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Quantum kinetic equation in phase-space textured multiband systems

Clement H. Wong* and Yaroslav Tserkovnyak
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
(Received 6 February 2011; revised manuscript received 11 June 2011; published 21 September 2011)

Starting from the density-matrix equation of motion, we derive a semiclassical kinetic equation for a general
two-band electronic Hamiltonian, systematically including quantum-mechanical corrections up to second order in
space-time gradients. We find, in addition to band-projected corrections to the single-particle equation of motion
due to phase-space Berry curvature, interband terms that we attribute to the nonorthorgonality of the projected
Hilbert spaces. As examples, we apply our kinetic equation to electronic systems in the presence of spatially
inhomogeneous and dynamical spin textures stemming from electromagnetic gauge potentials, and specifically
to the electromagnetic response of massive 2D Dirac fermions and 3D Weyl fermions.
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I. INTRODUCTION

The semiclassical theory of electronic dynamics has been
successful in explaining a wide range of transport pheno-
mena in solid-state physics. It is well established that the
semiclassical single-particle equations of motion (sEOM)
acquire anomalous corrections that stem from Berry phases1

accumulated in the adiabatic motion of a wave packet.2–15

Such Berry-phase effects have been successful in explaining
the anomalous Hall effect,2,3,9 corrections to semiclassical
quantization,7,8 intrinsic magnetic moments of electronic wave
packets,8,10,13,15,16 and anomalous thermoelectric transport17,18

in various electronic systems. The (noncanonical) Hamiltonian
perspective and issues related to the Liouville theorem and
modified electron density of states have also been elucidated
recently,12–14 as well as Fermi-liquid generalizations.9,19

Collective dynamics in the semiclassical approach is usu-
ally described with the Boltzmann equation, where electrons
drift in phase space according to their single particle equations
of motion projected on respective bands. While such an
approach is intuitive and physically appealing, its validity
is open to question. The problem is that spatiotemporal
inhomogeneities in the Hamiltonian, such as electromagnetic
potentials, induce interband coherences that may not be
completely captured by the sEOM. Furthermore, it was noted
in Ref. 12 that the sEOM are noncanonical, appearing to
violate the Liouville theorem. As a remedy, the authors
introduced a rescaling of the phase-space density of states. This
modification was shown to be consistent with a formal requan-
tization procedure for band-projected Bloch electrons, which
promotes the Poisson brackets of the sEOM to commutators,
resulting in noncanonical commutator relations of position
and momentum and the corresponding modified minimum
quantum uncertainty in phase-space variables.12 However, we
find no logical necessity to enforce the Liouville’s theorem
for the band-projected distribution function, and the formal
requantization argument does not explain why the density of
states is modified by the band projection.

These fundamental issues motivate us to consider the
generalized Boltzmann equation for a multiband system from
a systematic, ground-up approach. In this paper, for a clean
system with nondegenerate bands, we derive a band-projected
kinetic equation by performing a semiclassical expansion of
the density-matrix equation of motion. A similar Green’s

function approach was developed in Ref. 19. However, there
it was assumed from the outset that the distribution function
was nonvanishing only in a single band. A density matrix
approach similar to the one to be presented in this paper was
also used in Ref. 20 to analyze electronic transport on Bloch
bands. In this paper, we make no a priori assumptions of
decoupled bands and capture systematically all corrections
to the Boltzmann equation up to second order in space-time
gradients. Despite our attempt at decoupling by a systematic
gradient expansion, we find remaining interband terms that
warrant further investigation.

This paper is organized as follows. In Sec. II A, for
a two-band Hamiltonian, we derive a covariant transport
equation for the Wigner distribution function. In Sec. II B,
we decouple the transport equation to derive effective band-
diagonal semiclassical kinetic equations (sKE). In our sKE,
in addition to the known Berry curvature corrections to the
sEOM, we find terms corresponding to the aforementioned
modified density of states, as well as interband terms not seen
before. We interpret these terms as representing quasiparticles
motion in curved, nonorthogonal subspaces of the total Hilbert
space. In Sec. II C, we extract the hydrodynamic current
from the continuity equation, discuss issues associated with
momentum-space ultraviolet cutoffs and band-crossing points.
In Sec. II D, we consider minimal coupling to electromagnetic
gauge fields and express our transport equations in terms of
the gauge-invariant kinetic momentum. We then apply these
equations to the 2D Dirac and 3D Weyl Hamiltonians in
Sec. III A and Sec. III C. In the conclusion, Sec. IV, we
qualitatively compare our approach with other methods for
deriving band-projected effective Hamiltonians by canonical
transformations on the Hilbert space. Computational details
are relegated to the appendices. For the reader’s convenience,
we provide references to the equations containing the main
results of this paper in Table. I

II. SEMICLASSICAL KINETIC EQUATIONS

A. Covariant transport equation

Consider the many-particle density matrix,

ραβ(r1,r2,t) ≡ 〈ψ†
β (r2,t)ψα(r1,t)〉 , (1)

where ψα(r1,t) are second-quantized field operators, and α is
a spin or band index. We will consider only fermions in this
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TABLE I. Summary of the band-projected equations.

Equation General In electromagnetic fields

sEOM (24) (37), (38)
sKE (26) (36)

“Anomalous” terms Phase space Hydrodynamic

Fps (21) (29)

paper, although our formalism is equally applicable to bosons.
For a quadratic, mean-field (or Fermi-liquid) Hamiltonian,

H (t) =
∫

dr1dr2 ψ†
α(r1,t)Hαβ(r1,r2,t)ψβ(r2,t) , (2)

where Ĥ is the first-quantized, quasiparticle Hamiltonian
expressed as a kernel (with the implied summation over
repeated indices α,β), the equation of motion for the density
matrix closes:

∂tραβ + i

h̄
(Hαγ ⊗ ργβ − ραγ ⊗ Hγβ) = 0 . (3)

Here, ⊗ denotes a convolution integral in real space: [A ⊗
B](r1,r2) ≡ ∫

dr′A(r1,r′)B(r′,r2). We generally consider a
smooth low-energy effective Hamiltonian

Hαβ(r1,r2,t) = εαβ(−i∂r1 ,r1,t)δ(r1 − r2) . (4)

If necessary, the function εαβ(−i∂r1 ,r1,t) is properly sym-
metrized in its noncommuting arguments ∂r1 and r1. Eq. (4)
may represent the continuum Hamiltonian for the slowly-
varying envelope fields in the k · p expansion, or the continuum
limit of a tight-binding Hamiltonian.

For slow and long-wavelength spatiotemporal inhomo-
geneities, it is useful to define the distribution function n̂p(r,t)
by the Wigner transform (WT) of the density matrix:21

n̂p(r,t) ≡
∫

dr′e− i
h̄

p·r′
ρ̂

(
r + r′

2
,r − r′

2
,t

)
. (5)

In the Wigner representation, the expectation value of an
observable described by the kernel Â(r1,r2) is given by

〈Â〉(t) =
∫

dr
∑

p

Tr[n̂p(r,t)Âp(r,t)] , (6)

where
∑

p ≡ ∫
ddp/(2πh̄)d , d being the number of spatial

dimensions. Here and henceforth, we make a convention to
denote the spin/band matrix structure by hats. When n̂p(r,t) is
a smooth function of r and t , one may construct a semiclassical
kinetic equation for n̂p(r,t) by taking the WT of Eq. (3)
and performing a gradient expansion. The kinetic equation
for n̂p(r,t) is governed by the quasiparticle energy matrix
ε̂p(r,t), which is the WT of the quasiparticle Hamiltonian
kernel Eq.(4).

We will go to a local spin frame that diagonalizes this
semiclassical Hamiltonian, which for an n-band system, reads

Û †
p ε̂pÛp = diag(ε1,ε2, . . . ,εn) , (7)

where Ûp is a unitary transformation defined by this equation.
The basis defined by this rotation is the local energy eigenstates

in the sense that the average total energy 〈H 〉 may be expressed
as a spatial integral (which defines the energy density)

〈H 〉 =
∫

dr
∑

ps

εpsnps . (8)

nps here are the diagonal elements of the distribution function
in the local spin frame. To derive the semiclassical kinetic
equation, we take the WT of Eq. (3) up to second order in
the gradient expansion. (See Appendix A for details.) The
resulting kinetic equation in the local frame is

Dtn̂p + i

h̄
[ε̂p,n̂p] − 1

2
{Diε̂p,D

in̂p}

− ih̄

8
[DiDj ε̂p,D

iDj n̂p] = 0 , (9)

where {,} denotes anticommutator and [,] commutator, i,j

label coordinates of phase-space vector xi ≡ (r,p), and sum-
mation over repeated indices is implied. The indices are raised

by ∂i = J ij ∂j , where
↔
J is the symplectic matrix acting on

phase-space derivatives ∂i ≡ (∂r,∂p) as

↔
J

(
∂r
∂p

)
=

(
∂p

−∂r

)
,

↔
J =

(
0 1
−1 0

)
, (10)

the latter being written in terms of the d × d matrix blocks.22

In Eq. (9), we introduced the covariant derivatives of the
distribution function and energy defined by

DIM̂ ≡ ∂I M̂ − i[ÂI ,M̂], (11)

where the matrix-valued gauge fields entering covariant deriva-
tives Eq.(15) are defined by ÂI ≡ iÛ

†
p∂I Ûp, and hereafter, the

capital letters I , J , and K will be used to denote combined
phase-space and time coordinates.

In the rest of this paper, for simplicity, we will consider a
two-band system, then the energy matrix may be expanded as

ε̂p(r,t) = 1

2
εp(r,t) + �p(r,t) · τ̂ . (12)

Here, τ̂a = σ̂a/2 are the spin-1/2 matrices satisfying [τ̂a,τ̂b] =
iεabcτ̂c and {τ̂a,τ̂b} = δab/2, σ̂a being the Pauli matrices.
εabc is the antisymmetric Levi-Civita tensor, and we will
use letters in the beginning of the alphabet for indices
representing spin degrees of freedom. Below, we will be
similarly decomposing the components of any 2 × 2 matrix
into scalar and vector pieces as M̂ = M/2 + M · τ̂ , where
M ≡ Tr[M̂] and M ≡ Tr[M̂σ̂ ]. We parametrize the gap
vector as �p(r,t) = �p(r,t)mp(r,t), where �p = |�p| and
mp = (sin θp cos ϕp, sin θp sin ϕp, cos θp) is a unit-vector field
represented by the spherical angles θp(r,t) and ϕp(r,t).

