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Group-VII point defects in ZnSe
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Zinc selenide (ZnSe) is a promising material for applications in quantum computing. Only recently, it was
shown that fluorine-doped ZnSe may serve as a source for indistinguishable photons. We have studied both
chlorine and fluorine point defects in ZnSe by means of first-principles density functional theory calculations. The
incorporation of F or Cl, either isolated, pairwise, or in combination with Zn or Se vacancies, has been investigated
thoroughly for a large variety of possible charge states. For the most important structures, computationally more
demanding calculations, with a hybrid functional rather than the generalized gradient approximation for the
treatment of electron exchange and correlation, have been carried out. This was found to have little effect on the
energetical order of the defect, but considerably changes the absolute formation energies of the defects.
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I. INTRODUCTION

Zinc selenide (ZnSe) is an extensively studied semiconduc-
tor of the II-VI groups. Point defects for p- or n-type doping
of ZnSe have been intensively studied, both theoretically
and experimentally. Many studies have aimed at gaining a
deeper understanding of the difficulties in p-type doping.
Early density functional theory calculations were made by
Laks et al.1 for this purpose. Garcı́a and Northrup’s study,2

based on local density approximation calculations, indicated
that dopant-vacancy complexes (for example, AsSeVSe) could
play an important role in the self-compensation mechanism
that limits doping efficiency.

Pöykkö et al. published theoretical studies about chlorine3

(an n-type donor) and nitrogen4 (a p-type acceptor) in ZnSe.
These studies also highlighted the importance of impurity-
defect complexes in doping compensation, in particular the
substitutional chlorine-zinc vacancy (ClSeVZn) and the substi-
tutional nitrogen-zinc vacancy (NSeVSe) complexes, which are
pointed out as strong candidates for the compensating center
in the respective cases.

Saarinen et al.5 have used positron annihilation spec-
troscopy to directly identify vacancies in N-doped and Cl-
doped ZnSe, suggesting that vacancies are involved in the
compensation mechanism. A later study by Gebauer et al.6

obtained similar conclusions, attributing the compensation
mechanism in n-doped ZnSe to VZn-donor complexes.

Nowadays, ZnSe is experiencing a renaissance as a material
with properties most appropriate for application in quantum
computing. Recently, Yamamoto et al.7 have shown that
independent ZnSe quantum wells doped with fluorine can
emit indistinguishable photons, which can be used to encode
and transport information. With its potential application in
quantum computing, fluorine turns out to have even better
properties as an n-type dopant in ZnSe than chlorine due
to the isotopic purity, which makes all emitted electrons
indistinguishable in the case of fluorine. However, very little
is known about the microscopic structure of F-related point
defects in ZnSe.

In order to contribute to a better understanding of this
mechanism, we performed density functional calculations on
F-related point defects in ZnSe. The results are compared to
calculations on Cl-related point defects, for which previous

theoretical data are available. In addition to the isolated
flourine, we also considered native defects (such as vacancies),
defect pairs (Cl-Cl and F-F), and mixed impurity-native
complexes such as ClSeVZn. The complete set of considered
defects is shown in Tables I to IV. Generalized gradient
approximation (GGA)-based calculations (cf. next section)
were performed for all defects in all charge states ranging
from −2 to +3.

In addition, selected defects and charge states, especially
those with low formation energies in the GGA, were inves-
tigated with the help of hybrid functionals [Heyd, Scuseria,
and Ernzerhof (HSE)]. Since in HSE the experimental band
gap of ZnSe is reproduced, the results of these calculations are
expected to be closer to the experimental results, however, at
the expense of substantially increased computational costs.

II. CALCULATION METHODS

The density functional theory (DFT) calculations were per-
formed in the projector-augmented-wave (PAW)8 formalism
with the PW91 GGA description9 for the exchange-correlation
energies, as implemented in the VIENNA AB INITIO SIMULATION

PACKAGE (VASP). A cubic supercell with 64 atoms was used,
corresponding to 2 × 2 × 2 cubic unit cells. An energy cutoff
of 400 eV was used. The special k point ( 1

4 , 1
4 , 1

4 ) was used for
the Brillouin-zone sampling. Each defect was relaxed to its
lowest energy configuration starting from slightly randomized
atomic positions to allow for possible symmetry breaking.
The supercell shape was kept fixed during relaxation. For
various defects, convergence with supercell size has been
checked with a 216-atom cell, showing no significant changes.
The same holds for the k-point sampling, which was tested
with (2 × 2 × 2) k-point sets. For consistency reasons (i.e.,
compared to the literature and for our additional hybrid
calculations), we only present the results for the 64-atom cell.

