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Spin torque and charge resistance of ferromagnetic semiconductor 2π and π domain walls
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Charge resistance and spin torque are generated by coherent carrier transport through ferromagnetic 2π domain
walls, and follow qualitatively different trends than for π domain walls. The charge resistance of 2π domain
walls reaches a maximum at an intermediate wall thickness, unlike π domain walls, whose resistance decreases
monotonically with wall thickness. The peak amplitude of the spin torque and the optimal thickness of the domain
wall to maximize torque for a 2π wall are more than twice as large as found for a π domain wall in the same
material, producing a larger domain wall velocity for the 2π wall and suggesting such walls may be preferable
for magnetoelectronic devices incorporating domain wall motion.
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I. INTRODUCTION

Spin torque generated by spin transport through inho-
mogeneous magnetic systems, a direct manifestation of the
conservation of the angular momentum associated with spin,
underlies both unresolved fundamental questions and potential
applications, including fast, localized electrical switching
of magnetic moments or domains,1–5 depinning and trans-
port of domain walls,6–12 electrical driving of ferromag-
netic resonance,13–16 and controlled generation of coherent
magnons.12,17 Structures showing spin torque are commonly
domain walls between two regions whose magnetization ori-
entation differs by an angle θ , called θ domain walls. Although
spin torque on a π wall has garnered much experimental and
theoretical attention,6,7,18–27 little has been done to explore
spin torque in 2π walls, which are known to be stable in many
metallic systems,28 and have been seen experimentally.29 The
difference between 2π wall behavior and π wall behavior
might be most marked when ballistic transport across the
domain wall is possible, such as for magnetic semiconductor
domain walls (whose π walls are predicted to have highly
nonlinear dependencies of spin current and charge current on
voltage30,31). Understanding 2π domain walls may also lead
to novel spin torque devices, such have been predicted for
π walls.9,32,33

Here we calculate the charge and spin transport and torque
for π and 2π domain walls in a simplified model of a magnetic
semiconductor, whose electronic structure is described with a
Stoner model and whose domain walls are spin spirals, either
with a uniform spiral angle (abrupt domain wall) or a smoothly
varying spiral angle (smooth domain wall). For coherent
transport through a uniform spin spiral, analytic solutions for
spin-dependent transmission and reflection coefficients for the
different spin channels are possible.30,34 These same solutions
can be applied numerically to a smooth domain wall composed
of many piecewise uniform spin spirals. Nonlinear voltage
dependence of the spin current and spin torque occurs for both
the π and 2π walls, but with very different wall-thickness
dependence. The 2π domain wall resistance vanishes in the
limit of zero thickness as well as for thick walls (in which the
spin adiabatically follows the local magnetization), but peaks
for intermediate thicknesses; the π domain wall resistance
monotonically decreases with thickness. The spin torque on
an abrupt π wall weakly depends on domain wall width,

except for very thin walls, whereas for a smooth π wall
the torque falls off more quickly with thickness. For both
abrupt and smooth 2π walls, however, a large spin torque
is generated by spin transport over a range of intermediate
wall widths, but very little spin torque is generated for both
very thin and very thick walls. Even more surprising, the
domain wall velocity can be larger for a 2π wall than a
π wall, 3π wall, or 4π wall, suggesting that multiple-rotation
(helical) walls may provide the fastest domain wall velocities
in a ferromagnetic semiconductor material, depending on the
domain wall thickness.

II. ANALYTIC MODEL FOR SPIN TRANSPORT
THROUGH A DOMAIN WALL

A. Features of the model

Schematics of the π domain wall and 2π domain wall
are shown in Fig. 1. There are two regions of ferromagnetic
material, with their magnetizations oriented antiparallel for
the π wall case and parallel for the 2π wall case, separated
by a domain wall. The domain wall is shown as a Neél wall,
which is energetically favorable in thin films,35 but as spin-
orbit interactions are neglected here the same physical behavior
will occur for the spin transport and torque for a Bloch wall.

