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Phase diagram of the half-filled one-dimensional t-V -V ′ model
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We study the phase diagram of spinless fermions with nearest- and next-nearest-neighbor interactions in
one dimension utilizing the (finite-size) density-matrix renormalization group method. The competition between
nearest- and next-nearest-neighbor interactions and nearest-neighbor hopping generates four phases in this model:
two charge-density-wave insulators, a Luttinger-liquid phase, and a bond-order phase. We use finite-size scaling
of the gap and various structure factors to determine the phase diagram.
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I. INTRODUCTION

The study of quantum phase transitions in strongly interact-
ing systems has become a major field of research in condensed
matter physics. Quantum fluctuations, rather than thermal
fluctuations, are responsible for such zero-temperature phase
transitions.1 Remarkably, quantum fluctuations play a more
dominant role as the dimensionality of the system is reduced.
In that sense, one and two dimensions are in general an ideal
playground where the interplay between strong interactions
and quantum fluctuations leads to the emergence of exotic
phases and phenomena. For example, in one dimension, it is
known that quantum fluctuations melt any order that would
otherwise break a continuous symmetry.2,3

In recent years, in addition to traditional condensed mat-
ter systems that exhibit reduced dimensionalities, ultracold
atomic gases in optical lattices have allowed the experimental
realization of several strongly correlated systems that are of
great interest.4 The degree of control in those experiments
is such that effective one-dimensional regimes are now
within reach.5 In addition, the high degree of isolation in
optical lattice experiments enables the study of nonequilibrium
phenomena not accessible in condensed matter settings,7,8 and
addressing questions related to the relaxation dynamics and
thermalization of quantum systems.9

One-dimensional systems have been the focus of many re-
cent works on the effects of integrability and phase transitions
in the dynamics and thermalization of strongly interacting
quantum systems.5,6 In particular, one of us (in collaboration
with L. Santos) studied the breakdown of thermalization in
the t-V -V ′ model, and its relation to approaching integrable
points and the various insulating phases present in its ground
state.10,11 Interestingly, despite the simplicity of the model,
and the fact that it has been studied in several previous
works,12–17 an accurate phase diagram is not available in the
literature.

In this work, we present a detailed study of the phase
diagram of the t-V -V ′ model. For spinless fermions, in
its particle-hole symmetric form, the Hamiltonian can be
written as

H =
∑

i

[
−t (c†i ci+1 + H.c.) + V

(
ni − 1

2

) (
ni+1 − 1

2

)

+V ′
(

ni − 1

2

)(
ni+2 − 1

2

)]
, (1)

where c
†
i and ci are fermionic creation and annihilation

operators at site i, respectively. These operators obey the usual
fermionic anticommutation relations {ci ,c

†
j } = δi,j . ni = c

†
i ci

is the number operator. t is the hopping amplitude between
neighboring sites, and V and V ′ are the nearest- and next-
nearest-neighbor interactions, respectively.

We focus our analysis on the half-filled case, i.e., when the
number of fermions is equal to one-half the number of lattice
sites. For V ′ = 0, this Hamiltonian can be solved exactly using
the Bethe ansatz.5 As V is increased, one finds a transition from
a gapless Luttinger liquid (LL) to a gapped charge-density-
wave phase at V/t = 2. For t = 0, on the other hand, the
ground state of model (1) is very simple (a product state) and
is determined by the ratio between V and V ′. For V ′ < V/2
one has a (. . . 10101010 . . .) charge-density wave (CDW-I)
and for V ′ > V/2 one has a (. . . 11001100 . . .) charge-density
wave (CDW-II). Here, 1 (0) denotes the presence (absence) of
a fermion at a particular site. However, for finite values of t , a
richer phase diagram emerges.