The gap vector field �p(r,t) appears formally as a magnetic
field coupled to spin in phase space, whose directional field
mp(r,t) we will call the spin texture. Examples of Hamiltonian
Eq. (12) occur in ferromagnetic semiconductors, where the gap
vector represents the exchange and spin-orbit fields, and in
nonmagnetic semiconductors with spatially varying spin-orbit
coupling. The internal degrees of freedom need not be the
actual electron spin. For example, our kinetic equation can be
applied to the pseudospin dynamics near the K(K ′) points of
graphene, which is described by the Dirac Hamiltonian.
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∂Im

∂Jm

FIJ dxI ∧ dxJ

dxJ

dxI

FIG. 1. (Color online) Geometric representation of the tensors in
Eq. (17), expressed in terms of the tangent vectors to the sphere,
∂I m = ∂I θ θ̂ + ∂Iϕ sin θ ϕ̂. The tensors GIJ = ∂im · ∂j m and FIJ =
m · (∂im × ∂j m) geometrically represent the spin space metric and
the area spanned by the tangent vectors, respectively.

We will be interested in quasiparticle transport on the
semiclassical spin-orbit bands defined by the eigenvalues of
Eq. (12),

εps(r,t) = 1

2
[εp(r,t) + s�p(r,t)] , (13)

where s = ±1. The local spin frame that diagonalizes Eq. (12)
is defined by an SU(2) rotation Ûp(r,t) such that

Û †
p(�p · τ̂ )Ûp = �pτ̂z , (14)

and the covariant derivatives in Eq. (11) may be written as

DIM̂ = 1
2∂IM + DI M · τ̂ , (15)

where DI M ≡ ∂I M + AI × M and the vector-valued gauge
fields are defined by ÂI ≡ iÛ

†
p∂I Ûp ≡ AI · τ̂ = A+

I τ̂+ +
A−

I τ̂− + Az
I τ̂z, where A±

I = Ax
I ∓ iA

y

I and τ̂± ≡ (τ̂x ± iτ̂y)/2.
In the Euler-angle parametrization of our local spin frame,
Û (ϕ,θ,γ ) = e−iϕτ̂z e−iθ τ̂y e−iγ τ̂z , the gauge fields are

Az
I = cos θ∂Iϕ + ∂I γ ,

(16)
A±

I = −e±iγ (sin θ∂Iϕ ± i∂I θ ) ,

where γ is an arbitrary rotation angle about mp(r,t) and
hence a local gauge parameter. The form of Az

I reflects the
north/south pole singularity in the spherical coordinate system,
where ϕ is not well defined. Near the poles, we may choose
a gauge in which γ = ∓ϕ, which renders the gauge fields
well behaved either at the north or south poles (θ = 0 or π ),
respectively, but not both. It is thus necessary to use different
gauges locally in regions where the texture passes through both
north and south poles. We emphasize that such singularities
have a purely mathematical origin arising from our choice
of coordinate system, and may occur where the texture is
perfectly smooth.

The product of the transverse components in Eq. (16) is a
gauge-invariant second-rank tensor:

A+
I A−

J = sin2 θ∂Iϕ∂J ϕ + ∂I θ∂J θ

+i sin θ (∂I θ∂J ϕ − ∂Iϕ∂J θ )

≡ GIJ + iFIJ . (17)

The real partGIJ is a kind of metric in spin space, which will
not appear in the final results of this paper.23 Fig. 1 illustrates
the geometric meaning of these tensors.

xI(t) M Ω

FIG. 2. (Color online) Illustration of adiabatic transport around
a loop ∂M which is the boundary of a hypersurface M in the 7-
dimensional phase space plus time (left). Spin s particles acquire
a Berry phase in spin space (right). eiqs�, where qs = −s/2 and
� = ∮

∂M
dxIAI = ∫

M
FJKdxJ ∧ dxK = �/2.

By gauge invariance, only the Berry curvature, i.e., the curl
of the Berry gauge field AI ≡ −Az

I , appears in any physical
quantities,

FIJ ≡ Im A+
I A−

J = Ax
I A

y

J − A
y

I A
x
J = ∂IAJ − ∂JAI . (18)

In the rest of the paper, where necessary, we will denote the
Berry gauge fields by A±

I = −(cos θp ∓ 1)∂Iϕp when well
defined on the north/south pole, respectively. Geometrically,
the Berry curvature gives the solid angle � spanned by the spin
texture mp(r,t) per area in the (xI ,xJ ) plane. Nonvanishing
Berry curvature means that particles acquire a phase-space
Berry phase (s/2)

∮
dxIAI ≡ s�/2 over a closed trajectory,

which modifies their transport (see Fig. 2). All the phenomena
we will investigate in this paper may be traced back to this
phase.

Equation (9) may be viewed as an expansion of Eq. (3)
in powers of h̄. However, the separation into its classical
O(h̄0) and quantum O(h̄) part is not manifest because
of its matrix structure, which represents the dynamics of
quantum-mechanical internal degrees of freedom. In the next
section, we will derive a kinetic equation for the distribution
function projected on each band defined by Eq. (13), which
systematically captures all O(h̄) quantum corrections to the
classical Boltzmann equation.

B. Decoupling

The diagonal part of kinetic Eq. (9) reads

∂tnps + ∂iεps∂inps + Fps(∂i,Ai ; εs,ns,ñ) = 0 , (19)

where Fps are the O(h̄), “anomalous” terms in the Boltzmann
equation. We denote transverse (i.e., x,y) vector components
of the distribution (in the local frame) by ñ. In the formulas
throughout this paper, the partial derivatives ∂i acts only on
the symbol to its immediate right, so that in expressions of the
form ∂iA∂jB, ∂i acts on A only. At this point, the anomalous
terms, which are shown explicitly in Eqs. (D2) and (D3) of
Appendix D, may not appear manifestly gauge invariant (while
they certainly should be).2 Let us now decouple the longitudi-
nal and transverse components in an adiabatic approximation,
which will result in a closed, gauge-invariant equation for
the diagonal distribution functions. The decoupling procedure
may be organized in the following way. Suppose that we can
solve the transverse components in terms of the longitudinal
in a gradient expansion to the (p − 1)th order in space-time
derivatives: ñ = ñ(0) + ñ(1) + . . . + ñ(p−1). By substituting ñ
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δxI

m∼ AI

FIG. 3. (Color online) This illustration shows the geometric
meaning of the Berry gauge field. It measures the misalignment
between nearby spin “up” states, where the local spin quantization
axis is defined by m(xI ).

in Fps , which is at least first order in gradients, and droppig
any (p + 1)th-order terms in Eq. (19), we arrive at a pth-order
equation for nps . We will carry out this procedure to second
order (p = 2), consistent with our initial gradient expansion
in Eq. (9).

From the off-diagonal part of Eq. (9), in regions where
� 
= 0, one may readily find the transverse components to
first-order space-time gradients see Appendix D for details:

ñp = h̄

2

(npz

�
∂iεp − ∂inp

)
Ãi − h̄

npz

�
Ãt , (20)

where we have defined the phase-space particle-number and
longitudinal spin densities, n = n↑ + n↓ and nz = n↑ − n↓,
respectively. The expression includes terms containing the ex-
pansion parameters of the adiabatic approximation: (h̄vF /�)∂r
and (h̄/�)∂t , as well as a term O(1/�0) that shows that
interband coherences may be generated by gradients of the
distribution, irrespective of the size of the gap and even in the
absence of external fields. We will see an example of this in
the Dirac equation in Sec. III A.

Let us further consider why, as shown in Eq. (20),
interband coherences (encoded by the transverse distribution
function) are proportional to the transverse gauge fields. Recall
that the Berry gauge fields are the matrix elements Ass ′

i =
i〈m,s|∂i |m,s ′〉, where the local eigenspinors of our spin bands
are given by |mp(r,t),s〉 = Ûp(r,t)|z,s〉. The transverse gauge
connection determines the overlap between spin up and down
states of nearby eigenspinors, (while Berry gauge fields mea-
sures overlap between nearby up states, as illustrated in Fig. 3)

〈m(x,t),s|m(x + δx,t + δt),s ′〉 = δss ′ − iAss ′
I δxI .

Consider the terms O(nz/�) in Eq. (20), in the presence
of an electric potential in the energy. The particle spins are
locally misaligned with the texture m by an angle χ given by
(Ref. 24)

tan χ = |ñ|
nz

→ h̄

�
|ElÃpl

+vlÃrl
+Ãt | ,

where the applied electric field is E = −∂rε/2, and we defined
group velocity vp = ∂pε/2. (l runs over d spatial dimensions.)
A finite χ stems from the slight misalignment of electrons spin
with the local quantization axis m due to (i) drift in momentum
space with velocity E, (ii) drift in real space with velocity
vp, and (iii) dynamics of the texture. In particular, a locally
spin-up electron will have amplitude on the nearby down band
proportional to A+−

i . [See Eq. (I1) for a microscopic expression
for A+−

i .] For a near-equilibrium distribution function which
depends only on energy, nps(εps), the O(1/�0) term reads

∂εnps∂iεÃi . Evidently, in this case, it also stems from electron
drift, but comes from a different part of the phase space. For
a Fermi-Dirac distribution, this term originates from electrons
on the Fermi surfaces, while the O(nz/�) terms come from
the momentum region between the Fermi surfaces.