This domain wall model has been significantly simplified in
order to obtain analytic results. The key approximations are (1)
the magnetic material is assumed to be a parabolic-band Stoner
model; the spin splitting between spin-up and spin-down
is assumed uniform, (2) spin-orbit effects in the electronic
structure are neglected, and (3) the structure is assumed to
have two leads with a uniform exchange field, separated by a
third region with a piecewise constant variation of the exchange
field with position. The exchange field in a domain wall is

B = B0[sin θ (x)x̂ + cos θ (x)ẑ]. (1)

If θ varies smoothly with x in the form θ = φx/d, and φ = π

or 2π is the angle through which the magnetization rotates
from x = 0 to x = −d then the domain wall is essentially one
or two turns through a spin spiral. A smoother domain wall
can also be described in this form, but with piecewise constant
spiral angle, as shown in Fig. 2. The spiral angle is chosen
to approximate the analytic form for a domain wall in an
isotropic Stoner model, θ (x) = sin−1[tanh(x/λ)]. We find that
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FIG. 1. (Color online) Schematic representation of Néel (a) π

and (b) 2π domain walls. Charge transport is assumed to be by holes
with spin antiparallel to magnetization.

our results for the smooth wall do not change substantially if
the number of piecewise constant regions is doubled compared
to that shown in Fig. 2.

The results obtained with these approximations require care
when applied to real physical systems. Typical hole-mediated
ferromagnetic semiconductors, such as GaMnAs, have non-
parabolic and nonspherical bands, nonuniform spin splitting,
and substantial spin-orbit interactions. These effects can lead
to enhancement of the hole reflectivity and nonadiabatic spin
torque for thick π walls, yielding quantitatively different re-
sults from those obtained without spin-orbit interaction21,36–38

in the ballistic limit. Thus differences in the quantitative results
for spin-torque for π domain walls calculated using the model
here, and those calculated with a GaMnAs electronic structure,
suggest that only qualitative trends should be expected, espe-
cially for thick walls. There is, however, a clear experimental
situation where our first two approximations are quantitatively
appropriate—that of a semimagnetic semiconductor with a
very large effective g factor, such as ZnMnSe, in the presence
of an external magnetic field.39 The band structure for this
system is well described by a uniformly spin-split parabolic
band with negligible spin-orbit interaction, and the spatially
varying effective exchange field can be induced by the fringe
magnetic field from a ferromagnetic domain wall, perhaps
deposited as a film on top of the ZnMnSe material.40

The abrupt transition from constant to spatially varying
exchange field for an abrupt π wall is known to generate a
spin torque that is too large and that falls off inversely with
the domain wall width, as opposed to the exponential falloff
found in a numerical calculation treating a smoothly varying
exchange field.24 We compare the results for the smooth
domain wall to those for the abrupt domain wall in Sec. III in
order to determine the importance of this effect for 2π walls.
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FIG. 2. (Color online) Schematic of a smooth domain wall
approximated by 17 piecewise constant spin spirals (solid line).
Also shown is the analytic form for a Stoner model, θ (x) =
sin−1[tanh(x/λ)] (dashed line).

B. Spin-dependent transmission and reflection
through the domain wall

We consider spin transport through the domain wall due
to holes with spin orientation antiparallel to the material
magnetization (as in Fig. 1). These carriers can be reflected
or transmitted either with or without flipping their spins.
We calculate the reflection and transmission coefficients by
solving the Schrödinger equation inside the domain wall30:[−h̄2

2m∗
∂2

∂x2
− �

2

(
cos θ (x) sin θ (x)
sin θ (x) −cos θ (x)

)](
ψ↑
ψ↓

)
=E

(
ψ↑
ψ↓

)
,

(2)

where � is the energy splitting between carriers of opposite
spin orientation in the ferromagnetic material. Converting E

and � into the unitless Ē and �̄ by

Ē = 2m∗d2E

h̄2 , (3)

�̄ = 2m∗d2�

h̄2 , (4)

yields[
− ∂2

∂x2
− �̄

2d2

(
cos θ (x) sin θ (x)
sin θ (x) −cos θ (x)

)] (
ψ↑
ψ↓

)
= Ē

d2

(
ψ↑
ψ↓

)
.