Early numerical studies of this model were based on the
Lanczos method,12 for which only small system sizes can
be diagonalized. It was found that the competition between
t , V , and V ′ leads to four different phases. Three of those
phases have been already mentioned, the LL, CDW-I, and
CDW-II phases. In addition to those, a bond-order (BO) phase
was also found. This BO phase was somehow missed in
some subsequent studies of this model.14,15 More recently, the
presence of the BO phase was discussed in a density-matrix
renormalization group (DMRG) study, but the phase diagram
was not computed there.16

It is interesting to note that despite the fact that the physics
of the t-V -V ′ model is well understood,5 as mentioned before,
no accurate phase diagram has been reported so far. This is
because large finite-size effects make it difficult to determine
the precise boundaries between the phases mentioned above.
In this paper, utilizing the DMRG technique, we determine the
phase diagram of the t-V -V ′ model for a broad range of values
of V/t and V ′/t . In order to make accurate predictions, we
use scaling properties of several quantities, which are based
on the universality class of the various transitions. Our main
result is the phase diagram reported in Fig. 1.

The exposition is organized as follows. In Sec. II, we
discuss the model under consideration and its formulation in
different physical contexts. We also introduce the observables
used to describe the different ground-state phases. In Sec. III,
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FIG. 1. (Color online) Phase diagram of the half-filled t-V -V ′

model. The phases are, from bottom to top, charge-density wave with
a two-site unit cell, Luttinger liquid, bond-order phase, and charge-
density wave with a four-site unit cell. The dashed line corresponds to
V ′ = V/2, which, in the atomic limit, gives the boundary between the
CDW-I and CDW-II phases. The hopping amplitude is set to t = 1.

we provide details on the different approaches used to detect
the transitions from gapless to gapped phases. In particular,
we determine the transition line from the LL to the CDW-I
as well as the transition from the LL to the BO phase. In
Sec. IV, the transition from the BO phase to the CDW-II
is studied by performing finite-size scaling analysis of the
structure factor. We also compare the obtained phase diagram
with the one found in previous studies. Finally, in Sec. V, we
briefly summarize our main conclusions.

II. MODEL, OBSERVABLES, AND APPROACH

The t-V -V ′ model for spinless fermions [Eq. (1)] can be
mapped onto two other models of much interest in condensed
matter and cold gases.

The first of those two models is a well-known spin chain.
Using the Jordan-Wigner transformation,18

c
†
i = S+

i

i−1∏
β=1

eiπ(Sz
β+1/2), ci =

i−1∏
β=1

e−iπ(Sz
β+1/2)S−

i ,

c
†
i ci = Sz

i + 1

2
, (2)

where Sx
i ,Sy

i ,Sz
i are spin- 1

2 operators at site i, the Hamiltonian
(1) takes the form

H =
∑

i

[−2t
(
Sx

i Sx
i+1+S

y

i S
y

i+1

)+V Sz
i S

z
i+1+V ′Sz

i S
z
i+2

]
.

(3)

This is the spin-1/2 XXZ chain with an additional next-
nearest-neighbor SzSz interaction term. For the mapping, we
have assumed that the system has open boundary conditions, as
will be the case throughout this work. For periodic boundary
conditions, a boundary term appears which depends on the
total number of fermions (total Sz) in the chain.19

Furthermore, one can map the spin model above onto a
model of impenetrable (hard-core) bosons, known as the lattice
Tonks-Girardeau gas within the cold-gases community.5 For
this, one can use the Holstein-Primakoff transformation for
spin-1/2 particles:20

S+
i = a

†
i

√
1 − a

†
i ai , S−

i =
√

1 − a
†
i ai ai ,

(4)
Sz

i = a
†
i ai − 1

2 .

Under this transformation, Eq. (3) can be written as

H =
∑

i

[
−t (a†

i ai+1 + H.c.) + V

(
nb

i − 1

2

)(
nb

i+1 − 1

2

)

+V ′
(

nb
i − 1

2

) (
nb

i+2 − 1

2

)]
, (5)

where a
†
i (ai ) is the bosonic creation (annihilation) operator

obeying the bosonic commutation relations [ai ,a
†
j ] = δi,j and

nb
i = a

†
i ai is the bosonic number operator. One also has an

additional constraint a
†2
i = a

2
i = 0 that precludes multiple

occupancies of the lattice sites.
From the derivations above, one can see that spinless

fermions, spins, and hard-core bosons share the same spec-
trum, and diagonal (density and Sz) correlations. Hence, the
phase diagram obtained in this study for spinless fermions is
also relevant to the corresponding spin and bosonic models.
Experimentally, hard-core bosons have been realized in one-
dimensional geometries in the presence21 and absence22 of a
lattice.