Substituting Eq. (20) in the anomalous terms in Eq. (19),
we find

Fs = [ − 1
4∂j (�F) + qs(Ft

j − F ij ∂iεs)
]
∂jns

− 1
4

[
∂i�∂in−s + nz(∂t + ∂iεs∂i)

]
F . (21)

Here, the Berry curvature terms are expressed as

FIJ = z · AI × AJ , F ≡ h̄Frlpl
,

recalling that index l runs over d spatial dimensions. We have
defined the fictitious charge qs = −sh̄/2, s = ±1 for the ↑ , ↓
bands, respectively. Equation (21) constitutes a central result
of this paper. It is clear that these are O(h̄) corrections to
the Boltzmann Eq. (19). In the following sections, we will
omit h̄ for convenience (setting h̄ = 1). In the rest of this
paper, we will explicate Eq. (21) and apply it to specific
examples.

The first line in Eq. (21) represents corrections to the single-
particle equation of motion. Including only these terms, the
longitudinal transport equation (19) would read

∂tns − [
(∂i ε̄s + qsFt i)J

ij + qs∂iεsF ij
]
∂jns + . . . = 0 . (22)

We first note that there is a correction to the single-particle
energy, ε̄ps = εps + δεps , where

δεp = −�pF
4

, (23)

which, in particular, is related to the magnetic moment of a
semiclassical wave packet [see Eq. (35)].8,15 The other Berry-
curvature corrections introduce Hall-like terms to the single-
particle equation of motion, which we define so that the terms
shown Eq. (22) constitute the phase-space advective derivative
of the distribution function,

Ds
t ns ≡ (

∂t + ẋj
s ∂j

)
ns.

We thus identify phase-space velocites ẋ
j
s = (ṙs ,ṗs),8,11,19

ṙs = ∂pε̄s + qs(Ftp + Fppl
∂rl

εs − Fprl
∂pl

εs) ,
(24)

ṗs = −∂rε̄s − qs(Ftr + Frpl
∂rl

εs − Frrl
∂pl

εs) .

As noted in Refs. 12–14, these equations of motion are
noncanonical and thus appear to violate Liouville’s theorem.
Indeed, the phase-space velocity has a finite phase-space
divergence,

∂i ẋ
i
s = qs

(
∂iFt

i + ∂iF ik∂kεs

)
. (25)

From classical considerations of a two-component fluid,
we would expect the projected kinetic equation to read:
∂tnps + ∇ · (nps ẋs) = . . ., where we denote the phase-space
gradient by ∇ = (∂r,∂p), and . . . represents possible interband
terms. It may be seen, using the identity h̄∂iFiJ = ∂JF (see
Appendix E), that terms proportional to to Eq. (25) indeed
appear in the second part of the second line in Eq. (21),
however, multiplied by the longitudinal spin density nz which
couples the bands.25 To express our sKE as a kind of
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phase-space “continuity equation,” we write −nz/4 = (qsns +
q−sn−s)/2 = qsns − qsn/2 in the expression for Fs , then our
sKE reads

∂tns + ∂i(nsẋ
i
s) =

[
1

4
vi

z∂in−s + qs

n

2
(∂t + ∂iεs∂i)

]
F , (26)

where we have introduced notation for the relative band
velocity: vi

z ≡ ∂i�. Both sides of the equation contain terms
that violate Liouville’s theorem. Consider first the LHS. Since
the phase-space divergence is in fact the advective derivative
of qsF (up to the order of our gradient expansion)

∂i ẋ
i
s = qs(∂t + ∂iεs∂i)F

= qs

(
∂t + ẋi

s∂i

)
F + O

(
∂3
μ

) ≡ qsD
s
t FO

(
∂3
μ

)
, (27)

we are lead to the following explanation for physical origin
of the term ns∂i ẋ

i
s on the LHS. In a semiclassical descrip-

tion, spinful particles occupy wave-packet states labeled by
momentum and position, as well as a spin-coherent state
labeled by spherical angles � on the unit sphere. A particle
is thus specified by a set of continuous coordinates, (r,p,�),
which we will call the semiclassical state space. However,
in our adiabatic approximation, we retained only part of the
(matrix) distribution function, nps(r,t), which denotes particle
occupation per solid angle δ� subtended by the texture mp(r,t)
in a volume

∏
l δrlδpl . Because this solid angle is determined

by the phase-space Berry curvature, for example being in one
spatial dimension δ�(p,r,t) = Frpδrδp, the changes in the
distribution function due to the modulation of this spin space
volume along the phase-space particle trajectories appear in
the transport Eq. (26) as an advective derivative of F ≡ h̄Frlpl

.
In Ref. 12, it was assumed that ns satisfies Eq. (26) with

RHS equal to zero, in which case one could recover Louville’s
theorem for a rescaled distribution function fs defined by ns ≡
Dsfs ,12 where Ds satisfies ∂i ẋ

i
s = −(1/Ds)Ds

t Ds , so that the
LHS of Eq. (26) reads DsD

s
t fs . Because Ds satisfies ∂i ẋ

i
s =

−Ds
t lnDs , from Eq. (27) we find

Ds = e−qsF ≈ 1 − qsF . (28)

Because we are neglecting terms that are cubic order in
spatiotemporal derivatives at the level of the sKE, and, to the
lowest order, Dt ∼ ∂μ, we should keep Ds only to linear order
in gradients, as in the approximation above. This expression
agrees with the one quoted in Ref. 26. In Ref. 12, Ds was
included as part of the phase-space measure representing
a modified phase-space density of states for band-projected
electrons. Here, for our two band, continuum model, we
have given an explanation for its origin. It accounts for the
(pseudo)spin degrees of freedom in an approximation in which
the quasiparticle spin dynamics is effectively constrained on
a submanifold of the total state space. This submanifold,
which we will call the projected state space, is a hypersurface
{r,p,�(r,p,t)} determined by the spin texture m[�(r,p,t)].
The projected state space has a local, dynamical volume
proportional to qsF(r,p,t) and is thus curved. We note
that this curvature vanishes, F = 0, unless mp(r,t) has both
momentum and real-space derivatives.

Now consider the terms in the RHS of Eq. (26), which
contain interband terms. These terms are to be expected

ΔΩ

FIG. 4. (Color online) Illustration of nonorthogonal areas on the
spin sphere.

because the wave packets in the projected state space are not
pointlike, but occupy a finite minimum spin solid angle ��

corresponding to a finite minimum volume
∏

l �rl�pl ∼ h̄d

in phase space required by the uncertainty principle. However,
because the nonorthorgonality of the spin-coherent states,
the spin up/down (along the texture) wave-packet states
have nonzero overlap, resulting in interband couplings in the
transport equation (see Fig. 4). The overlap amplitudes are
proportional to the area �� ∼ F , consistent with the fact that
the interband terms are proportional to F .

It is clear that these effects are generic to projected kinetic
equation in multiband systems. Because the decoupling
procedure is technically much more difficult in this case, let
us sketch out qualitatively how our two-band result might be
generalized. In a low energy, k · p expansion about a point (in
the Brillouin zone) of high symmetry, electronic quasiparticle
transforms under an irreducible spinor representation of the
crystallographic point group, which in some cases may be
taken to be a higher-spin group, as in the case of the Luttinger
Hamiltonian. The multicomponent electronic wave function
may be viewed as an amplitude on a group manifold (in the
representation space of the symmetry group). Therefore, we
may specify quasiparticles as in the two band case, except
now � denotes coordinates on a higher dimensional group
manifold, and Eq. (9), which governs coupled orbital and
internal dynamics, may be viewed as quasiparticle motion
in (r,p,�).

For homogeneous spin-orbit couplings, the eigenfunctions
ψ̂s = ûs(p)eip·r of the k · p Hamiltonian Ĥ(p) defines a set of
momentum-space spin textures. When the spin-orbit field is
inhomogeneous, we can still define a local, plane-wave-like
(overcomplete) basis ψ̂s = ûs(r,p)eip·r, where ûs(r,p) is an
eigenvector of the Wigner-transformed Hamiltonian, and build
wave packets out of these states. Thus, the situation is quite
similar to the two-band case, and we expect similar arguments
pertaining to a curved state space and interband couplings
due to the nonorthogonality of semiclassical coherent states
to hold.

C. Hydrodynamics

It is natural to expect a continuity equation for the particle
density, ρ = ∑

p Tr[n̂p] = ∑
ps nps , which follows by taking∑

ps of our sKE’s, resulting in an equation,

∂tρ + ∂r · j + . . . = 0,

from which we may extract the curl-free part of the particle
current.
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The anomalous, O(h̄) contribution to ∂tρ is given by the
terms in Eq. (21), which, upon summation, may be written as
[cf. Eq. (D13)]

∑
ps

Fps =
∑

ps

{
qs∂k[ns(Fit J

ik − ∂iεsF ik)] − 1

4
∂k(�ns∂

kF)

}

=
∑

s

∫
ddp

(2π )d

{
∂r ·

[
nps

(
δṙs − �

4
∂pF

)]

+ ∂p ·
[
nps

(
δṗs + �

4
∂rF

)]}
, (29)

where we have denoted the Berry-curvature corrections
proportional to qs in Eq. (24) by (δṙs ,δṗs) (these are the
corrections not including the shifts in band energies ∂iδεs).
The momentum-space integration extends to a cutoff p� above
which our low-energy effective theory is no longer valid.

From the first line in the second equality of Eq. (29)
and including the “normal” part of the Boltzmann equation
Eq. (19), we identify the particle current

j =
∑

s

∫
ddp

(2π )d
nps

[
∂pεs − �

4
∂pF

+ qs(Ftp + Fppl
∂rl

εs − Fprl
∂pl

εs)

]
. (30)

Note that only part of the energy correction in Eq. (23) and
the corresponding contribution to group velocity enters into
this current. This resulted from cancelations which occurred
in tracing the RHS of Eq. (26).