(5)

With a position-dependent θ in the Hamiltonian, it is most
convenient to transform to a rotating frame.41 The rotation
matrix

R = e− iθ
2 σy =

(
cos θ(x)

2 − sin θ(x)
2 )

sin θ(x)
2 cos θ(x)

2

)

defines ψ = Rϕ and removes the θ dependence from the off-
diagonal potential matrix:

R−1

(
cos θ (x) sin θ (x)
sin θ (x) − cos θ (x)

)
R = σz.

The resulting modified Schrödinger equation is[
− ∂2

∂x2
+ iφ

d
σy

∂

∂x
− �̄

2d2
σz + φ2

4d2

]
ϕ = Ē

d2
ϕ,

which has solutions of the form

ϕ = eikxχ (k), (6)

where χ satisfies the equation[
k2d2 − φkdσy + φ2

4
− �̄

2
σz − Ē

]
χ = 0, (7)

where

k1,2 = 1

d

√
Ē + φ2

4
± 1

2

√
�̄2 + 4Ēφ2 (8)

and

χ (ki) = Ni

(−iφkid

εi

)
. (9)

Here

Ni = 1√
εi

2 + φ2ki
2d2

, (10)
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εi = ki
2d2 + φ2

4
− �̄

2
− Ē, (11)

and

ϕ±(ki) = e±ikixNi

(∓iφkid

εi

)
. (12)

The final expression for ϕ is(
ϕ1

ϕ2

)
= AN1e

ik1x

(−iφk1d

ε1

)
+ BN1e

−ik1x

(
iφk1d

ε1

)

+CN2e
ik2x

(−iφk2d

ε2

)
+ DN2e

−ik2x

(
iφk2d

ε2

)
.

(13)

The full wave functions inside the domain wall are

ψ = Rϕ =
(

cos
(

φx

2d

)
ϕ1 − sin

(
φx

2d

)
ϕ2

sin
(

φx

2d

)
ϕ1 + cos

(
φx

2d

)
ϕ2

)
. (14)

The incident and reflected wave functions, expressed in the
right hand lead, are

ψin =
(

e−ik↑x

0

)
, (15)

ψr =
(

rnf eik↑x

rsf eik↓x

)
, (16)

where rsf and rnf are the coefficients for reflection with and
without spin flip. These wave functions must be matched with
those of Eq. (14).

Here we report the full solution for an arbitrary angle
of rotation φ, not restricted to a multiple of π . For such
situations the axis of magnetization on the left side of the
domain wall may not not be parallel or antiparallel to the
magnetization in the right side of the domain wall, where the
carriers are injected. This solution is required in order to use
these results to calculate the effect from piecewise constant
domain walls. A transfer matrix approach is used to connect
the wave functions at the edge of each piecewise constant
region, until the entire domain wall has been traversed. In
order to keep track of the change in spins all the way through
the system, we apply the same transformation to the left lead as
we do to the inside of the domain wall. Thus, the local “up” and
“down” transmitted states along the magnetization of the left
lead,

ϕt =
(

Pe−ik↑x

Qe−ik↓x

)
, (17)

become combinations of these states in the basis of the right
lead:

ψt = Rϕt =
(

cos
(

φ

2

)
Pe−ik↑x + sin

(
φ

2

)
Qe−ik↓x

− sin
(

φ

2

)
Pe−ik↑x + cos

(
φ

2

)
Qe−ik↓x

)
. (18)

This form of ψt shows the orientation of the spins with respect
to the magnetization on the incident side.