In order to compute the ground-state properties of the t-
V -V ′ model, we use the finite-size DMRG algorithm with
open boundary conditions.23,24 This method is best suited for
(quasi-)one-dimensional problems and has been extensively
used to study quantum spin chains.24 To minimize finite-size
effects and obtain accurate extrapolations, we study systems
with up to 700 sites (1000 in fewer cases) retaining 128 density-
matrix eigenstates. The weight of the states discarded in the
density matrix is less than 10−6 in all cases. To improve the
convergence, at the end of each DMRG step, we use a finite-
size sweeping procedure.24

To characterize the various phases of this model, we have
studied several quantities. Here, we report results for the
single-particle excitation gap,

GL = E(L,N + 1) + E(L,N − 1) − 2E(L,N ). (6)

It allows us to distinguish gapped and gapless phases. In
Eq. (6), E(L,N ) is the ground-state energy of a system with
L sites and N fermions.

To understand the transition to the CDW phases, we
calculate the structure factor, which is the Fourier transform
of the density-density correlation function,

S(k) = 1

L2

∑
i,j

eik(i−j )(〈ninj 〉 − 〈ni〉〈nj 〉). (7)
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Finally, the transition to the BO phase can be identified by
calculating the bond-order parameter

OBO = 1

L

∑
i

(−1)iBi, (8)

where

Bi = 〈c†i ci+1 + c
†
i+1ci 〉. (9)

In the remainder of the paper, we set t = 1.

III. GAPLESS TO GAPPED PHASE TRANSITIONS

We first focus on the transition between the gapless LL
phase and the two gapped phases that surround it, which are
the CDW-I and the BO phases. These two transitions can
be understood using LL theory, from which one obtains that
the Luttinger parameter is K = 1/2 at the transition points.5

One can then use this knowledge to determine the boundaries
between the LL and CDW-I/BO phases. The idea would be to
compute K using the decay of correlations for finite systems,
make an extrapolation to the thermodynamic limit, and then
find the values of V ′ that for a given value of V result in
K = 1/2. This approach was used, for example, to calculate
the phase diagram of the extended Hubbard model.25 We find
that such a procedure leads to inconclusive results for the
t-V -V ′ model. The selection of the range of distances used
to fit K from correlation functions, such as the one-particle
density matrix ρij = 〈c†i cj 〉, leads to a wide range of values
of K for any given finite system. After extrapolation to the
thermodynamic limit, the errors in the determination of the
critical V ′, for each value of V , were found to be large.
One could also try to use the appropriate functional form of
the relevant correlation functions as obtained in low-energy
effective theories, as has been done in the context of spin
chains26,27 and zigzag ladders,28 but we have followed a
different approach.

Our approach is based on the study of the closing of the
single-particle excitation gap GL [see Eq. (6)] when entering
the LL phase. GL can be accurately determined within DMRG
at a relatively low computational cost (in particular, if one
compares it with the cost of computing correlation functions).
Of course, GL is finite for any finite system even in phases
that are gapless in the thermodynamic limit. As an example, in
Fig. 2 we show LGL as function of V ′ and fixed V = 4, for two
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FIG. 2. (Color online) Scaling of the gap LGL plotted as a
function of V ′ for V = 4.0. The coalescence of different curves for
V ′ � 1.0 in (a) and V ′ � 2.9 (b) indicates the transition from gapped
to gapless phase.
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FIG. 3. (Color online) The extrapolated gap in the thermody-
namic limit is plotted as a function of V ′ for V = 4. There is a
transition from a gapped to a gapless phase at V ′ ∼ 1.0 and then to a
gapped phase again at V ′ ∼ 2.9.

different intervals of V ′, and various system sizes. One can see
there that LGL is finite for all values of V ′ and all system sizes.
However, in some parameter regimes LGL does not change
with increasing system size, i.e., GL ∼ 1/L (vanishes in the
thermodynamic limit), while in other parameter regimes, LGL

increases with increasing system size and so GL is finite in the
thermodynamic limit.