The second line in Eq. (29) appears as an anomalous
particle source coming from the boundary in momentum
space (invoking the divergence theorem). Thus the . . . in our
continuity equation reads,

∑
s

∮
dd−1Sp

(2π )d
l ·

{
nps

[
− ∂rεps + �

4
∂rF

−qs(Ftr + Frpl
∂rl

εs − Frrl
∂pl

εs)

]}
, (31)

where l is the normal to the bounding surface at p�. This term
represents particles flux coming from outside the momentum-
space region where our semiclassical theory is valid. In
principle, if we know the microscopic theory beyond the
cutoff and could solve for the distribution function there, we
may use it as an input in our low-energy theory, providing
a momentum-space boundary condition for our distribution
function that is found below the cutoff. In the following, for
simplicity, we will take the cutoff to infinity. Furthermore, it
is well known that isolated degenerate points (band crossings)
where �p = 0 are monopole sources of Berry curvature1,9,27

(see Appendix E). These singularities occur because it is not
possible to choose a spin frame [defined by the SU(2) rotation
in Eq. (14)] that is continuous, near topological defects in
the spin textures.28 This occurs, for example, at the origin of
the hedgehog texture in the Hamiltonian of Eq. (51). Strictly
speaking, our expression for the transverse component in
Eq. (20) is not valid at these points (since � = 0).29 Generally,
we will have to exclude these points by imposing a lower
bound in our momentum integration defined by an infinitesimal

surface bounding the singularity. The boundary conditions for
nps at these “inner” boundaries may be found by solving the
exact quantum-mechanical problem near the crossing point.

We note that since all terms ∝ �−1 canceled out in the final
transport equation, we may take the dc limit: ω → 0, � → 0
(in the prescribed order). Thus in some instances, one may
regulate monopole singularities by introducing a gap in the
Hamiltonian, compute the current, and then take the gap to
zero. However, this procedure will in general introduce some
ambiguity in the final answer. For example, it may depend
on the direction of the texture at the point where the gap is
taken to zero. A well-known example of this problem is the
case of the massless 2D Dirac fermion,30 where the vacuum
current depends on the sign of the mass used to regulate the
divergences for the massless fermion. Below, we will work out
the massive case in our semiclassical approach.

D. Coupling to electromagnetic fields

Consider a situation where the real-space texture in
homogeneity stems only from minimal coupling to vector and
scalar gauge potentials, a(r,t) and φ(r,t), in the first-quantized
microscopic Hamiltonian,

Ĥ (−i∂r,r,t) → H (−i∂r − a(r,t),r,t) + φ(r,t) . (32)

The electron charge is absorbed here in the definition of the
gauge potentials.

From the Wigner transformation of this Hamiltonian, the
semiclassical energy becomes

εp → εp−a(r,t) + φ(r,t) ≡ εk(r,t),

where k(r,t) ≡ p − a(r,t) is the kinetic momentum. The
energy and the canonical momentum are not gauge invariant.
To make the transport equation manifestly gauge invariant, we
must express the distribution function in terms of the kinetic
momentum, np = nk+a(r,t)(r,t) ≡ nk(r,t). Note that ∂k = ∂p,
but the space-time derivatives ∂μ = (∂r,∂t ) in the transport
equation are taken with fixed canonical momentum p. We
have to take account of the implicit space-time dependence of
kinetic momentum by

∂μ|p = ∂μ|k + ∂μk · ∂k = ∂μ − ∂μa · ∂k , (33)

where it is implicit now that ∂μ is taken with fixed k. We
will also impose a gauge invariant momentum-space cutoff
k�. The transformation to kinetic momentum may be viewed
as a phase-space coordinate transformation, under which the
gradients transform as

∂rεps = ∂rεks − vks,l∂ral ,
(34)

∂rnp = ∂rnk − ∂kl
nk∂ral .

Here, the group velocity is denoted by vks ≡ ∂kεs . The
transformation of the Berry-curvature corrections are given
in Appendix F. We find that F = b · Bk, so that the energy
shift δεk can be interpreted in terms of a magnetic moment
Mk,

δεk ≡ −Mk · b, (35)

where Mk = �kBk/4. The factor of 1/4 is a result of our
conventions, where we have factored out 1/2 from the usual
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definition of the Berry gauge fields in the literature. We show in
Appendix H that this agrees with the magnetic moment derived
more directly from wave-packet analysis.8 The gauge-invariant
transport equation now reads:

(∂t + ṙs · ∂r + k̇s · ∂k)nks

−nz

4
(∂t + vks · ∂r + fks · ∂k) (b · Bk)

+b · Bk

4
(vkz · ∂r + vkz × b · ∂k) nk−s = 0 , (36)

where we have defined the relative velocity vkz ≡ vk↑ − vk↓,
Lorentz force fs = e + vks × b, and e ≡ −∂rφ − ∂ta and b ≡
∂r × a are the ordinary electromagnetic fields. In Eq. (36), the
phase-space velocities are 8,19

ṙs = vks + ∂kδεk − qsfks × Bk

= Zksvks + ∂kδεk − qs[e × Bk + (vks · Bk)b] , (37)

k̇s = fs + δfs − qs(fks × Bk) × b

= Zksfs + δfs − qs(b · e)Bk , (38)

where we define Zks = 1 + qsb · Bk and

δfs = −∂rδεk + ∂kδεk × b .

We note that Eq. (38) is not simply ṗs in Eq. (24) transformed to
kinetic momentum (which would not even be gauge invariant),
as it was necessary to transform the entire sKE. In the
second equalities for ṙs ,k̇s , we see that the group velocity
and electromagnetic force are rescaled and shifted. The shift
δfks simply comes from the magnetic energy and the additional
group velocity due to the magnetc moment in Eq. (35). The
total O(h̄) correction to the group velocity, if we write the
first two terms in the second equality for ṙs in Eq. (37) as
vks + δvks , is

δvks = qs(b · Bk)vks + ∂kδεk

= −qs(b · Bk)(vk + svkz) − �k

4
∂k(b · Bk) . (39)

The third term in the first equality in expression for ṙs is the
well-known anomalous Hall velocity.5 Furthermore, the last
terms in the second equality of Eqs. (37) and (38) give an
additional phase-space velocity in the direction of the phase-
space “magnetic fields.”

Up to the order of our gradient expansion, in which we
need to keep terms in ṙs(which multiplies ∂rns) to linear order
in EM fields, and in k̇s to quadratic order, and defining v̄ks ≡
∂kε̄ks , ēks ≡ −∂rε̄ks − ∂ta (recall that ε̄ks = εks + δεks), the
equations of motion may be expressed as

ṙs = v̄ks − qs k̇s × Bk
(40)

k̇s = ēks + ṙs × b ,

in agreement with the form of wave-packet equations of
motion.8 We emphasize, however, that we are retaining terms
beyond linear electromagnetic response31 which are not in the
usual wave-packet equations of motion, for example in the b · e
term for k̇s in Eq. (38), and includes forces such as −∂rδεk
coming from magnetic field gradients.

m2Bk

0 1 2 3

0.5

1

mMk

k/m

ẑMk

FIG. 5. (Color online) In dimensionless variables, a plot of the
Berry curvature, m2Bk (solid curve), and magnetic moment, mMk

(dashed curve), as functions of k/m. The magnetic moment stems
from the orbital angular momentum of a finite-size wave packet, as
illustrated in the picture.

III. EXAMPLES

A. Massive 2D Dirac fermions

As an application of our transport equation and a check on
our formalism, we consider the electromagnetic response of
massive 2D Dirac fermions, which is relevant, for example, to
the gapped surface state of 3D topological insulators.32,33 The
Hamiltonian is given by

ĤD = v
∑

a=x,y

σ̂a[−i∂r − a(r,t)]a + mv2σ̂z , (41)

where v is a constant with the units of velocity (which will be
set to unity henceforth) and σ̂ is a vector of Pauli matrices.
The particle/hole symmetric dispersions are conveniently
expressed in terms of the relativistic energies Ek ≡ �k/2 =√

k2 + m2, so that εks = sEk with corresponding group veloc-
ities vks = sk/Ek . In k space, the texture is a vortex (meron)
centered at the origin, ϕk = arg(k), with an out-of-plane
component given by cos θk = m/Ek . The vortex polarity is
given by sgn(m). The spin texture has Berry curvature

Bk = −∂k cos θk × ∂kϕk = m

E3
k

ẑ .

The magnetic moment is thus Mk = m/2E2
k . Both Berry

curvature and magnetic moment are localized near the origin
(see Fig. 5) and have a direction (normal to the xy plane)
depending on sgn(m).16

Consider now applying a static, homogeneous magnetic
field b = bẑ. From Eq. (39), the correction to the group
velocity is δvks = (bm/2E4

k )k. The equations of motion
Eq. (37) and (38) then read

ṙs =
(

s + bm

2E3
k

)
k
Ek

, k̇s = bṙs × ẑ . (42)

It is evident that the usual cyclotron motion holds, but the
cyclotron orbits are not exactly traversed in the opposite sense
for the two bands because of the O(b) correction. We also
note that to reach this result, we had to keep the O(b2) term
in the Lorentz force, which arises due to the magnetic field
dependence of the group velocity. The second line in Eq. (36)
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vanishes on account of the spatially uniform static magnetic
field and the fact that fks is transverse to k. The third line
reads

B
2E4

k

(bk · ∂r + b2k × ẑ · ∂k)nk−s . (43)

For a spatially homogenous distribution (which is valid for an
infinite plane), the O(b) term vanishes, and for a rotationally
invariant distribution in k, the O(b2) term vanishes. Thus, in
this case, the transport equation is simply solved by a constant
distribution function.

To see some dynamics, consider adiabatically turning on the
magnetic field, and let b(t) be a slowly increasing function. We
choose a rotationally-invariant vector potential that produces
a uniform magnetic field along the z axis, a = bẑ × r/2 =
b(−y,x)/2, with the accompanying circulating electric field
e = −∂ta = −ḃẑ × r/2. First, let us check that our equations
agree with the Středa formula,34 which is a general relationship
between the Hall conductivity in a gapped system and the
change in particle density ρ when a magnetic field is turned on
adiabatically. For the rest of this section, let us restore h̄, the
speed of light c, and the electron charge by e = eE, b = eB/c.
In 2D, the Středa formula reads

σxy = ec
∂ρ

∂Bz

.