Setting up matching conditions for the wave functions and
their derivatives at x = 0 and x = −d yields eight boundary
conditions:

1 + rnf = N1iφk1d(B − A) + N2iφk2d(D − C), (19)

−ik↑ + ik↑rnf = −N1iφk1d[ik1(B + A)] − N2iφk2d[ik2(D + C)] − φ

2d
[N1ε1(A + B) + N2ε2(C + D)], (20)

rsf = N1ε1(A + B) + N2ε2(C + D), (21)

ik↓rsf = N1ε1ik1(A − B) + N2ε2ik2(C − D) + φ

2d
[N1ik1d(B − A) + N2ik2d(D − C)], (22)

cos

(
φ

2

)
Peik↑d + sin

(
φ

2

)
Qeik↓d = cos

(
φ

2

)
[N1iφk1d(Beik1d − Ae−ik1d ) + N2iφk2d(Deik2d − Ceik2d )]

+ sin

(
φ

2

)
[N1ε1(Ae−ik1d + Beik1d ) + N2ε2(Ce−ik2d + Deik2d )], (23)

−ik↑ cos

(
φ

2

)
Peik↑d − ik↓ sin

(
φ

2

)
Qeik↓d = cos

(
φ

2

)[
N1φk2

1d(Beik1d + Ae−ik1d ) + N2ik2d(−ik2)(Deik2d + Ce−ik2d )

−
(

φ

2d

)
N1ε1(Ae−ik1d + Beik1d ) −

(
φ

2d

)
N2ε2(Ce−ik2d + Deik2d )

]

+ sin

(
φ

2

)[
N1ε1ik1(Ae−ik1d − Beik1d ) + N2ε2ik2(Ce−ik2d − Deik2d )

+
(

φ

2d

)
N1iφk1d(Beik1d − Ae−ik1d ) +

(
φ

2d

)
N2iφk2d(Deik2d − Ce−ik2d )

]
,

(24)

− sin

(
φ

2

)
Peik↑d + cos

(
φ

2

)
Qeik↓d = − sin

(
φ

2

)[
N1iφk1d

(
Beik1d − Ae−ik1d

) + N2iφk2d(Deik2d − Ce−ik2d )
]

+ cos

(
φ

2

)
[N1ε1(Ae−ik1d + Beik1d ) + N2ε2(Ce−ik2d + Deik2d )], (25)
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ik↑ sin

(
φ

2

)
Peik↑d − ik↓ cos

(
φ

2

)
Qeik↓d = − sin

(
φ

2

)[
N1φk2

1d(Beik1d + Ae−ik1d ) + N2iφk2d(−ik2)(Deik2d + Ce−ik2d )

−
(

φ

2d

)
N1ε1(Ae−ik1d + Beik1d ) +

(
φ

2d

)
N2ε2(Ce−ik2d + Deik2d )

]

+ cos

(
φ

2

)[
N1ε1ik1(Ae−ik1d − Beik1d ) + N2ε2ik2(Ce−ik2d − Deik2d )

+
(

φ

2d

)
N1iφk1d(Beik1d − Ae−ik1d )+)

(
φ

2d

)
)N2ik2d(Deik2d − Ce−ik2d )

]
.

(26)

These eight equations can be solved for rnf , rsf , Q, and
P , which completely describe the incident, reflected, and
transmitted wave functions shown in Eqs. (15), (16), and (18).

These coefficients also define the transmission and reflec-
tion probabilities for the system:

Tnf = cos2

(
φ

2

)
|P |2 + sin2

(
φ

2

)
k↓
k↑

|Q|2, (27)

Tsf = sin2

(
φ

2

)
|P |2 + cos2

(
φ

2

)
k↓
k↑

|Q|2, (28)

Rnf = |rnf |2, (29)

Rsf = k↓
k↑

|rsf |2. (30)

C. Spin and charge current and spin torque from
the analytic model

After obtaining the full wave functions for the entire system,
we obtain42 the charge current density J and spin current
density Q,

J = eh̄

2im∗ [ψ† (∂xψ) − (∂x ψ†) ψ]x̂, (31)

Q = h̄

2im∗ [ψ† S (∂xψ) − (∂x ψ†) S ψ]. (32)

The tensor Q has a flow direction in real space as well as
a direction in spin space. The real-space flow direction lies
along the direction of current (x̂), and we write Q as a vector
with components corresponding to the appropriate spin-space
directions. As this spin current is not a conserved quantity, we
can then define the spin torque per unit area as the amount of
spin current lost to the domain wall during transport:42

N = Qin + Qr − Qt . (33)

Charge currents and spin torque can be calculated by integrat-
ing the transmission and reflection coefficients from Eq. (5)
over the carrier population.