One can then extrapolate GL to the thermodynamic limit
by fitting it to a polynomial in terms of 1/L and obtain the
value of GL→∞ by varying V ′ for all the values of V . Results
for the extrapolated gap GL→∞ as a function of V ′ for V = 4
are shown in Fig. 3. This plot shows a clear transition from a
gapped to a gapless phase and then to a gapped phase. The
system becomes gapless at V ′ ∼ 1.0 and the gap reopens
at V ′ ∼ 2.9. Still, within this approach, one encounters the
difficulty of pinpointing the exact values of V ′ for the phase
transition.

In order to obtain accurate values of V ′ for the boundaries
between the gapped and gapless phases, we make use of the
knowledge that the transition between the gapless and gapped
phases belongs to the Berezinskii-Kosterlitz-Thouless (BKT)
type.5 At the BKT transition the gap closes as

G ∼ exp

[
− a√|V ′ − V ′

c |

]
, (10)

where a is a constant.
The correlation length ξ , which is closely related to the gap,

is finite in the gapped phase, diverges at the critical point as
ξ ∼ G−1, and remains infinite in the LL phase. We utilize the
following finite-size-scaling relation for the gap in the vicinity
of the phase transition,

LGL

(
1 + 1

2 ln L + C

)
= F

(
ξ

L

)
, (11)

where F is a scaling function and C is an unknown constant to
be determined. This scaling ansatz resembles the analogous
scaling relation for the resistance in the charge-unbinding
transition of the two-dimensional Coulomb gas.29 In such
a transition, which is also of the BKT type, the resistance
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near the critical point behaves as the gap does in the
gapped to LL transition; namely, it vanishes exponentially as
in Eq. (10).

At the critical point and close to it within the LL phase, one
expects the values of F (ξ/L) to be system-size independent
because of the divergence of the correlation length; i.e.,
plots of LG′

L = LGL[1 + 1/(2 ln L + C)] as function of
V ′ for different system sizes should merge in that region.
Furthermore, the resulting curves of plotting LG′

L as function
of ξ/L for several values of L should also be system-size
independent. Equivalently, one can plot LG′

L as a function
of xL = ln L − ln ξ to get the collapse of the curves. In our
calculations, the values of a, C, and V ′

c are fitted to produce
the best possible collapse of the data within the gapped side of
the phase transition. On that side, we take into account that the
correlation length diverges as ξ ∼ exp[a/

√|V ′ − V ′
c | ]. We

have tested the accuracy of this procedure by determining
the critical value of V for the transition between the LL and
CDW-I phases when V ′ = 0. As mentioned in the introduction,
the critical value of V in this case is known analytically (the
Heisenberg point). We considered systems with up to 700
sites and obtained a critical value Vc = 2.02 ± 0.01, which is
consistent with the analytical result.

When V ′ �= 0, this model is not exactly solvable. In Fig. 4,
we show results for LG′

L vs xL (main panels), as well as LG′
L

vs V ′ (insets), for V = 4 and several values of L. The main
panels make evident the collapse of all the data for the rescaled
gap as a function of xL, shown here only within the gapped
phases. Two important limits can be understood by analyzing
the collapse curves. As the critical point is approached (xL →
−∞), the scaling function approaches a constant value, which
in turn implies the vanishing of the gap. In the limit of large xL,
one can see that the scaling function increases rapidly, which is
necessary for the gap to be finite in the gapped phases. We then
confirm two aspects of the BKT transition, the exponentially
divergent correlation length and the logarithmic corrections to
the gap. The insets in Fig. 4 clearly show that, when coming
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FIG. 4. (Color online) The scaled gap LG′
L as function of

the xL = ln L − a/
√|V ′ − V ′

c |. The insets show the scaled gap as
function of V ′. (a) Transition from the CDW-I to the LL phase.
(b) Transition from the LL to the BO phase. Both transitions are
presented for a fixed value of V = 4.

from the gapped phases, the LG′
L curves merge at a point [V ′

c =
1.16 for the CDW-I to LL phase, Fig. 4(a), and V ′

c = 2.55 for
the BO to LL phase, Fig. 4(b)] and remain close to each other
for some finite region within the gapless phase. Moreover, as
the size of the system increases, the interval over which the
curves are seen to collapse within the LL phase increases. As
said before, because of the divergence of the correlation length
in the LL phase, the curves should be system-size independent
in the vicinity of the transition point, where the scaling relation
(11) holds.