For a homogenous distribution function in linear response,
the transport Eq. (36) reduces to

∂tnks = e

2c

∑
s ′

qs ′n
(0)
ks ′∂t (B · Bk) , (44)

where n
(0)
kz is the unperturbed, longitudinal spin distribution

that is zeroth order in B. The resultant change in particle
density δρ for an adiabatic change δBz is given by

ec
δρ

δBz

= ν
e2

h
, (45)

where

ν = ẑ ·
∫

d2k n
(0)
kz Bk .

The extra particle density comes from particle fluxes at infinity
due to the circulating electric field that produces anomalous
Hall velocity ṙHs = −eqsE × Bk. This results in particles on
the upper (lower) band entering (leaving) the system (see
Fig. 6). One finds the corresponding Hall current

jH = e
∑

ks

ṙHsn
(0)
ks = ν

e2

h
E × z , (46)

and the conductivity σxy = νe2/h, which by inspection of
Eq. (45), satisfies the Středa formula. We note that this
is a general dynamical result, and, in particular, does not
rely on assuming a Fermi-Dirac distribution function for
the unperturbed distribution. We also emphasize here that
according to Eq. (44), the Středa formula for each band
separately is violated and thus differs from the wave-packet
theory.

E

Bk

B(t)

jH

FIG. 6. (Color online) Illustration of the anomalous Hall current
induced by adiabatically switching on a magnetic field perpendicular
to the plane when the chemical potential is in the gap. The current,
given by Eq. (46), results from the anomalous Hall velocity, which
is orthogonal to the Berry Curvature and the circulating electric field
induced by the time-dependent magnetic field, and is directed outward
when only the lower band is filled (when the magnetic field is directed
into the plane as shown).

If the unperturbed distribution function describes the
ground state given by n

(0)
kz = �(εF − εk↑) − �(εF − εk↓), then

ν = �↑ − �↓
4π

, (47)

where �s = ∫
d2k �(εF − εks)Bk are the Berry curvature

fluxes over occupied regions on each band.35 As another
check, we show in Appendix G that ν indeed gives the correct
ground-state current of 2D Dirac massive fermions computed
from field-theoretical methods.

Let us now consider our results in light of the well-known
physics of the Dirac equation. In this case, the adiabatic
approximation corresponds to the semiclassical limit, valid in
the presence of weak external fields in which parti-
cle/antiparticle pair creation may be neglected.15 Historically,
the single-particle interpretation of the Dirac equation showed
some puzzling features. The velocity operator given by cσ̂

in 2D has discrete eigenvalues ±c [restoring units here for
the elementary electron, for which v = c in Eq. (41)], which
may seem to contradict the experimental fact that the electron’s
actual velocity is much less than the speed of light. Futhermore,
it has noncommuting components and, therefore, does not
lend itself to a classical interpretation. Dirac first resolved this
apparent paradox by demonstrating that the electron trajectory
exhibits a trembling motion called the “Zitterbewegung:”36

The electron position moves with mean (group) velocity
pc2/Ep and fast oscillations with frequency of the order of
the mass gap � = 2mc2/h and amplitude of the order of
the Compton wavelength λc = h/mc. However, when the
electron’s rest-mass frequency and Compton wavelength are
beyond the finite time and spatial resolutions of real experi-
ments, only the mean velocity and position are measured. Our
transport equation correctly captures the transport current due
to the mean velocity.

By analyzing the current of an electron wave packet, one can
show that the group velocity pc2/Ep comes from the positive-
energy band, while the Zitterbewegung comes from mixing
with the negative energy band.37 Furthermore, it can be shown
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that the minimum size of a wave packet constructed from only
positive-energy states is (in the nonrelativistic limit) of the
order of λc.38 In other words, a semiclassical theory where the
electron velocities are given by pc2/Ep requires a one-band
description in which the size of electronic wave packets is
much larger than λc, even in the absence of external fields.

This requirement shows up in our formalism as follows.
In the expression for the transverse distribution function ñ
in Eq. (20), the term ∼ h̄∂rl

nÃpl
must be small for our

approximations to hold. Consider the magnitude of transverse
gauge field in a relativistic expansion in the particle speed,
βp ≡ |vps |/c = pc/Ep = sin θ ,

h̄|Ãpl
| = h̄

√
sin2 θ (∂pϕ)2 + (∂pθ )2

= h̄cos θ

√
tan2 θ (∂pϕ)2 + cos2 θ (∂p tan θ )2

= λc

2π
cos θ

√
1 + cos2 θ = λc

2π

√(
1 − β2

p

)(
2 − β2

p

)

= λc

[
1√
2π

+ O
(
β2

p

)] ≈ λc , (48)

where we used tan θ = p/mc, (∂pϕ)2 = 1/p2. Thus we require
∣∣∣∣ ñp

n

∣∣∣∣ ∼
∣∣∣∣h̄∂rl

nÃpl

n

∣∣∣∣ ∼ λc

l
� 1,

where l is the lengthscale for spatial gradients of np. That is,
the distribution function must be smooth on the scale of the
Compton wavelength, consistent with the size requirement on
nonrelativistic wave packets. Note that in the ultrarelativistic
limit, the right-hand side of Eq. (48) approaches the de Broglie
wavelength h/p, which then has to be much smaller than l.
This is always required in the gradient expansion, even in the
absence of interband terms.

The microscopic currents associated with the finite size
of the electronic wave packet lead to an appearance of the
magnetic moment [Eq. (35)] Mk = EkBk/2. In fact, the
anomalous velocity may be understood from the relativistic
physics of this magnetic moment, as follows.15 Under an
applied E field, in the frame of an electron moving with
velocity vks = skc2/Ek , by the Lorentz transformation, there
is a magnetic field given (for small velocities) by B(vks) =
−vks × E/c. The magnetic energy in the electron rest frame
then reads

δεks = h̄e

c2
Mk · vks × E = h̄e

2
sk · E × Bk , (49)

which in the laboratory frame may be interpreted as the energy
of an effective electric dipole Pks = (h̄e/c2)vks × Mk. The
contribution to the group velocity ∂kδεks due to this extra
energy is exactly the anomalous velocity.

Finally, we point out some surprising features in our band-
diagonal transport equation that call for further investigation.
Equation (36) (where the second line is proportional to nz)
shows that the Středa formula does not hold separately on
each band because half of the expected intraband flux goes
into interband flux, which seems to suggest the following
phenomenon. Suppose the magnetic field smoothly falls off to
zero in an outside region far away from the origin, where there
are well-defined energy eigenstates. Due to the anomalous Hall

velocity, particles on the upper (lower) band flow in (out) of
the sample. Inside the region with magnetic field, particles are
transferred between bands. If we started with the lower band
occupied in the outside region, and slowly turn on the magnetic
field, we might expect a pumping effect whereby some of the
particles traveling into the origin would come out on the upper
band (as defined by our WT basis). However, we note that the
interband terms in the second and third lines of Eq. (36) that are
induced by spatial inhomegeneities would also be present in
this situation and need to be taken into account. The questions
of whether the adiabatic interband fluxes in the presence of a
finite gap can be physically manifested or if one could contrive
a transformation that eliminates such interband terms in our
transport Eq. (26) altogether remain open.

B. Faraday’s law in momentum space

As another instructive example, consider a slowly-varying
gap m = m(t) of 2D Dirac fermions, which, for example,
would occur due to a Zeeman splitting in the z direction
in topological insulators. For simplicity, we assume here the
magnetic field is static. Then the transport equation is

(∂t + ṙs · ∂r + k̇s · ∂k)nks − nz

4
(bḂ) = 0 , (50)

where B = m/E3
k . The time-dependent Berry flux causes an

anomalous velocity [cf. Eq. (24)] δṙs = qsFkt ≡ qsEks , where
we have defined the momentum-space fictitious electric field
which in this example is given by

Ek = ∂t cos θ∂kϕ = ṁ

E3
k

ẑ × k .

This anomalous velocity is transverse to the cyclotron orbits
and gives a radial particle flow in opposite directions on the two
bands, similar to the previous example, except that it is peaked
at k = m/

√
2. This radial flow causes changes in particle

density, determined by the time dependence of the Berry
curvature: Ḃ = ṁ(k2 − 2m2)/E5

k . See Fig. 7. It may readily
be verified the momentum-space, fictitious electromagnetic
fields satisfies Faraday’s law, ∂tBk + ∂k × Ek = 0 [Eq. (E4)].

C. 3D Weyl fermions

As another illumimating example, we consider 3D Weyl
fermions, which represent 3D band crossing points. In the
presence of electromagnetic fields along the z axis, the
Hamiltonian for a right-handed (RH) Weyl fermion is

ĤW = vσ̂ · [−i∂r − a(r,t)] , (51)

where (ax,ay) is the vector potential of a magnetic field b > 0
(Bz < 0 for electrons) along the z axis, in the same gauge as
in Sec. III A, and az(t) gives the electric field ez = −∂taz.

The Hamiltonian in Eq. (51) has semiclassical dispersion
εk = ±|k| and the Berry curvature of a monopole source
at the origin: Bk = k/k3, which causes a momentum-space
particle flux represented by the b · e term for k̇s in Eq. (38). As
discussed in Sec. II C, to exclude the singularity at the origin,
we must introduce an inner boundary in the momentum-space
flux integral in Eq. (31). The particle fluxes through this
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FIG. 7. (Color online) A plot in dimensionless variables of the
fictitious electric field, (m2/ṁ)Ek (solid curve), and Berry flux
variation, (m3/ṁ)Ḃk (dashed curve), versus k/m.

boundary produce an anomalous source of particle density,
(see Fig. 8)

∂tρ =
[

e2

h2

1

4π

∮
S2

dSk · Bk nkz

]
B · E . (52)

Up to quadratic electromagnetic response, the integral in
Eq. (52) depends on the zeroth-order (in E and B) distribution
function n

(0)
kz on the boundary surface, which we take to be S2.