To analyze the situation in Fig. 1, we assume the left
and right hand ferromagnetic regions to be reservoirs of
spin-polarized carriers,30 with chemical potentials μR = eV

and μL = 0. These reservoirs contain up spins on the right
side, and local majority spins on the left side (these are down
spins for a π wall and up spins for a 2π wall). We ignore the
small density of minority carriers in the right hand lead, where
the carriers are incident.

Time reversal symmetry stipulates that the amount of spin
torque would be the same magnitude N, but opposite direction,
if carriers were injected from the left side instead of the right
side, with no other changes to the system, and assuming perfect
spin injection from each side. Thus the spin torque caused by
injection of carriers from the right (NR) is a function of the
majority population on the right side of the domain wall, and
similarly for the left

NR = NfRmaj , (34)

NL = NfLmaj . (35)

The total spin torque is then the sum of the the torque from
the left side, and the torque from the right side, integrated over
the carrier population:

Ntot =
∫

d3k(NR + NL) =
∫

d3k
[
N

(
fRmaj − fLmaj

)]
, (36)

where the applicable distribution functions are

fRmaj,Lmag = 1

1 + e(Ētot−μR,L)/kBT
,

and Ētot = Ēx + Ēt is the sum of the carrier kinetic energy
associated with transport across the domain wall (Ēx), and
the carrier kinetic energy in the transverse directions (Ēt ).
As the only difference between fRmaj and fLmaj is the chemical
potential on each side, in equilibrium when eV = 0 then Ntot =
0. We define kx and kt from Ēx and Ēt as

kx = 1

d

√
Ēx, kt = 1

d

√
Ēt . (37)

The total torque can be evaluated from

Ntot =
∫ ∞

0
dkx

∫ ∞

0
dktkt

∫ 2π

0
dθN(Ēx)

[
fRmaj (Ētot)

−fLmaj (Ētot)
]
. (38)

Equation (38) includes the transverse orbital degrees of
freedom for a three-dimensional Stoner model. Performing
the integration over the two transverse directions,

Ntot =
∫ ∞

0

dĒx√
Ēx

N(Ēx) ln
1 + e(eV −Ēx )/kBT

1 + e−Ēx/kBT
. (39)

Equation (39), with suitable choices for parameters, is used
to calculate total spin torques. As with all the population-
averaged quantities considered here (total spin current, total
charge current, and spin torque), this integral is evaluated by

115210-4



SPIN TORQUE AND CHARGE RESISTANCE OF . . . PHYSICAL REVIEW B 84, 115210 (2011)

0 ΔΔ 2Δ 3Δ 0 Δ 2Δ 3Δ

0 Δ 2Δ 3Δ 0 Δ 2Δ 3Δ
1 

0.5 

0 

Hole Energy

P
ro

b
ab

ili
ty

TnfRnf

Tsf
Rsf

π wall 2π wall

1 

0.5 

0 
1 

0.5 

0 

1 

0.5 

0 

0.1 nm

1 nm

5 nm

10 nm

width (d)

(a)

(b)

(c)

(d) (h)

(g)

(f)

(e)

FIG. 3. (Color online) Probabilities for transmission through an
abrupt domain wall with spin flip (Tsf , black solid line), transmission
without spin flip (Tnf , red long-dashed line), reflection with spin flip
(Rsf , blue short-dashed line) and reflection without spin flip (Rnf ,
green dot-dashed line) for (a)–(d) π and (e)–(h) 2π Néel walls with
widths of 0.1, 1, 5, and 10 nm.

transforming the integration range extending to infinity to a
finite range, using a change of variables, and then integrating
using an adaptive step size.

