximation. This relative measure is defined as

χ =
∣∣∣∣E�-CCSD(T) − EHF

E�-CCSD(T)

∣∣∣∣ . (45)

The results are shown in Fig. 2 for N = 6, 12, and 20. We see
from this figure that correlations beyond the Hartree-Fock level
are important for few particles and low values of ω. Increasing
the number of electrons in the circular dot decreases the role
of correlations beyond the mean-field approximation, a feature

FIG. 2. Relative correlation energy χ defined in Eq. (45) for
different values of h̄ω and number of electrons. The numbers are
obtained from Tables III–V using R = 20.
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which can be understood from the fact that, for larger systems,
multiparticle excitations across the Fermi level decrease in
importance. This is due to the fact that the single-particle wave
functions for many states around the Fermi level have more
than one node, resulting in normally smaller matrix elements.
Stated differently, with an increasing number of electrons,
the particles close to the Fermi level are more apart from
each other, in particular, for those particles that occupy states
around and above the Fermi level. The consequence of this
is that correlations beyond the Hartree-Fock level decrease in
importance when we add more and more particles. This means
in turn that, for larger systems, mean-field methods are rather
good approximations to systems of many interacting electrons
in quantum dots. Similar features are seen in nuclei. For light
nuclei, correlations beyond the mean field are very important
for ground-state properties, whereas for heavy nuclei such
as 208Pb, mean-field approaches provide a very good starting
point for studying several observables.

The reader should, however, note that here we have limited
our attention to ground-state energies only. Whether our
conclusions about the role of correlations pertain to quantities
such as, say, spectroscopic factors remains to be studied.

We study now in more detail the convergence properties of
our coupled-cluster approaches, in particular, we will relate
our �-CCSD(T) and CCSD results with the diffusion Monte
Carlo results and study the dependence on R. This analysis
will be performed with and without an effective Coulomb
interaction. The reason for doing this is that we wish to
study whether the convergence criterion of Eq. (5), derived
for a full configuration-interaction analysis, applies to various
coupled-cluster truncations as well. Furthermore, we wish
to see whether our calculations with an effective interaction
converge faster as a function of R compared to a calculation
with the bare interaction.

We compute the following quantities:

log10 εCCSD(R) = log10

∣∣∣∣ECCSD(R) − EDMC

EDMC

∣∣∣∣ (46)

and

log10 ε�-CCSD(T)(R) = log10

∣∣∣∣E�-CCSD(T)(R) − EDMC

EDMC

∣∣∣∣. (47)

In Fig. 3, we plot the results for N = 20 electrons and
ω = 0.5. We have chosen these values since they represent
one of the cases where the �-CCSD(T) results are always
above the DMC results and we have no crossing between
these two sets of calculations. The CCSD results, on the other
hand, are always, for all cases reported here, above the DMC
results. This means that the trend seen in Fig. 3 for the CCSD
calculations applies to all cases listed in Tables III–V, while
for the �-CCSD(T) calculations, these results are similar for
all cases except for N = 6 and ω = 0.5 and 1.0; N = 12 and
ω = 1.0; and N = 20 and ω = 1.0. In these cases, the results
at R = 20 are slightly below the DMC results. However, the
agreement is still excellent. The interesting feature to note
in Fig. 3 is that the CCSD results change marginally after
R = 12 for N = 20, and there is essentially very little to
gain beyond 20 major shells. With the present accuracy of
the DMC results, we can conclude that the CCSD results

FIG. 3. Relative correlation energy ε defined in Eqs. (46) and (47)
for different values of R. The values displayed here are for N = 20
and ω = 0.5. The numbers are obtained from Table V. We include
also the �-CCSD(T) results obtained with the bare interaction.

reach, at most, a relative error of approximately 10−3 and
that it stays almost stable from R = 12 shells. The relative
error with respect to the Monte Carlo results does not change
much. This applies to all CCSD results. This tells us clearly that
there are important correlations beyond two-particle–two-hole
excitations and that these correlations do not stabilize after
some few shells. Furthermore, the slope of the �-CCSD(T)
calculations is much more interesting and resembles the slope
of the configuration interaction analysis of Ref. 21 with an
effective interaction. For the ground states of three to five
electrons, Kvaal found in Ref. 21 a slope of approximately
α = −4 to −5 for a parametrization

log10 ε ≈ c + α log10 R

for the ground-state energies of various N -electron quantum
dots. The variable c is a constant. Our slopes vary between
α = −4 and −6, resulting in a relative error of approximately
10−5 at R = 20 for the results in Fig. 3. The slope of the �-
CCSD(T) result is α = −4.93. The reader should note that the
DMC results can not reach a higher precision. The slope of the
CCSD calculation with an effective interaction is α = −0.67
after R = 12.

In the same figure, we plot also the �-CCSD(T) results
obtained without an effective Coulomb interaction, that is,
with the bare interaction only. These results are labeled as
log10 ε�-CCSD(T)(R)−bare. A Hartree-Fock basis was used in
this case as well in order to obtain converged solutions for
the �-CCSD(T) equations. We see in this case that the
convergence is much slower, resulting in a slope given by
α = −2.58, a result not far from the analysis of Ref. 21
for the bare interaction. Figure 4 exhibits a similar trend,
except that here we present results for N = 12 electrons
and ω = 0.5. The slope of the �-CCSD(T) results is now
α = −6.38 with an effective interaction and α = −1.81 with
a bare Coulomb interaction. We notice again that the CCSD
results saturate around R = 12 major shells. These results are
very interesting as they show that the usage of an effective
interaction can really speed up the convergence of the energy
as a function of the number of shells. Furthermore, these results
tell us also that correlations beyond the singles and doubles
approach are simply necessary. The convergence behavior of
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FIG. 4. Relative correlation energy ε defined in Eqs. (46) and (47)
for different values of R. The values displayed here are for N = 12
and ω = 0.5. The numbers are obtained from Table IV. We include
also the �-CCSD(T) results obtained with the bare interaction.

the �-CCSD(T) results resembles, to a large extent, those of
a full configuration-interaction approach with and without an
effective interaction. Although we can extract similar conver-
gence behaviors as those predicted in Ref. 21 as functions
of a truncation in the single-particle basis, the challenge is
to provide more rigid mathematical convergence criteria for
truncations in the number of particle-hole excitations. Here,
we can only justify a posteriori that triples corrections are
necessary. Work along these lines is in progress.