Assuming a ground-state distribution given by the Fermi level
at zero energy, so that only the lower band is filled, n

(0)
kz =

−�(εF − εk↓), the integral gives 4π .39 In units where h̄ = 1,
this results may be expressed as ∂tρ = −(e2/4π2) B · E,
which is known in particle physics literature as the (3 + 1)D
Adler-Bell-Jackiw anomaly,40 and, strictly speaking, cannot
occur alone in nature because it violates charge conservation.

FIG. 8. (Color online) Illustration of the momentum space texture
of the Weyl equation, and the particle flux coming from the origin.

Let us examine the source of this particle flux in the
quantum mechanical solution of Eq. (51). In the presence
of a magnetic field along z, the motion in the x − y plane
is quantized into Landau levels. By translational invariance,
the momentum along the magnetic field remains a good
quantum number. The spinor eigenfunctions are thus of the
form �n(r) = eipzzψpzn(x,y). Because

ĤW�n(r) = eipzzĤD[m → pz]ψpzn(x,y) ,

ψpzn(x,y) are the eigenfunctions of the Dirac Hamiltonian (41)
with a mass pz. The square of Hamiltonian (51) determines the
eigenvalues (up to a sign), which are the relativistic Landau
levels,41

Enσ = σv

√
2|eB|n + p2

z , E0 = vpzsgn(eB) .

Here n = 1,2, . . . is a Landau-level index and σ = ±1 labels
the particle/hole branches. The Landau levels spread out into
bands in the z direction, all of which are gapped, except for the
“zero mode” E0, which has a linear, chiral dispersion along
the direction of magnetic field. Starting with an equilibrium
distribution with the Fermi level at zero energy, if we apply an
electric field along the z axis by adiabatically turning on az,
particles are transported above the Fermi level by spectral flow,
locally populating states near the momentum-space origin.
These particles originate at pz = −∞ (outside the momentum-
space cutoff).42

The particle production rate may be computed from the rate
at which the Fermi surface of the chiral branch changes, ṗFz =
eEz, taking into account the zeroth Landau-level degeneracy.
The degeneracy of the Landau levels are given by �/�0,
where � = |BzA| is the magnetic flux (A is the transverse
area) and, in units where h̄ = 1 and c = 1, the flux quantum
is �0 = 2π/e. Thus, the density of states per area in the
transverse direction is eB/2π , and per length along z is 1/2π .
Therefore,40

∂tρ = eEz

2π

e|Bz|
2π

= −e2EzBz

4π2
. (53)

We may thus match this quantum-mechanical solution for ∂tρ

with the semiclassical result given in Eq. (52). We stress that
our semiclassical analysis here involves response quadratic in
electromagnetic fields and is, therefore, beyond the scope of
the wave-packet analysis found in the literature.8

IV. CONCLUSION

In summary, we have derived a band-diagonal, semiclas-
sical kinetic equation (sKE) for electrons in a two band,
(pseudo)spin-orbit coupled system, which takes the form of
a Boltzmann equation [Eqs. (19) and (21)] for a collisionless
plasma. In addition to the corrections to quasiparticle equations
of motion, we find terms proportional to the distribution
function that we attribute to single-particle motion constrained
on a curved state space. We also find interband couplings
that represent coherences due to the nonorthogonal nature
of the projected Hilbert spaces. As a check on our for-
malism, we find our kinetic equation reproduces the well-
known electromagnetic response of 2D Dirac fermions and
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3D Weyl fermions. For Hamiltonians with less symmetry,
more complicated inhomogeneous spin-orbit couplings, exact
quantum-mechanical solutions are hard to find, while our sKE
remains valid and a useful analytical tool.

At first sight, the interband terms in our sKE seem
puzzling, given that there are well-defined procedures for
decoupling multiband Hamiltonian in the presence of weak
external fields.5,6 However, these methods employ complicated
quantum-mechanical transformations on the Hilbert space
which generally do not constitute a simple change of basis.
Blount 6 used a mixed representation where operators are
specified by both Bloch (or canonical) momentum and po-
sition. By successive transformations, that author derives an
effective Hamiltonian for Bloch (Dirac) electrons in a magnetic
field as a function of kinetic momentum H (k), which is a
power series in B. The transformations are functions of k
and become nonunitary in the presence of a magnetic field
because of the commutator: [ki,kj ] = iεijkb

k . As pointed out
by the author, qualitatively, these transformations amount to
a “local” diagonalization of the Hamiltonian in phase space,
similar in spirit to our approach.

For the (3+1)D Dirac equation, one may apply the Foldy-
Wouthuysen (FW) transformation,43 to decouple the posi-
tive/negative energy bands in the presence of weak external
fields in a power series of inverse mass 1/m, resulting in the
nonrelativistic Pauli Hamiltonian. The FW representation has
the advantage that the operators retain their classical meaning.
In the absence of external fields, one can show that the position
operator r satisfies ṙ = ±p/Ep (for the positive/negative
energy bands), and the orbital and spin angular-momentum
operators are separately conserved. However, these operators
correspond to the original Dirac operators evaluated at the
mean position of the electron, which, as discussed in Sec. III A,
is spread out in a region of (at least) the size of the Compton
wavelength λc. In the presence of external fields, in principle,
the meaning of the operators also changes and it may be
seen explicitly that part of the FW transformation becomes
nonunitary.

The key features of these methods are consistent with
our formalism. Exact diagonalization of spin-orbit coupled
Hamiltonian Ĥ(p) is possible only in the absence of inhomoge-
nieties. When the bands are gapped, one intuitively expects
that in the presence of smooth space-time inhomogeneities,
quasiparticle motion could be confined to separate subspaces,
which may be called field-modified energy bands.5 One
may indeed find representations in which the Hamiltonian is
approximately block-diagonalized in the field-modified band
space, but at the expense of altering the Hilbert space with
nonunitary transformation, which may render the subspaces
of the field-modified bands nonorthogonal and change the
physical meaning of operators. This caveat is consistent with
our explanation of the interband terms in Sec. II B. In cases
where the Hilbert space may be specified by continuous
coordinates, we find it useful to visualize the field-modified
bands as submanifolds with possible nontrivial interband
orthorgonality relations.

The Wigner distribution function gives us an exact phase-
space representation of nonequilibrium quantum dynamics,
where we can treat r,p as real numbers from the get-go, allow-
ing us to diagonalize the semiclassical Hamiltonian ε̂p(r,t) in

a straightforward manner. Finding the exact correspondance
between our matrix transformation of the distribution function
and the aforementioned transformation on the Hilbert space
(where r,p are operators) seems to be a nontrivial task, which
we will relegate to future work. Our approach based on
the density-matrix formalism is quite general, allowing for
the treatment of multicomponent fermions or bosons, and in
principle allows for a straightforward incorporation of electron
interaction effects in the spirit of Fermi-liquid theory. Lastly,
our projection process described below Eq. (19) is valid up to
higher orders, and, in particular, with some additional labor,
one may carry out the gradient expansion to 3rd order, which
may warrant further study.44
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APPENDIX A: GRADIENT EXPANSION

The gradient expansion expresses the WT of a convolution
of two kernels in terms of gradients of the WT of the individual
kernels through the following formula.45 Let a(b) be the WT
of A(B), then WT of [A ⊗ B] is,

WT[A ⊗ B] = a

[
exp

ih̄

2
(
←
∂ r · →

∂ p − ←
∂ p · →

∂ r)

]
b

(A1)

= ab + ih̄

2
∂ia∂ib − h̄2

8
∂i∂ja∂i∂jb + . . . ,

where . . . indicate higher order terms. For fermions, the
gradient expansion is valid when the length scale ξ of spatial
inhomogeneities is much longer than the Fermi wavelength
λF ∼ 1/qF , where qF is the Fermi wave vector. One may
consider it as an expansion in q/qF , and q ∼ 1/ξ is the
characteristic wave vector of the spatial inhomogeneities.

In fact, in the gradient expansion applied to A ⊗ B −
B ⊗ A in Eq. (3), all even powers vanish if A and B

commute because pairs of contracted indices are symmetric.
Therefore, in the scalar (single band) case, the leading quantum
mechanical corrections are third order and O(h̄2).46 However,
when Eq. (3) has nontrivial matrix structure, the second order
expansion is required for capturing all semiclassical O(h̄)
terms.

APPENDIX B: COVARIANCE OF THE KINETIC EQUATION

The transport Eq. (9) is covariant in the sense that it
remains the same form in an arbitrary spin frame. Specif-
ically, under a local SU(2) transformation n̂p → Û

†
pn̂pÛp,

Eq. (9) represented symbolically as dn̂/dt transforms as
dn̂/dt → Û †dn̂/dtÛ . The covariant derivatives transform
similarly, with the appropriate change in the gauge potentials
given by

Din̂ → Û †Din̂Û ,
(B1)

Âi → Û †ÂiÛ + iÛ †∂iÛ .
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Expressing the matrix gauge potentials as Û = exp(iηaτ̂ a),
the infinitesimal transformation with ηa � 1 is given by

n → n − η × n,
(B2)

Ai → Ai − η × Ai + ∂iη .

Evidently, the spin components of the distribution function
transforms in the adjoint representation of SU(2).

APPENDIX C: INTEGRABILITY CONDITION

By their definition, the matrix Berry gauge potentials are
pure gauge and so that their SU(2) field strength vanishes,
which provides an integrability condition:

∂iAj − ∂j Ai = −Ai × Aj . (C1)

This is a partial differential equation which relates the three
component of the gauge field. Mathematically, in a simply
connected region where Eq. (C1) holds, one can always find
a frame in which the gauge potential vanishes.47 Contracting
indices in Eq. (C1) gives an identity,

2∂iAi = −Ai × Ai , (C2)

which was used repeatedly to arrive at the final gauge-invariant
expression in Eq. (D13).