For the hybrid functional calculations (contained in
Table V), we used a slightly modified version of the HSE06
functional.10 The modification consists of increasing the
fraction of exact exchange to 32%, as compared to 25% in
standard HSE06. It was found that this setting results in a
much better prediction of the band gap than standard HSE06,
which still significantly underestimates the band gap in ZnSe.
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TABLE I. Native defects. The second column gives the point
group of the defect and the number of orientations in which it
can appear in the ZnSe lattice (which has Td symmetry). The next
two columns give our calculated formation energy under standard
conditions (see text for details), followed by Garcı́a and Northrup’s
values for comparison.2 All values are given in electron volts (eV).

Defect Symmetry �0 �0 [2]

VSe
0 C1h (12) 2.05 2.70

VSe
+1 C3 (8) 1.30 1.64

VSe
+2 C3v (4) − 0.79 − 0.49

VSe
+3 C3v (4) − 0.77

VSe
−1 C1 (24) 3.91

VSe
−2 C1 (24) 5.13

VSeVZn
0 C3v (4) 2.08

VSeVZn
+1 C3v (4) 1.98

VSeVZn
+2 C3v (4) 1.96

VSeVZn
+3 C3v (4) 2.00

VSeVZn
−1 C1h (12) 4.11

VSeVZn
−2 C3v (4) 4.81

VZn
0 C3v (4) 3.33

VZn
+1 C3v (4) 3.22

VZn
+2 C3v (4) 3.14

VZn
+3 C3v (4) 3.31

VZn
−1 C3v (4) 3.49

VZn
−2 Td (1) 3.72

By starting the calculations from the atomic structure ob-
tained from optimization within the standard DFT calculation,
we performed a full optimization within the HSE calculation.
An energy cutoff of 400 eV was used once again, but this
time with a regular, �-centered, 2 × 2 × 2 k-point grid. In
most cases, convergence was reached after only a few further
relaxation steps, resulting in energy differences below 0.1 eV
compared to the DFT-relaxed geometries.

III. DEFECT FORMATION ENERGIES AND
CONCENTRATIONS

The concentration of a point defect in a semiconductor
crystal is essentially determined by the defect’s formation
energy,11

c = nsites nconfigs e−�/kT , (1)

where nsites is the number of lattice sites where the defect
can be incorporated and nconfigs is the number of symmetry
configurations in which the defect can be incorporated (this is
for defects with the same symmetry as the underlying crystal
lattice, and correspondingly larger than the one when symme-
try breaking occurs). The defect formation energy (represented
by �) can be obtained from ab initio thermodynamics.12 For
neutral defects, we have

� = Edef − Ebulk −
∑

i

ni μi, (2)

where Edef is the energy of the defect supercell, Ebulk is the
energy of the ideal crystal cell (bulk), and ni is the number
of atoms of species i that is added to (positive) or removed

TABLE II. Chlorine-containing defects. The first three columns
mean the same as in Table I. In the fourth column, � is the formation
energy obtained by setting μCl = 1

2 EDFT(Cl2), which can be directly
compared with the reference values from Nieminen et al.3 in the last
column. All values are given in electron volts (eV).

