
PHYSICAL REVIEW B 84, 115122 (2011)

Modeling of the cubic and antiferrodistortive phases of SrTiO3 with screened hybrid density
functional theory

Fedwa El-Mellouhi,1,* Edward N. Brothers,1,† Melissa J. Lucero,2 and Gustavo E. Scuseria2,3,4

1Science Program, Texas A&M University at Qatar, Texas A&M Engineering Building, Education City, Doha, Qatar
2Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA

3Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
4Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
(Received 17 May 2011; revised manuscript received 8 August 2011; published 20 September 2011)

We have calculated the properties of SrTiO3 (STO) using a wide array of density functionals ranging from
standard semilocal functionals to modern range-separated hybrids, combined with several basis sets of varying
size and quality. We show how these combinations’ predictive ability varies significantly, for both STO’s cubic and
antiferrodistortive (AFD) phases, with the greatest variation in functional and basis set efficacy seen in modeling
the AFD phase. The screened hybrid functionals we utilized predict the structural properties of both phases in
very good agreement with experiment, especially if used with large (but still computationally tractable) basis
sets. The most accurate results presented in this study, namely, those from HSE06 with a modified def2-TZVP
basis set, stand as one of the most accurate modelings of STO to date when compared to the literature; these
results agree well with experimental structural and electronic properties as well as providing insight into the band
structure alteration during the phase transition.
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I. INTRODUCTION

Strontium titanate (SrTiO3; STO) is a complex oxide
perovskite of great technological interest for its
superconductivity,1 blue-light emission,2 photovoltaic
effect,3 and so on. Under normal conditions, bulk SrTiO3

crystallizes in a cubic perovskite structure; it subsequently
undergoes a second-order phase transition at Tc = 105 K to
a tetragonal structure with slightly rotated oxygens around
the z axis, known as the antiferrodistortive (AFD) phase (see
Fig. 1). Many of the interesting properties of STO, either in
bulk or in superlattices formed with other metal oxides, are
believed to be caused by the cubic to AFD phase transition.
Examples of this attribution are STO’s superlattice’s high-Tc

superconductivity4–6 and its colossal magnetoresistivity.7

First-principles calculations (see Ref. 8 and references therein)
have indicated that the strain-induced competition between
octahedral rotation modes and the lattice distortion in metal
oxide superlattices are behind these interesting properties.
Thus, there is a considerable need9,10 for precise theoretical
calculations of the structural and electronic properties of
complex oxides, as well as accurate estimation of the phase
transition order parameters, to understand and eventually
exploit these phenomena.

The phase transition of STO is governed by two order
parameters. The primary order parameter is the rotation angle
of the TiO6 octahedra (θ ). The experimentally measured11

octahedral rotation of AFD STO is 1.4◦ at 77 K and increases as
the temperature drops toward the maximum measured value of
2.1◦ at 4.2 K. The octahedron’s rotation is believed to be almost
complete12 at around 50 K, where θ = 2.01◦ ± 0.07◦ was
reported.13 The secondary order parameter is the tetragonality
of the unit cell (c/a), which increases from 1.00056 (Ref. 14)
to 1.0009 (Ref. 15) as the temperature decreases from 65 to
10 K.16 The AFD phase can also appear in thin films of STO
(Refs. 17–19) at much higher Tc than the bulk, depending on

the substrate used, the thickness of deposited STO film, the
strain, and the lattice mismatch. For example, 10 nm of STO
deposited on LaAlO3 undergoes a transition to the AFD phase
at Tc

∼= 332 K.
As the simplest metal oxide perovskite, STO has been

extensively studied in recent decades with different ab initio
schemes.20–24 However, it is still a challenging material for
theory; only a few of the previously published works have
been able to accurately describe the structural and electronic
properties of both phases of STO. The balance of this section
will consist of a brief review of the theoretical work performed
to date.

Sai and Vanderbilt25 carried out one of the first local density
approximation (LDA) calculations on STO using a plane-wave
basis and ultrasoft pseudopotentials. The LDA predicted an
exaggerated tetragonal AFD phase of STO, with octahedral
rotation angles of 6◦, significantly overestimating the 2.1◦
rotation measured experimentally.11 Use of the LDA with other
basis sets26 shows similar issues, predicting rotations up 8.4◦.