Using equation-of-motion coupled-cluster method, as dis-
cussed in detail in, for example, Refs. 17,18,33, and 34, we can
go beyond quantum dots with closed-shell configurations and
compute properties such as electrochemical potentials, addi-
tion spectra, and excited states. For the sake of completeness,
we list in Table VII the electrochemical potentials μ(N ) =
E(N ) − E(N − 1) for N = 3, 6, 7, 12, and 13 electrons,
calculated with the electron attached and ionization potential
equation-of-motion coupled-cluster method (CC) and dif-
fusion Monte Carlo (DMC). We have chosen a frequency
ω = 0.28, since this frequency is the one that involves the
strongest degrees of correlations. It is also the frequency that
exhibits the largest deviations between our coupled-cluster
results and the diffusion Monte Carlo calculations. We see
from Table VII that the agreement between the two different
many-body methods is indeed very good, with differences
of the order of 0.02 in most cases. The spin assignments
for the ground states with both methods are also the same.
For N = 3, the ground state has orbital momentum projection
M = 1 and total spin S = 1/2; for N = 5, the corresponding
quantum numbers are M = 1 and S = 1/2; for N = 7, we
have M = 2 and S = 1/2; for N = 11, we obtain M = 0
and S = 1/2; and finally for N = 13, we have M = 3 and
S = 1/2. These results demonstrate that the coupled-cluster
method can be extended to open-shell systems. With the
recent development of two-particle-attached and two-particle-
removed coupled-cluster methods (see Ref. 59), we are now
in the position where one can also study quantum-dot systems
such as N = 8 or 18, or for larger electron systems as well.
A more in-depth analysis of our one-particle-attached and
one-particle-removed methods will be presented in Ref. 60.

TABLE VII. The electrochemical potentials μ(N ) = E(N ) −
E(N − 1) for N = 3, 6, 7, 12, and 13 electrons computed with
the electron attached and ionization potential equation-of-motion
coupled-cluster (CC) method and the diffusion Monte Carlo (DMC)
method. A frequency of ω = 0.28 has been used. The absolute value
of the energy difference between the two many-body approaches is
listed in the final column as |�E|. All coupled-cluster results have
been obtained for R = 20.

CC DMC �E

E(3) − E(2) 1.2284 1.2123(1) 0.0161(1)
E(6) − E(5) 2.0438 2.0663(1) 0.0225(1)
E(7) − E(6) 2.4528 2.4341(1) 0.0187(1)
E(12) − E(11) 3.5420 3.5618(1) 0.0198(1)
E(13) − E(12) 3.8738 3.8582(1) 0.0156(1)

IV. CONCLUSIONS AND PERSPECTIVES

We have shown in this paper that coupled-cluster calcu-
lations that employ an effective Coulomb interaction and a
self-consistent Hartree-Fock single-particle basis reproduce
excellently diffusion Monte Carlo calculations, even for very
low oscillator frequencies. This opens up many interesting per-
spectives, in particular, since our coupled-cluster calculations
are rather inexpensive from a high-performance computing
standpoint. Properties such as addition spectra and excited
states can be extracted using equation-of-motion-based tech-
niques (see, for example, Refs. 17,18,33, and 34). In Refs. 33
and 34, addition spectra of nuclei in the chain of oxygen
isotopes have been calculated using the particle-attached or
particle-removed equation-of-motion method (Refs. 17 and
18). We have also performed preliminary calculations of
addition spectra for quantum dots using the above closed-shell
systems for N = 3, 5, 7, 11, and 13, obtaining a very good
agreement with the diffusion Monte Carlo results listed in
Refs. 10 and 61. Combining the one-particle-attached and
-removed method with our recently developed two-particle-
attached and -removed coupled-cluster methods,59 we can
compute almost all circular quantum dots up N = 22 electrons
except for dots with N = 9 and N = 15–17 electrons. These
results will be presented elsewhere.60

Furthermore, since our codes run in an uncoupled basis,
one can also study other trapping potentials than the standard
harmonic-oscillator potential. A time-dependent formulation
of coupled-cluster theory may even allow for studies of
temporal properties of quantum dots such as the effect of a
time-dependent perturbation.

For circular dots, we found that with the inclusion of triples
correlations, there are, for all systems studied, indications
that many-body correlations beyond three-particle–three-hole
excitations in the coupled-cluster amplitude T are negligi-
ble. We observe also that for systems with more particles,
correlations beyond the Hartree-Fock level tend to decrease.
Thus, although we are able to extend ab initio coupled-cluster
calculations of quantum dots to systems up to 50 electrons,
a mean-field description will probably convey most of the
interesting physics.
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With two popular and reliable many-body techniques such
as coupled-cluster theory and diffusion Monte Carlo resulting
in practically the same energies, one is in the position
where one can extract almost exact density functionals for
quantum-dot systems. This allows for important comparisons
with available density functionals for quantum dots. Finally,
we have also noted that triples correlations are necessary in
order to obtain correct results. The convergence pattern of
our calculations resembles to a large extent those seen in full
configuration-interaction calculations.
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