Defect Symmetry �0 � � [3]

ClSe
0 C3v (4) − 2.14 − 0.38

ClSe
+1 C3v (4) − 4.48 − 2.72 − 1.13

ClSe
+2 C3v (4) − 4.61 − 2.85

ClSe
+3 C3v (4) − 4.70 − 2.94

ClSe
−1 C3v (4) 0.22 1.98

ClSe
−2 C3v (4) 2.97 4.73

ClZn
0 C1h (12) 1.54 3.30

ClZn
+1 C1h (12) 1.20 2.96 5.38

ClZn
+2 C1h (12) 0.83 2.59

ClZn
+3 C1 (24) 0.57 2.33

ClZn
−1 C1h (12) 1.88 3.64

ClZn
−2 C1h (12) 4.02 5.78 5.46

Cli(TZn)0 C1h (12) 0.64 2.40
Cli(TZn)+1 C1h (12) 0.28 2.04 3.71
Cli(TZn)+2 C1h (12) − 0.03 1.73
Cli(TZn)+3 C1h (12) − 0.30 1.46
Cli(TZn)−1 C1h (12) 1.06 2.82 3.75
Cli(TZn)−2 C1h (12) 3.62 5.38

Cli(TSe)
0 C1 (24) 0.45 2.21

Cli(TSe)
+1 C1 (24) − 1.14 0.62 2.01

Cli(TSe)
+2 C1 (24) − 1.41 0.35

Cli(TSe)
+3 C1 (24) − 1.66 0.10

Cli(TSe)
−1 C1h (12) 1.06 2.82 4.92

Cli(TSe)
−2 C1h (12) 3.62 5.38

ClSeVZn
0 C1h (12) − 1.47 0.29

ClSeVZn
+1 C1h (12) − 1.61 0.15

ClSeVZn
+2 C1h (12) − 1.69 0.07

ClSeVZn
+3 C1 (24) − 1.72 0.04

ClSeVZn
−1 C1 (24) − 1.25 0.51 2.11

ClSeVZn
−2 C1 (24) 1.03 2.79

ClSeVSe
0 C1 (24) − 0.83 0.93

ClSeVSe
+1 C1h (12) − 2.73 − 0.97 1.11

ClSeVSe
+2 C1h (12) − 3.19 − 1.43

ClSeVSe
+3 C1h (12) − 5.03 − 3.27 − 0.82

ClSeVSe
−1 C1h (12) 0.31 2.07 3.92

ClSeVSe
−2 C1 (24) 2.52 4.28

from (negative) the ideal crystal to create the defect, with the
corresponding chemical potential μi .

For a single-component crystal, the chemical potential μ

is uniquely determined by the total energy. In the case of a
two-component crystal such as ZnSe, where we have

� = Edef − Ebulk − nZn μZn − nSe μSe − nimp μimp, (3)

(nimp and μimp refer to an impurity atom, which in this study
is either Cl or F), the chemical potentials for Zn and Se are
not uniquely determined by the total energy, but depend on the
crystal growth conditions.

Some boundaries can be established for these chemical
potentials.2 The energy condition gives us μZn + μSe = EZnSe,
where EZnSe is the total energy of a pair of atoms in the crystal
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FIG. 1. (Color online) Equilibrium geometries after structural
relaxation. (a) Cl+3

Zn [an equivalent geometry results from relaxation
of Cli(TSe)VZn]. (b) ClSeV

−1
Zn (equivalent geometry results from

ClZnVSe). (c) Fi(TZn)−1 [equivalent geometry results from Fi(TSe)
for negative charge states].

(one Zn atom plus one Se atom). We must also have μSe �
μSe(bulk), otherwise bulk Se would be more stable than the
ZnSe crystal and precipitation would occur, forming a bulk Se
phase. The same can be said for Zn: μZn � μZn(bulk).

These three restrictions limit the allowed range of variation
of μZn and μSe. This variation is commonly described by a
parameter λ which varies between zero and one, as done, for
example, by Garcı́a and Northrup:2

μZn = μZn(bulk) + λ �H, (4)

μSe = μSe(bulk) + (1 − λ) �H, (5)

where �H is the formation energy of ZnSe, defined as �H =
EZnSe − μZn(bulk) − μSe(bulk). Our GGA calculations result
in �H = −1.45 eV. Note that, in contrast to Ref. 2, we adopt
a negative sign for �H , keeping with the convention that
exothermic formation energies are negative. In Eqs. (4) and
(5), λ = 0 corresponds to Zn-rich conditions, in which μZn

takes the maximum allowed value, whereas λ = 1 corresponds
to Se-rich conditions.