APPENDIX D: DECOUPLING PROCEDURE

In this appendix, we show the computations that lead to the
anomalous terms in Eq. (21) in projected kinetic equation. It
will be convenient to first express the longitudinal equation in
terms of n and nz. The trace and the τ̂z component of Eq. (9)
reads

∂tn − 1
2 (∂iε∂

in + ∂i�∂inz) + F = 0 ,
(D1)

∂tnz − 1
2 [∂iε∂

inz + ∂i�∂in] + Fz = 0 ,

where

F ≡ − 1
2

[
∂i�(Ãi × z · ñ) + �(z · Ãi × ∂i ñ)

+�Ãi · ñAzi
]

, (D2)

Fz ≡ z · Ãt × ñ − 1

2
∂iε(z · Ai × ñ)

+ h̄

8
z · (

D2
ijε × D2ij n

)
. (D3)

The vector part of the second covariant derivative, defined by
DiDj n̂ ≡ ∂i∂jn/2 + D2

ij n · τ̂ , reads

D2
ij n = ∂i∂j n + ∂iAj × n + Aj × ∂in

+Ai × ∂j n + Ai × (Aj × n) . (D4)

Let us first simplify the last term of Eq. (D3). The antisym-
metric part of of the second covariant derivative Eq. (D4)
vanishes, as one would expect since the SU(2) field strength
is zero. Indeed, the antisymmetric part of the last term in (D4)
reads

(A[i × Aj ] × n)b = 1
2 [(Ai × Aj ) × n]b ,

where we define anti-symmetrization by A[iBj ] ≡ (AiBj −
BiAj )/2. Therefore, the commutator of covariant derivatives
vanishes

[Di,Dj ]n = [∂iAj − ∂j Ai + Ai × Aj ] × n ≡ Fij × n = 0 .

(D5)

where we have used the identity Eq. (C1). The remaining
symmetric part of the covariant derivative Eq. (D4) reads,

D(iDj )n = ∂2
ij n + ∂(iAj ) × n + 2A(i × ∂j )n

+ A(i · n)Ãj ) − (Ai · Aj )n , (D6)

where we defined the symmetrization symbol A(iBj ) ≡
(AiBj + BiAj )/2. Therefore, we will only need to compute
that quantity

P (2)
z ≡ 1

8 z · (
D2

(ij )ε × D2(ij )n
)
, (D7)

of which we will only need the terms containing nz, since
the terms containing ñ will be third order in gradients. Taking
n → nzẑ, noting that in the rotated frame we already have
ε = �z, and that the vector product (D7) above involves only
the transverse components of the second covariant derivative
(D6), we find

P (2)
z = 1

8 z · {[�∂(iAj ) + 2∂(i�Aj )] × z − �A(iÃj )}
×{[nz∂

(iAj ) + 2∂ (inzAj )] × z − nzA(iÃj )}
= 1

8 (∂i�nz − �∂inz)z · Ãj × (
∂iÃj + ∂j Ãi − AjGj

i
)

+ 1
4

(
∂i�∂inzFj

j + ∂j�∂inzFi
j
)

= 1
4 (∂i�nz − �∂inz)∂

jFj
i

− 1
2∂inz∂

i�F − 1
4∂inz∂j�F ij . (D8)

In the third line, we use identity (C2) and (E2). This expression
is gauge invariant, as it should be. Next, we want to solve for
ñ to first order gradients. Consider the transverse part of the
transport Eq. (9) in the first-order gradient expansion,

D̃tn − �

h̄
z × ñ − 1

2
(∂iεD̃

in + ∂inD̃iε) = 0 , (D9)

where the transverse covariant derivatives are defined by

D̃I n = ∂I ñ + Az
I z × ñ + nzÃI × z ,

(D10)
D̃iε = �Ãi × z .

In regions where there is a finite gap, �p 
= 0, Eq. (D9)
shows that ñ(0) = 0, so that the lowest nonvanishing order is
ñ(1). Therefore, to first order in Eq. (D9) we can drop terms
∼ ∂I ñ,Az

I ñ, then

�

h̄
z × ñ(1) = nzÃt × z − 1

2
[∂kε(nzÃk × z) + ∂kn�Ãk × z] .

(D11)

Solving for ñ results in the solution Eq. (20).
In approximating Eq. (D9) with Eq. (D11), we have

neglected terms of O(∂t ñ), O(ñ ∂pε · Az
r,ñ ∂rε · Az

p), and
O(∂pε · ∂rñ,∂rε · ∂pñ), in comparison with the commutator
term which is O(�ñ). Considering the near equilibrium case
when ñ is localized on the Fermi surface, our approximation
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implies the limit [see Sec. III A for additional constraint related
to the second term in Eq. (20)]

h̄ω � �, ξ � h̄vF

�
, λF |∂rε| � �, (D12)

where vF is the Fermi velocity, ω (ξ ) are the characteristic
frequency (length scale) of the dynamics (inhomogeneities)
of the system. The last condition on energy gradients is a
requirement on the size of driving electromagnetic fields. The
limits above define the adiabatic approximation. Also, same
conditions as above with � → EF (λF � ξ etc.), for intraband
adiabaticity.

Substituting the expression for ñ in (D11) into the anoma-
lous terms of Eqs. (D2) and (D3), we find

F = 1
4F

ij (∂iε∂jnz + ∂i�∂jn) − 1
2Ft

i∂inz

+ 1
4 (nz∂j ε − �∂jn)∂iFi

j − 1
2nz∂

iFit

Fz = 1
4F

ij (∂iε∂jn + ∂i�∂jnz) − 1
2Ft

i∂in

+ 1
4 (nz∂j� − �∂jnz)∂

iFi
j − 1

2F∂inz∂
i� . (D13)

The anomalous terms in Eq. (21) are given by Fs = (F +
sFz)/2.

APPENDIX E: BIANCHI IDENTITY

The Bianchi identity for the Berry curvature reads

∂IFJK + ∂JFKI + ∂KFIJ = 0, I 
= J 
= K, (E1)

and follows directly from the definition of Berry curvature
in terms of gauge fields if they are nonsingular, since
∂[IFJK] = ∂[I ∂JAK] ≡ 0. Let IJ = ij be phase-space indices
and contracting identity Eq.(E1) by multiplying

∑
ij J ij , then

∂iF i
K + ∂KF = 0 . (E2)

We have used Eq.(E2) repeatedly, for example, we transformed
Eq. (25) by,

∂iFt
i + ∂iF ik∂kεs = [∂t + ∂iεs∂i]F . (E3)

We have used this identity in the second line of (21).
In the following, it will be necessary to introduce dif-

ferential forms in order to use Stokes theorem in a space
with more than three dimensions.48 The Berry gauge field
(connection) is a 1-form A = AI dxI and the Berry curvature
is a two-form F = 1

2FJKdxJ ∧ dxK , where summation over
repeated indices are implied, and the components of these
forms are given in Eq. (17) and the text following Eq. (18).
Denoting the exterior derivative by d, we may write F = dA =
d(cos θ ) ∧ dϕ, which is the area two-form representing surface
elements on the sphere. The Bianchi identity Eq. (E1) states
that dF = 0 and represents a set of homogenous Maxwell
equations for the phase-space, fictitious electromagnetic fields
defined by

Fqiqj
≡ εij lBql , Fqt ≡ Eq ,

where q ∈ {r,p} is a 3D vector in phase space which may have
indices in both r and p. In differential forms notation, Eq. (E1)

are the components of a 3-form, which may be expressed in
terms of the fictitious electromagnetic fields,

dF = 1

2
∂IFJK dxI ∧ dxJ ∧ dxK

=
∑

q∈{r,p}

{
(∂q · Bq) dq1 ∧ dq2 ∧ dq3

+εlmn

2
(∂tBq + ∂q × Eq)l dt ∧ dqm ∧ dqn

}
= 0. (E4)

Here (lmn) runs through three dimensions. The first term
represent the absence of monopoles and the second is the
phase-space Faraday’s law for the fictitious electromagnetic
fields.

However, near crossing points, (E1) needs to be recon-
sidered, since point degeneracies of the Hamiltonian are
monopole sources of Berry flux1 and Eq. (E1) assumes the
absence of such singularities. Consider first the Berry flux
over a sphere containing the crossing point in phase space.
Modulo 4π , it is an integer topological invariant known
as the Chern number: � = ∫

S2 F = 4πN , N ∈ π2(S2) = Z,
and represents the winding number of the mapping between
spherical surfaces from (r,p,t) space to spin space defined
by the texture, mp(r,t) : S2 → S2, analogous to the skyrmion
number in ferromagnets. Using Stokes theorem in the form∫
M

dF = ∫
∂M

F, with ∂M = S2 being the surface of the sphere
M , we have

� =
∫

M

dF = 4πN . (E5)

If we take the limit of M being infinitesimally small and
containing a topological defect of the texture at qd in a 3D
q space, only the first term of dF in Eq. (E4) contributes to Eq.
(E5), which implies that9

∂q · Bq = ±4πδ3(q − qd ) . (E6)

Here we have used the fact that near a crossing point qd , one
may make a linear expansion of the gap vector

�q = [(q − qd ) · ∂q]�q ≡
∑

i

(
qi − qi

d

)
ei ,

thus the texture has winding number N = ±1, with the sign
determined by det(ea

i ), where ea
i ≡ ∂i�

a(qd ) are a set of basis
vectors defined by the gap gradients. The Weyl equation in
Sec. III C is an example of a monopole texture.

If, because time-dependent parameters in the Hamiltonian,
the monopole position changes in time, qd = qd (t), the current
associated with the monopole motion will appear as a source
term in Faraday’s law. To see this, consider the plane defined
by ql = ql

d (t0) in the 3D q space. Near t0, we may approximate

ql − ql
d (t) = (

ql − ql
d (t0)

) + q̇ l
d (t0)(t − t0).