III. RESULTS: TRANSMISSION AND REFLECTION
COEFFICIENTS FOR DOMAIN WALLS

Calculations presented here will treat a model with spin
splitting � = 100 meV and valence hole effective mass m∗ =
0.45 me, where me is the mass of the bare electron. We assume
a temperature of 110 K and a carrier density of ∼1019 cm−3.
For these parameters the magnetic semiconductor is nearly
100% spin polarized, and the effects found here are most
visible. Although the results change quantitatively for different
parameters (corresponding, e.g., to lower spin polarization),
the qualitative trends we have identified are robust so long as
the Fermi energy and the temperature are much less than the
spin splitting.

Figure 3 shows calculated probabilities for transmission and
reflection with and without spin flip for several thicknesses
of abrupt π and 2π Néel walls (domain wall thickness
presumably engineered by modifying film thickness and
geometric shape), and Fig. 4 shows the charge current when an
average over the carrier population is taken of the coefficients
in Fig. 3. The thin wall and thick wall limits for 2π domain
walls differ substantially from those of π domain walls. For
thin walls the carriers effectively move through the domain
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FIG. 4. (Color online) Charge current as a function of bias voltage
for (a) π and (b) 2π walls. Curves correspond to different domain
wall widths. Black solid line, 0.1 nm, red long-dashed line, 1 nm,
blue short-dashed line, 5 nm, green dot-dashed line, 10 nm.

wall without changing their spin orientation, which leads to
carrier reflection for the π domain wall as at low energy there
are no final states on the other side with the correct spin
orientation (and thus high resistance30). A thin 2π domain
wall, however, will let the carriers through efficiently and thus
have low resistance. As the thickness of a π domain wall
increases, the spin-flip transmission monotonically increases
[as shown for successively wider domain walls in Figs. 3(a)–
3(d)], and the resistance drops, as shown in Fig. 4(a). As
the thickness of a 2π domain wall increases initially from
zero thickness, spin precession in the domain wall becomes
more pronounced and carrier reflection is possible, so the
resistance increases. However, in the limit of a very thick
2π domain wall the carriers will adiabatically follow the local
magnetization and thus will be oriented once again parallel
to the final magnetization, producing low resistance. Thus a
finite thickness with maximal domain wall resistance should
be expected for a 2π domain wall, as shown in Fig. 4(b).

IV. RESULTS: SPIN TORQUE IN π AND 2π

DOMAIN WALLS

Figure 5 shows the calculated energy-resolved components
of the spin torque from Eq. (33) for an abrupt domain wall.
We focus on the energy region below the spin splitting �. In
this region, the π wall graphs [Figs. 5(a)–5(d)] show large
x̂ and ŷ torque components, with the largest values for both
components appearing in the 1 nm wall [Fig. 5(b)]. In this
energy region, the 2π wall graphs [Figs. 5(e)–5(h)] show very
little torque for the 0.1 and 1 nm walls, but significant x̂ and ŷ

torque components for the 5 and 10 nm walls, with the largest
overall torque appearing in the 5 nm wall. We identify the spin
torque as adiabatic [proportional to ∇M(r), and thus parallel
to x̂] or nonadiabatic [proportional to M(r) × ∇M(r), parallel
to ŷ], and find both components contribute significantly to the
spin torque for both π and 2π walls.

Figure 6 shows the components of the total spin torque
for each type of domain wall. We split the spin torque into
the adiabatic x̂ component and the nonadiabatic ŷ component.
For the π wall, we see that the sign of the torque components
depends on the width of the domain wall. The adiabatic x̂

component is positive for the smaller two domain wall widths,
and negative for the larger two widths. The nonadiabatic ŷ

component is positive for the smallest and largest domain wall
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widths, and negative for the middle two widths. We note that
the adiabatic torque for the 5 and 10 nm walls for a π wall
are nearly equal. This is consistent with the adiabatic torque
saturating for large domain walls. For ballistic transport, a wide
enough wall will result in nearly all the carriers precessing
perfectly with the local magnetization inside the domain
wall.