Substituting Eqs. (4) and (5) in Eq. (3) results in

�(λ,μimp,EF) = �0 − λ �H (nZn − nSe) + nimp μimp

+ q (EF + EVBM + �V ), (6)

where we have added a term related to the defect charge q

to account for charged defects. EF denotes the Fermi level
measured relative to the valence-band maximum, EVBM is the
energy of an electron at the valence-band maximum of the
ideal crystal, and �V is a band-alignment term,11 determined
by calculating the average electrostatic potential in the defect
cell along the z direction and comparing it to the corresponding
potential for the ideal cell. The band-alignment differences
occurring in our calculations are of the order of 0.1–0.3 eV for
most defect cells, which is probably smaller than other sources
of error in our calculations.

In good approximation, EVBM is determined by the resulting
energy difference when a very small fraction of an electron
(say, 0,001 e) is removed from a neutral ZnSe cell. We
performed two DFT calculations, one for the neutral cell and
one for the cell with charge +0.001, and determine EVBM as
follows:13

EVBM = E0
bulk − E+0.001

bulk

0.001
. (7)

Our GGA calculations for ZnSe give EVBM = 1.21 eV.
The quantity �0 in Eq. (6) refers to the defect formation en-

ergy under the following standard conditions: λ = 0 (Zn-rich

FIG. 2. (Color online) Formation energies of defects at λ = 0
(Zn-rich condition) with μCl/F fixed. (a) Chlorine defects (this graph
uses the same conditions as Ref. 3). (b) Fluorine defects.

growth), EF = 0 (Fermi energy at valence-band maximum),
and μimp = 0. It is given by the following expression:

�0 = Etot(defect) + μZn(bulk)(nSe − nZn) − EZnSe nSe, (8)

where Etot(defect) is the GGA total energy. Our calculations
on bulk Zn, Se, and ZnSe give μZn(bulk) = −1.1268 eV and
EZnSe = −6.0810 eV, in good agreement with experimental
values.

Equations (6) and (8) form our model for the calculation
of defect formation energies. This model will be used in
the next section to determine defect formation energies and
concentrations. The parameters λ and EF are set to fixed values
to reproduce the conditions that we wish to simulate. The
parameter μimp requires special treatment, as ZnSe crystals
are typically grown by molecular-beam epitaxy (MBE), a
nonequilibrium process, and therefore the chemical potential
μimp of an impurity in the crystal is in principle unrelated to
the chemical potentials of precursor gases in the MBE process.
Instead of setting a fixed value for μimp, we set a value for
the impurity concentration (cimp = 5 × 1017/cm3), which is a
directly measurable parameter, and solve numerically for the
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TABLE III. Chlorine-containing defects (part 2). The meaning of
the columns is the same as in Table II. All values are given in electron
volts (eV). Defect structures marked with a dot in front are not stable
in the given configuration, but spontaneously transform to another
defect, which already appeared in Table II (see text for details).

Defect Symmetry �0 � � [3]