Substituting this expression in the expansion above for the gap
vector, it is evident that there is a monopole texture located
at (qm

d ,qn
d ,t0) in (qm,qn,t) space, and that the basis vector in

the time direction is given by et = q̇ l
del . The Berry flux over

an infinitesimal surface containing this monopole in (qm,qn,t)
space, computed using Eq. (E5), will have contributions only
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from the second term of dF in Eq. (E4), thus19

[∂tBq + ∂q × Eq]l ± 4πεlmn

δ(t − t0)δ
(
qm − qm

d (t0)
)
δ
(
qn − qn

d (t0)
)
. (E7)

The sign here is determined by sgn[q̇ l
d det(ea

i )], and LHS of
Eq.(E7) is evaluated at ql = ql

d (t0). In terms of monopole
motion, this nonzero winding number of the texture comes
from the fact that, on the ql = ql

d (t0) plane, the tex-
ture �(qm,qn,ql

d (t0)) is a vortex whose polarity, given by
sgn(ql

d (t0) − ql
d (t)), switches sign during the course of time

as the monopole passes the plane at t = t0. To express the
RHS of Eq. (E7) in terms of the monopole current, we note
that the linear expansion ql

d (t) near t0 may be inverted to
yield a mapping t(ql

d ), which we may use to change variables:
δ(t(ql

d ) − t0) = |q̇ l
d |δ(ql

d (t) − ql
d (t0)), and that on account of

the delta function δ(t − t0), we may evaluated the LHS of
Eq.(E7) at ql = ql

d (t). Then,

[∂tBq + ∂q × Eq](t0) = sgn
[

det
(
ea
i

)]
4π q̇dδ

3
(
q − qm

d (t0)
)
.

(E8)

Similarly, we note that the 2D Dirac equation (Sec. III B) with
a time-dependent mass m(t) ∝ t would give a source term in
Faraday’s law.

Lastly, the magnetic flux through an open 2D hypersurface
S may be converted to a contour integral of the vector potential
around the boundary ∂M , provided that we use the appropriate
gauge,

� =
∫

S

F =
∮

∂S

dlIA±
I = −

∫ 1

0
[cos θ (l) ∓ 1]∂Iϕ(l)dlI .

(E9)

The integral depends only on the path [θ (l),ϕ(l)] traced out
by the texture in spin space space (which can be many closed
loops) as the phase-space contour ∂M parametrized by l ∈
[0,1] is traversed. Except when the cone angle θ = π/2, this
flux is generally not quantized.

APPENDIX F: BERRY CURVATURE IN
GENERAL COORDINATES

Under a general phase-space coordinate transformation
xi → x̄i(x), the energy and the distribution function trans-
forms as a scalar ε(x) = ε(x(x̄)) ≡ ε̄(x̄), while derivatives
transforms as a covariant phase-space vector

∂

∂xj
→ �i

j

∂

∂x̄i
, �i

j ≡ ∂x̄i

∂xj
. (F1)

Because the Berry curvature is a product of derivatives, it
transforms as a second rank covariant tensor

Fij = (�T F̄�)ij ,

where the bar denotes the Berry curvature with derivatives
w.r.t. the coordinates x̄. In particular, when transforming to
the kinetic momentum for electromagnetic perturbations, the
spatial derivatives transforms as Eq. (33), resulting in the

following transformations of the Berry curvature

Fri t = ∂ia · ∂ta × Bk ,

Fri rj = ∂ia · ∂j a × Bk , (F2)

Fpi t = −(∂ta × Bk)i ,Fpirj
= −(∂j a × Bk)i ,

Fpipj
= Fkikj

≡ εij l(Bk)l ,Fripj
= (∂ia × Bk)j ,

while F transforms as

F =
∑

i

(
∂a
∂ri

× Bk

)
i

=
∑
ij l

εij l ∂aj

∂ri

(Bk)l = b · Bk .

(F3)

The simplest example of the transformations in Eq. (F2) is
in the presence of an electric field in the vector potential
gauge. Then Ep = Fpt = e × Bk represents the anomalous
Hall velocity. This may be contrasted with the scalar potential
gauge, in which the kinetic and canonical momentum are the
same.

In the presence of spatiotemporal inhomogeneities in the
spin textures other than gauge potentials, the Berry curvatures
will have space-time dependence not related to kinetic mo-
mentum, and there will be additional terms in the equations
of motion Eq. (37) and (38). The additional terms come
simply from the Berry curvatures in Eq. (24) with space-time
indices, with p → k. For example, if the texture is due to a
ferromagnetic exchange field, the Berry curvaturesFrr andFrt
are fictitious electromagnetic fields that are known to mediate
spin-transfer torques in itinerant ferromagnets.49

APPENDIX G: PARITY ANOMALY

For the example in Sec. III A, it is instructive to compute
ν when the Fermi level lies in the gap, which gives the
well known half-integer conductivity of 2D Dirac fermions.41

Although the Berry flux in Eq. (47) is concentrated near
the origin, up to a sign they depend only on the texture
far away from the origin. To emphasize the topological
nature of the number ν, we apply Stokes theorem to convert
integrals to Fermi surface Berry phases which determines
the solid angle subtended by the texture, taking care to use
the appropriate gauge, Ak = −(cos θk − sgn(m))∂kϕk. Then
ν = −(1/4π )

∮
Ak · dk = −sgn(m)/2, in agreement with the

formula well known in particle physics literature for anoma-
lous charge current associated with the parity anomaly of the
massive 2D Dirac equation,30,50

〈jμ〉 = sgn(m)
e2

8π
εμαβFαβ. (G1)

In the formula above, Fαβ is the electromagnetic field
strength tensor, Fμν = ∂μAν − ∂νAμ, Aμ = (�, − A), F0i =
Ei , Fij = −εijkB

k , the expectation value is taken in the
vacuum state, which in the single particle picture is the
“Dirac sea,” with all negative energy levels occupied and thus
corresponds to Fermi level in the gap. One should restore
units in (G1) by setting 2π = h to compare with our result
for ν. The dependence on sgn(m) is a signature of the infrared
singularity at k = 0 when m = 0, as discussed in Sec. II C.
The 2D Dirac mass term explicitly breaks parity, defined by
inversion of one spatial coordinate. In field theory, even when
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m = 0 in the Hamiltonian, gauge-invariant regularization of
the ultraviolet divergence may violate parity (for example, in
the Pauli-Villars regularization), leading to the parity-violating
anomalous current.51

In field-theoretical methods, one calculates the anomalous
current (G1) by the coupling of fermionic vacuum energy
to an external vector potential, represented by a fermionic
functional determinant. Although the result is precise, its
physical origin is somewhat mysterious. The semiclassical
approach gives an intuitive but rigorous single-particle picture,
in which the vacuum current simply represents the flow of
quasiparticles.

APPENDIX H: COMPARISON WITH
WAVE-PACKET THEORY

According to wave-packet analysis,8 the correction to the
single particle energy due to inhomogeneous perturbations is
given by,

δεs = Im 〈∂rl
us |Ĥc(r,t) − εs(r,t)|∂pl

us〉 , (H1)

where Ĥc(r,t) is the local Hamiltonian, with the position
r evaluated at the center of the wave packet, and εs(r,t)
is the band s local eigenvalue. We emphasize that in the
wave-packet approach, r is a c-number parameter of a quantum
Hamiltonian, whose complete set of eigenstates is known. The
local Hamiltonian is the zeroth order term in an expansion of a
Hamiltonian with smooth inhomogeneous perturbations. The
perturbations to first order in gradients has the form δH ∼
(r̂ − r) · ∂rH and it’s expectation value in a wave-packet state
gives the energy correction in first order perturbation theory.
From the semiclassical transport equation approach, the local
Hamiltonian is equivilant to the semiclassical quasiparticle
energy,

Ĥc = ε̂p(r,t)

Next, we compare the formulas for our two band model with
those from wave-packet analysis. First, we define the local
eigenkets by a rotation of the laboratory frame spin eigenkets
pointing in the ±ẑ direction:

|ups(r,t)〉 ≡ Up(r,t)|ẑ; s〉 .

They satisfy the local eigenvalue equation:

[Ĥc(r,t) − εs(r,t)]|ups(r,t)〉 = 0 , (H2)

where εs is given by Eq. (13). For brevity, we will denote “lab”
frame spinor basis by |s〉, s = ±1. The matrix elements of the
gauge fields are given by

[Âi · τ̂ ]ss
′ ≡ (Âi)

ss ′ = i〈s|Û †∂iÛ |s ′〉 = i〈us |∂ius ′ 〉 , (H3)

where we’ve omitted phase-space subscripts for brevity. From
(H1), we find

δεs = 1

2i
〈s|∂iU

†(�mp · τ̂ − s�/2)∂iU |s〉

= 1

2i
〈s|∂iU

†U (�τ̂z − s�/2)U †∂iU |s〉

= 1

2i

[
Âi

�

2

(
1 − s 0

0 −1 − s

)
Âi

]
ss

= �

2i

∑
s ′ 
=s

s ′

2
(Âi)

ss ′
(Âi)ss

′ = �F
4

, (H4)

where F ≡ Fi
i/2. Note that the energy shift is independent

of s.

APPENDIX I: RELATION OF GAUGE FIELDS
TO VELOCITY OPERATOR

We note that the off-diagonal gauge field is related to the
phase-space velocity operator, v̂i = ∂iĤ . Differentiating the
eigenvalue Eq. (H2) and projecting on |us ′ 〉 for s 
= s ′, we find
an equation for the off-diagonal gauge fields [cf. (H3)]:

Ass ′
i = −i

〈us |∂iĤ |us ′ 〉
εs − εs ′

. (I1)

Consider going into the frame of the electron moving in
phase space, then the phase-space dependence of the texture
appears to the electron as dynamics of a local phase-space
magnetic field. Therefore, to make heuristic comparison
with the quantum adiabatic theorem,52 we take ∂i → ∂t in
Eq. (I1). Then the theorem shows that the amplitude for
transitions to other states is given by Ass ′

i /� in agreement
with Eq. (20).
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