A. CDW-I to LL transition

As mentioned in the introduction, only two phases are
present in the system for V ′ = 0. Those are a LL phase for
0 < V < 2 and a CDW-I phase for V > 2. By adding a small
V ′, the transition between LL to the CDW-I is shifted to larger
values of V , thus enhancing the stability of the LL phase.
This is because the interplay between CDW configurations of
the type (. . . 101010 . . .), favored by increasing values of V ,
competes with those of the type (. . . 11001100 . . .), favored by
increasing values of V ′, thus making the system gain kinetic
energy because of the net reduced charge ordering effects.
Nevertheless, for large enough values of V , the CDW-I phase
is prevalent. In order to see that this is the case, we have
calculated the density-density structure factor S(k) as defined
by Eq. (7). Because of the charge order, the CDW-I phase is
characterized by a finite value of S(π ) in the thermodynamic
limit. In Fig. 5, we show S(π ) as function of 1/L for different
values of V ′, and for V = 4. It is apparent in that figure that,
for V ′ � 1.0, S(π ) is finite in the thermodynamic limit. For
V ′ � 1.2, on the other hand, S(π ) becomes very small as the
system size increases, which suggests that it will be zero in the
thermodynamic limit. This is consistent with the results from
the scaling of the gap that, for V = 4, predicted the critical
value of V ′ for the transition between the LL and the CDW-I
phase to be V ′ = 1.16. Despite the fact that with the finite-size
scaling of the structure factor S(π ) it is difficult to locate the
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FIG. 5. (Color online) Density-density structure factor S(π ) as a
function of 1/L for different values of V ′, for V = 4. S(π ) is predicted
to be finite in the thermodynamic limit for V ′ � 1.2, making evident
the existence of a CDW-I phase in that region of parameter space.
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FIG. 6. (Color online) Finite-size scaling of OBO for different
values of V ′, for V = 4, across the LL to BO phase.

exact transition point, this calculation provides evidence of
the nature of the CDW-I phase and the way the charge order
develops as one crosses the critical region.

B. LL to BO transition

At the other boundary of the LL phase, when V ′ > V/2,
there is an instability toward the formation of a gapped BO
phase.12,17 In the limit of vanishing V , the bond-order phase
arises because of the competition between the kinetic energy
term and the next-nearest-neighbor interaction that induces a
CDW-II order. A finite value of V competes with the bond
ordering induced by V ′, thus enhancing the stability of the LL
phase and increasing the critical value of V ′. As mentioned
previously, the BO phase is characterized by a finite value
of OBO [see Eq. (8)] in the thermodynamic limit. Although
this phase exhibits bond oscillations as unveiled by the OBO

parameter, the system exhibits no charge order. Therefore, two
quantities can be used to characterize the BO phase, the gap
and OBO, which are both finite in that phase. In a finite-size
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FIG. 7. (Color online) Scaled S(π/2) vs the scaled control
parameter for V = 4. The collapse of all the data points onto a single
curve confirms the critical point at V ′

c = 4.293. Inset: Crossing of the
scaled S(π/2) for V = 4 and different system sizes. All the curves
intersect at V ′

c = 4.293 indicating the transition point.
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FIG. 8. (Color online) Scaling of S(π/2) vs 1/L for V = 4 and
different values of V ′ between V ′ = 4.25 and V ′ = 4.32 in steps of
0.01. One can see that S(π/2) extrapolates to zero below the critical
value V ′

c = 4.293.

system, however, BO oscillations are present in the LL phase,
but vanish as the system size in increased.