·Cli(TSe)VZn
0 C1h (12) 1.54 3.30

·Cli(TSe)VZn
+1 C1h (12) 1.20 2.96 3.32

·Cli(TSe)VZn
+2 C1h (12) 0.83 2.59

·Cli(TSe)VZn
+3 C1 (24) 0.57 2.33 2.03

·Cli(TSe)VZn
−1 C1 (24) 1.88 3.64 5.18

·Cli(TSe)VZn
−2 C1 (24) 3.97 5.73

·ClZnVSe
0 C3v (4) − 1.47 0.29

ClZnVSe
+1 C1h (12) − 0.33 1.43 4.30

ClZnVSe
+2 C1 (24) − 0.54 1.22

ClZnVSe
+3 C1h (12) − 0.75 1.01

·ClZnVSe
−1 C3v (4) − 1.25 0.51

·ClZnVSe
−2 C3v (4) 1.03 2.79

ClSeZni
0 C1 (24) − 0.14 1.62

ClSeZni
+1 C1h (12) − 2.49 − 0.73 0.73

ClSeZni
+2 C1h (12) − 3.61 − 1.85

ClSeZni
+3 C1h (12) − 5.64 − 3.88

ClSeZni
−1 C1 (24) 1.79 3.55

ClSeZni
−2 C1 (24) 4.34 6.10

ClSeClSe
0 C1 (24) − 4.35 − 0.83

ClSeClSe
+1 C1 (24) − 6.64 − 3.12

ClSeClSe
+2 C1 (24) − 8.92 − 5.40

ClSeClSe
+3 C1 (24) − 8.99 − 5.47

ClSeClSe
−1 C1 (24) − 2.44 1.08

ClSeClSe
−2 C1 (24) − 0.20 3.32

ClSeClZn
0 C1 (24) − 3.64 − 0.12

ClSeClZn
+1 C1 (24) − 3.92 − 0.40

ClSeClZn
+2 C1 (24) − 4.21 − 0.69

ClSeClZn
+3 C1 (24) − 4.32 − 0.80

ClSeClZn
−1 C1 (24) − 1.82 1.70

ClSeClZn
−2 C1 (24) − 1.19 2.33

value of μimp that will result in the desired concentration. The
total impurity concentration is given by

cimp =
∑

i

ni ci, (9)

where the sum is over all defects, ni is the number of impurity
atoms in a supercell of defect i, and ci is the concentration
of defect i, given by Eq. (1). Given a constant value for cimp,
Eq. (9) can be solved numerically for μimp, resulting in an
effective chemical potential that is valid for specific values of
λ and EF.

The above procedure is only valid if all relevant defects are
included in the sum. The relevant defects are all defects with
relatively low formation energy. Since the concentration of any
given defect falls off exponentially with the increase in �, by a
factor of exp(−�/kT ), an increase of only 0.7 eV in � results
in a lowered defect concentration by a factor greater than
10−4. Therefore, the omission of any defect with a relatively
high formation energy (i.e., at least 0.7 eV higher than the
formation energy of the most stable defect) from Eq. (9) will
have a negligible effect on the result.

TABLE IV. Fluorine-containing defects. The meaning of the
columns is the same as in Table I. All values are given in electron
volts (eV).

Defect Symmetry �0 Defect Symmetry �0

FSe
0 C1 (24) -3.38 FSeVSe

0 C1 (24) -2.02
FSe

+1 C1 (24) -5.58 FSeVSe
+1 C1 (24) -3.92

FSe
+2 C1 (24) -5.60 FSeVSe

+2 C1 (24) -4.22
FSe

+3 C1 (24) -5.59 FSeVSe
+3 C1 (24) -6.04

FSe
−1 C1 (24) -2.28 FSeVSe

−1 C1 (24) -0.97
FSe

−2 C1 (24) 0.01 FSeVSe
−2 C1 (24) 1.11

FZn
0 C1 (24) -0.30 FSeVZn

0 C1h (12) -2.76
FZn

+1 C1 (24) -0.45 FSeVZn
+1 C1h (12) -2.80

FZn
+2 C1h (12) -0.53 FSeVZn

+2 C1h (12) -2.70
FZn

+3 C1h (12) -0.54 FSeVZn
+3 C3v (4) -2.64

FZn
−1 C1 (24) -0.04 FSeVZn

−1 C1 (24) -2.65
FZn

−2 C3v (4) 0.92 FSeVZn
−2 C3v (4) -0.57

Fi(TSe)
0 C1h (12) -2.99 FSeFSe

0 C1 (24) -8.26
Fi(TSe)

+1 C1 (24) -3.44 FSeFSe
+1 C1 (24) -9.02

Fi(TSe)
+2 C1 (24) -3.61 FSeFSe

+2 C1 (24) -11.03
Fi(TSe)

+3 C1 (24) -3.75 FSeFSe
+3 C1 (24) -10.89

Fi(TSe)
−1 C1h (12) -2.78 FSeFSe

−1 C1 (24) -6.30
Fi(TSe)