For the 2π wall, the adiabatic x̂ component is always
positive, and increases with the domain wall width. The
nonadiabatic ŷ component shows little spin torque for the
0.1 and 1 nm walls, and larger spin torque for the 5 and 10
nm walls, with the 5 nm wall being larger. The intermediate
spin torque maximum is consistent with the concepts discussed
above for Fig. 3, namely that the domain wall system reverts
to almost total transmission of carriers without spin flipping
for both very small walls (where the carriers can pass through
without any change in spin orientation) and very wide walls
(where the carriers precess along with the local magnetization
and exit the domain wall with the magnetization orientation of
the left lead, which has the same orientation as the right lead
in a 2π wall).

Figure 7 examines this width dependence more closely,
showing calculations for the individual torque components as
well as the overall magnitude of the spin torque as a function of
the abrupt domain wall width for a fixed applied voltage across
the walls of 5 mV. The adiabatic x̂ component of the spin torque
in the abrupt π wall rises quickly to a maximum at a width
near 2 nm, then falls off, changes sign, and stabilizes for large
domain wall widths, confirming the saturation discussed above
for Fig. 6. Similarly, the nonadiabatic ŷ component reaches a
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negative maximum near the same width, changes sign, and
stabilizes for large domain wall widths. The magnitude of the
spin torque shows that peak, along with the saturation at larger
domain wall widths. The sharp jump from zero to that early
peak is likely the result of the high reflection from narrow π

walls. The carriers attempt to treat the thin wall as a narrow
barrier and pass through without flipping their spins. However,
there are no corresponding spin states on the other side of
the π wall, resulting in a large amount of reflection. As this
reflection vanishes for larger walls, the spin flip effect takes
over, eventually producing a saturation.

For a 2π wall, the x̂ component reaches a relative maximum
near 9 nm and then appears to fall off slowly for larger widths.
The ŷ component has a peak that is around twice the magnitude
of the x̂ component at a width near 6 nm. The plot of the
overall magnitude of the spin torque shows a small torque for
the smallest width, larger torque in the intermediate widths,
and a slow fall-off of the torque at larger widths. This is the
same effect discussed above for Fig. 6 and holds true for
both the adiabatic torque and the nonadiabatic torque. The
torque rises slowly from zero as the domain walls become
large enough for significant spin reorientation to occur, peaks
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at some intermediate width, and returns to zero in the limit
where all the spins are precessing with the local magnetization.

We note that the peak spin torque magnitude for a 2π wall is
nearly three times as large as the peak spin torque magnitude
for a π wall. Additionally, this peak occurs for a 2π wall
that is approximately three times as wide as a π wall at its
corresponding peak. Why should the spin torque for a 2π wall
exceed that of two π walls in succession? The spin torque
is calculated assuming that the transverse spin orientation of
carriers that have moved through the domain wall relaxes in
the leads. For two π walls this transverse spin orientation is
assumed to relax in between the two walls, and thus for two
widely separated π walls the total spin torque should be just
double that for a single π wall. For a 2π wall, however, there
is no such relaxation after a π rotation of the magnetization,
and thus the transverse spin orientation of the carriers can
continue to be manipulated in the second half of the 2π wall.
The crossover between two isolated π walls and a single 2π

wall should be complex, for if the transverse spin orientation
does not fully decay between the walls, then the total spin
torque should depend on the precession of the transverse spin
orientation of the carriers in the exchange field of the region
in between the two π walls. Thus there should be intermediate
separations between two π walls that result in less total spin
torque than two isolated π walls. This study will be the subject
of future study.