Following the arguments in Ref. 30 and 31, the strength
of such oscillations is assumed to decay as L−K . This scaling
relation holds inside the LL region and in particular at the
transition point between the LL and the BO phase, where the
Luttinger-liquid parameter takes the value K = 1/2. Because
of that, we extrapolate the BO parameter using L−1/2 rather
than L−1. In Fig. 6, we plot OBO as a function of L−1/2 for
different values of V ′ at V = 4. One can see there that OBO

extrapolates to a nonzero value in the thermodynamic limit
for V ′ � 2.6. Despite the large size effects that are present at
the BKT transition, for values of V ′ � 2.5, OBO extrapolates
to very small values. These results are compatible with the
critical value V ′

c = 2.55 obtained from the finite-size-scaling
analysis of the opening of the charge gap. Note that in Fig. 6,
as the values of V ′ decrease and approach the critical value
Vc, the curves become closer to straight lines. This supports
our assumption that, at the transition point, the BO oscillations
decay as L−1/2.

IV. GAPPED TO GAPPED PHASE TRANSITION

A. BO to CDW-II transition

Ultimately, when V ′ is very large, the system always forms
a CDW-II insulator as the energy of the configuration (. .
.110011 . . .) becomes energetically more favorable. Hence,
within the gapped region with V ′ > V/2, there is an additional
phase transition between the BO and CDW-II phases. The
latter phase is characterized by a finite value of S(π/2) in the
thermodynamic limit.

Taking S(π/2) as the order parameter for the CDW-II phase,
we obtain the critical point accurately by means of scaling
theory. We start with the ansatz

S(π/2)L2β/ν = F ((V ′ − V ′
c )L1/ν), (12)

where β is the critical exponent corresponding to the univer-
sality class of the phase transition and ν is the correlation
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FIG. 9. (Color online) The same phase diagram as in Fig. 1 but
now in the t/V vs V ′/V plane.

exponent. F is a scaling function and V ′
c is now the critical

point for transition between the BO to CDW-II phases.
Comparing results for different system sizes as V ′ is

changed, we found that the curves for different system sizes
intersect at a unique critical point if β = 0.125 and ν = 1
(these are the exponents of the 2D Ising universality class).
Results for a value of V = 4 are shown in Fig. 7, for which
V ′

c 	 4.293. The scaled S(π/2) as a function of scaled control
parameter V ′ is plotted in Fig. 7. The collapse of the data
confirms the accuracy of V ′

c as determined from the crossing
in the inset of Fig. 7. Notice that, as V ′ is increased, the
transition between the BO to CDW-II occurs while the charge
gap continues to grow monotonically; i.e., it does not vanish
at the transition point. See the behavior of the charge gap in
Fig. 3 for values around the critical V ′

c 	 4.293.
In order to have an independent check that the previous

approach leads to the correct results, we have also extrapolated
the value of S(π/2) to thermodynamic limit. The results from
this procedure, once again for V = 4, are presented in Fig. 8.
There, we plot S(π/2) vs 1/L for different values of V ′. The

values of the extrapolated S(π/2) clearly converge to zero for
V < V ′

c .
A complete analysis like the one presented so far, but

for different values of V , allowed us to determine the phase
diagram presented in Fig. 1.

Finally, to allow for a direct comparison with early
calculations for this model, reported in Refs.12,17, we present
in Fig. 9 the phase diagram in the plane t/V -V ′/V . This phase
diagram is in qualitative agreement with the one reported
in Refs. 12 and 17. However, quantitative differences on
the precise location of the phase boundaries are apparent.
Although we did not study the region of the phase diagram
where t/V → 0, the trend of our transition lines suggests that
they will cross for small but finite values of t/V , implying a
tricritical point.12,17

V. CONCLUSION

We have presented a comprehensive study of the phase
diagram of the t-V -V ′ model in one dimension. Using the
scaling of the gap in the BKT transition between the LL phase
and the CDW-I/BO phases, we have obtained accurate results
for the boundaries between the gapless and gapped phases of
this model, which are confirmed by the extrapolation of various
order parameters. The phase transition between the BO phase
and the CDW-II phase (both of which are gapped) was also
studied using scaling theory for the density-density structure
factor. This latter phase transition was found to be much less
sensitive to finite-size effects and the exponents computed
were found to be consistent with those of the two-dimensional
Ising universality class.
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