−2 C3v (4) -0.31 FSeFSe
−2 C1 (24) -4.89

Fi(TZn)0 C1 (24) -2.98 FSeFZn
0 C1 (24) -6.50

Fi(TZn)+1 C1h (12) -3.16 FSeFZn
+1 C1 (24) -6.65

Fi(TZn)+2 C1h (12) -3.31 FSeFZn
+2 C1 (24) -6.66

Fi(TZn)+3 C1h (12) -3.42 FSeFZn
+3 C1h (12) -6.57

Fi(TZn)−1 C1h (12) -2.78 FSeFZn
−1 C1 (24) -6.53

Fi(TZn)−2 C1 (24) -0.31 FSeFZn
−2 C1 (24) -6.40

IV. RESULTS AND DISCUSSION

Tables I to IV show our DFT formation energies and defect
symmetries. The energies given are �0, that is, they have been
calculated at λ = 0, EF = 0, and μCl/F = 0. The formation
energy under arbitrary conditions can be easily obtained with
(6). We have compared some of our results for native defects
in Table I with those by Garcı́a and Northrup2 (available only
for a few defects), with generally good agreement. For the
chlorine defects in Tables II and III, we have compared the
formation energies with the data of Nieminen et al.3 They
have given their formation energies with the chemical potential
of chlorine taken from the DFT total energy of a chlorine
molecule, μCl = 1

2EDFT(Cl2), instead of μCl = 0. Therefore,
we provide the same data in Tables II and III to allow for a
direct comparison. In this case, we observe deviations that are
typically larger than 1 eV. However, the qualitative picture,
i.e., which defects are the most stable, remains unchanged.

Another thing to notice in the data of Tables I to IV
is that some defects have nearly identical energies. This
happens in the case of Cli(TSe)VZn and ClZn, which have
practically identical DFT energies and formation energies, for
the respective charge states. As these two defects have the
same number of atoms (one Cl atom added and one Zn atom
removed, respectively), during structural relaxation they relax
to the same equilibrium configuration, in which the Cl atom
is close to the position where the Zn atom would be, but in an
asymmetrical position, as depicted in Fig. 1(a).
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TABLE V. Comparison of the formation energies between GGA
and hybrid functional (HSE) calculations. As before, �0 is the defect
formation energy taken at λ = 0, EF = 0, and μCl/F = 0. All values
are given in electron volts (eV).

Defect �0 GGA �0 HSE

VSe
+2 −0.79 −2.05

VSeVZn
−2 4.81 6.69

VZn
−2 3.72 5.43

ClSe
+1 −4.48 −8.70

ClSe
+2 −4.61 −8.73

ClSe
+3 −4.70 −8.71

ClSeVZn
−1 −1.25 −3.93

ClSeClSe
+2 −8.92 −16.16

ClSeClSe
+3 −8.99 −16.21

FSe
+1 −5.58 −10.75

FSe
+2 −5.60 −10.70

FSe
+3 −5.59 −10.59

FSeVSe
+3 −6.04 −12.55

FSeFSe
+2 −11.03 −21.40

FSeFSe
+3 −10.89 −21.27

FSeFZn
−2 −6.40 −13.82

The same thing happens to ClZnVSe and ClSeVZn, which
also end up with identical energies. In this case, the Cl atoms
migrate during relaxation from the Zn position to the Se
position, that is, ClZnVSe spontaneously converts to ClSeVZn.
In the case of the defect pairs Cli(TSe)/Cli(TZn) and Fi(TSe),
Fi(TZn), the same is observed for negative charge states, where
the TZn position appears to be preferred.

The equilibrium configuration of most defects is highly
asymmetrical. ClSe shows only C3v symmetry (deformation
in the [111] direction), and the previously mentioned ClZn

(Fig. 1) is only C1h/C1. The symmetries shown in the tables
have been determined with a tolerance of approximately
0.11 Å for atomic positions.

The numbers given in parentheses in the symmetry column
of Tables I to IV refer to the number of different orientations in
which a defect can appear in the crystal lattice of ZnSe, which
has Td symmetry. This number appears as the term nconfigs in
Eq. (1), which defines defect concentrations.

Figure 2(a) shows the formation energies � for defects
as a function of the Fermi energy. These formation energies
have been calculated using fixed chemical potentials, μCl =
1
2EDFT(Cl2). They are directly comparable to those of Pöykkö
et al.3 In general, our formation energies are about 2 eV higher
than those of the literature reference. Despite an intensive
search for possible explanations, including numerous test
calculations, among them some with 216-atom cells, we failed
to determine the cause of this discrepancy.