For a π abrupt domain wall the abrupt transition from
constant to spatially varying exchange field generates a spin
torque that is too large and that falls off too slowly (Fig. 7),
compared with a smooth domain wall24 (Fig. 8). In contrast,
for the 2π wall, the spin torque does not change its qualitative
dependence, although it is reduced for the smooth domain
wall by about a factor of 2 across the entire range of wall
widths. Although the nonadiabatic torque is disproportionately
overestimated by an abrupt calculation for the π wall, it is
the adiabatic torque that is disproportionately overestimated
for the 2π domain wall. Thus the determination that the
dominant torque for a 2π domain wall is the nonadiabatic
torque, predicted from calculations for an abrupt domain
wall, is even more valid for the smooth 2π domain wall.
The common assumption of principally adiabatic torque for
domain walls22,24,43 (except for very narrow walls) breaks
down for coherent transport through 2π domain walls, such
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FIG. 9. (Color online) Calculated velocity at the abrupt domain
wall width where spin torque is maximum for each of the π , 2π , 3π ,
and 4π walls.

as it does for unusual shape anisotropy or strong spin-orbit
interaction.44,45

V. DOMAIN WALL VELOCITIES

For a wall undergoing an nπ rotation in magnetization from
one side to the other, the domain wall velocity can be estimated
as

v = gμb

nMs

N, (40)

where N is the total spin torque in h̄ flips/(s cm2) and Ms is
the saturation magnetization of the material. Figure 9 shows
the domain wall velocities for abrupt domain walls that result
from the spin torque at the widths corresponding to peak spin
torque for the π and 2π walls, as seen in Fig. 7, and also shows
the peak domain wall velocity calculated for 3π and 4π walls.
For each domain wall we first calculate the peak spin torque
and the domain wall width producing that peak. This peak
torque is then used in Eq. (40) to calculate a peak velocity.

We see in Fig. 9 that the 2π wall has a consistently
larger velocity than the π wall does. Performing the same
calculations for a 3π wall and a 4π wall, however, does not
produce larger velocities than the one for the 2π wall. The
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FIG. 10. (Color online) Same as Fig. 9 but for a smooth domain
wall.

115210-7
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FIG. 11. (Color online) Ratio of the torque generated from current
passing through a 2π domain wall to that generated from the same
current passing through a π domain wall for a voltage of 5 mV. The
dashed line indicates the ratio above which the 2π wall moves faster.

larger 2π wall velocity is easily attributed to the larger peak
torque, as discussed above for Fig. 7. The smaller velocities
for 3π and 4π walls point to an upper limit on the amount of
torque in a domain wall. For a given domain wall configuration,
at each point along the domain wall, there is a direction that
produces the maximum amount of torque. When all the carriers
are aligned in this fashion, the domain wall experiences its
maximum torque. Walls with larger rotation angles have more
angular momentum to turn over to move the domain wall. This
means that a larger rotation angle should tend to correspond
with a smaller domain wall velocity.

Figure 10 shows the velocity for a smooth domain wall.
The reduction in overall torque for the 2π wall by a factor
of 2 makes the domain wall velocity at peak velocity smaller
than that of the π domain wall. However, for other regimes of
domain wall thickness the 2π wall may move faster than the π

wall. Shown below in Fig. 11 is the ratio of the spin torque of
a 2π wall to that of a π wall; as it takes twice as much torque
to move a 2π wall as fast as a π wall, Fig. 11 shows that for
walls thicker than ∼6–20 nm the 2π wall moves faster.

VI. CONCLUDING REMARKS

This treatment of coherent transport across domain walls
has shown that the behavior of spin transport through domain
walls is intrinsically nonlinear in voltage and magnetization
rotation angle, for spin transport and torque both depend
nonlinearly on the applied voltage, and the properties of a
wall with twice the magnetization rotation (2π wall) are not
related in any clear fashion to the properties of the π wall.
The domain wall resistance to charge current follows different
qualitative trends for the 2π domain wall than the π domain
wall, leading to a maximum resistance at an intermediate
wall thickness, as opposed to maximum resistance at zero
thickness. An optimal-thickness 2π Néel wall experiences
almost twice as much spin torque as an optimal thickness
π domain wall for the same applied voltage, producing a
comparable velocity for the 2π wall. At other thicknesses
the velocity of the 2π wall exceeds that of a π wall. For the
2π wall there is an optimal width for achieving a maximum
amount of spin torque, which should assist in understanding the
time-dependent properties of domain walls in the presence of
current, including potentially finding the fastest racers around
a magnetic racetrack memory.9
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