Nevertheless, the qualitative picture is similar. In general,
among the native defects, the doubly negative Zn vacancy is
found to be most abundant in MBE-grown samples.14 This
is confirmed by our calculations. By adding impurities, both
our work and Ref. 3 indicate Cl+1

Se as the most stable chlorine
defect in a range of EF from 0.6 eV to about 1.6 eV. When EF

is higher than 1.6 eV, both works indicate ClSeVZn as the most
stable defect. For low values of EF (below about 0.6 eV), there
is a difference. Our results indicate that ClSeZn+3

i and ClSeV+3
Se

FIG. 3. (Color online) Defect concentrations at λ = 0 (Zn-rich
conditions). The total concentration of Cl or F atoms in each
case was kept fixed at 5 × 1017/cm3, and the chemical potential
was recalculated at each point to meet this target concentration.
(a) Chlorine defects. (b) Fluorine defects.

should have a lower formation energy than ClSe at low Fermi
energies, while Pöykkö et al. give a relatively higher formation
energy for ClSeVSe

+3 and claim that ClSeZni is only stable in
the +1 charge configuration.

Figure 2(b) shows the equivalent results for fluorine,
equivalently with μF = 1

2EDFT(F2). The most noteworthy
difference here is that some double defects (two F atoms in
close proximity) have low formation energies, respectively,
FSeFSe and FSeFZn. In the case of chlorine, all double defects
have high formation energies, such that they do not appear
in Fig. 2(a), being above the top of the scale. This is not the
case for fluorine, where FSeFZn is the most stable defect at
high Fermi energies. This could indicate that F defects might
tend to group pairwise or even as defect clusters consisting of
multiple F atoms, while Cl defects do not show this tendency.
In FSeFZn (−2), the two F atoms relax toward a position close
to the Se site. In this position, they bind with approximately
20% shortened bonds to the three surrounding zinc atoms only,
while the Zn site is left vacant.
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FIG. 4. (Color online) The same as Fig. 3 at λ = 1 (Se-rich
conditions). (a) Chlorine defects. (b) Fluorine defects.

Figure 3 shows the concentration of defects as a function of
the Fermi energy. Differently from Fig. 2, for which the data
were obtained with a fixed chemical potential, the data of Fig. 3
were obtained by using a fixed impurity concentration equal
to 5 × 1017/cm3 for all situations. This concentration value is
introduced in Eq. (9). The chemical potential is calculated for
each point in the graph, keeping the impurity concentration

fixed. The reason for applying this method, as explained
before, is that the impurity concentration can be measured and
controlled during crystal growth, while the chemical potential
cannot (especially for MBE growth, which is a nonequilibrium
process).

Despite the different calculation methods, Figs. 2 and 3
show very similar results. The most stable defects (lowest
formation energy in Fig. 2 and highest concentration in Fig. 3)
are the same in both cases, with only small discrepancies at
the high-Fermi-energy end for fluorine defects.

Figure 4 shows the concentrations for the λ = 1 condition,
that is, Se-rich. VSe and defects containing VSe become
more prevalent; VZn and defects containing VZn become less
prevalent.

The comparison of the formation energies for the most
relevant point defects obtained within the GGA and HSE
approximations to the electron-electron interaction shown in
Table V indicates that the energetical ordering calculated
within DFT-GGA is reliable, whereas absolute values for the
formation energies should be considered with caution.

V. CONCLUSIONS

In summary, the general picture is quite similar for Cl and
F defects. Cl+1

Se and F+1
Se are the most stable defects in a wide

range of Fermi energies, from about 0.6 to 1.4 eV. The +2
charge states of ClSe and FSe are considerably less stable.
At higher Fermi energies, negatively charged complexes
consisting of an impurity atom and a zinc vacancy become
important. The most important difference between Cl and F
is the appearance of double defects (FSeFZn) and interstitials
(Fi), which do not appear in the case of chlorine.

Thus, the photoemission centers identified in Ref. 7 are
most likely caused by a substitutional fluorine atom (FSe),
although a complex with a zinc vacancy or even an interstitial
fluorine are possible alternatives, which cannot be excluded
by our results.
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