Wahl et al.23 used a plane-wave basis while simu-
lating STO with the LDA,27 the Perdew-Burke-Ernzerhof
(PBE) functional,28,29 and its reparametrization for solids,
PBEsol.30,31 (See Sec. II for further descriptions of these
density functionals.) The LDA underestimated experimental
lattice constants, while PBE overestimated them; both methods
had band gaps that were seriously underestimated compared
to experiment. This underestimation is well known for these
functionals; see, e.g., Ref. 32 and references therein. PBEsol
was found to reproduce accurately the experimental structure,
but considerably underestimated the band gaps. For the
AFD phase, the octahedral angle θ was found to be very
sensitive to the functional used; all three overestimate the
AFD deformation, with the LDA worse than the PBE and
the PBEsol splitting the difference. Rondinelli and Spaldin33

applied the LSDA + U correction to cubic STO and found
that while it corrects the band gap, the calculated octahedral
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FIG. 1. (Color online) SrTiO3 unit cells for the (a) cubic and
(b) antiferrodistortive phases; (b) shows the TiO6 octahedra’s rotation
around the [001] axis. The O1 (equatorial) and O2 (axial) labels denote
the nonrotating and rotating oxygens, respectively.

rotation angle remains overestimated at 5.7◦. To date, none
of the post-DFT corrections which benefit band gaps have
successfully corrected the octahedral rotation overestimation,
and many authors attribute this to the argument proposed by
Sai and Vanderbilt25 stating that this can be caused by the
exchange and correlation terms in DFT not capturing quantum
point fluctuations.

Piskunov et al.34 conducted one of the most complete and
comprehensive ab initio studies of STO, using Gaussian basis
sets specifically optimized for modeling STO crystals. This
study of STO showed problems when modeling with pure DFT
or pure Hartree-Fock (HF) theory, namely, underestimated and
overestimated band gaps, respectively; this is a well-known
problem.35 Hybrid functionals, specifically B3PW (Ref. 36)
and B3LYP (Ref. 37), gave more reasonable results, with
direct band gaps overestimated by 5% for B3PW and 3.5%
for B3LYP compared to experiment and indirect band gaps
overestimated by 12% for B3PW and 10% for B3LYP. (We
will demonstrate that an important part of this overestimation
can be attributed to the basis set employed; see Sec. III.)
The hybrid functionals also gave the best agreement with
experiment for the lattice constant and the bulk modulus, and
generally did better than semilocal functionals in all categories.
This success of hybrid functionals motivated more detailed
calculations20–22,38 of the properties of the cubic and AFD
phases of STO and its defects, again using the optimized basis
set of Piskunov et al.34 and the B3PW functional.

Next, Wahl et al.23 applied the Heyd-Scuseria-
Ernzerhof39,40 (HSE) screened Coulomb hybrid density func-
tional in a plane-wave basis set. HSE performed exceptionally
well, doing much better than any of the semilocal functionals,
as it gave a very accurate estimate of both the structural and
electronic properties of the cubic phase. HSE also showed
excellent agreement with the experimental octahedral angle
and tetragonality of the unit cell which constitute, to our knowl-
edge, the most accurately computed STO properties available
in the literature for both phases, prior to the current study.

Recently, Evarestov et al.24 used PBE and the hybrid
functionals B3PW and the PBE0 to study the two phases of
SrTiO3 using both plane-wave (PW) and linear combination of

atomic orbitals (LCAO) basis sets. They found that the atomic
and electronic and phonon properties calculated with PBE0
and plane waves are very similar to those published by Wahl
et al.23 using HSE. In addition, PBE0 phonon frequencies with
both LCAO and PW basis sets are in better agreement with
experiment than those obtained with PBE.

As noted above, hybrid functionals have proved their effec-
tiveness in studying metal oxides, but they are computationally
much more demanding than semilocal functionals. While it
would be ideal to do high-accuracy ab initio calculations
on metal oxide superlattices using complete basis sets and
large supercells, this is prohibitively expensive at the current
level of computer power. Screened hybrid functionals with
only short-range exact exchange are computationally less
demanding; they allow the use of large supercells, especially
when used with localized basis sets such as Gaussian functions.
We hope to use the most effective methods and basis sets from
this study on more complicated metal oxide systems, and thus
we have concentrated on methods and basis sets that would
be practical for those systems as well as the systems currently
under consideration.

This paper focuses on two tightly linked problems. We
are interested in the degree of completeness (or size) of the
localized basis set necessary to correctly simulate both phases
of STO, and in the efficacy of recently developed functionals
(including screened hybrids) in predicting the properties of
STO. To discuss these issues, the paper proceeds as follows:
In Sec. II, we briefly describe the technical details before
turning in Sec. III to the basis set optimization and modification
technique we used to make standard basis sets compatible with
periodic boundary condition code. In Sec. IV, we report the
results of semilocal and range-separated hybrid functionals
applied to the cubic and the AFD phases of STO. We show
also how the quality of the basis set affected the accurate
prediction of the octahedral rotation angle in the AFD phase
of STO. Finally, we discuss the results of our best functional
and basis set combination for STO, comparing them with
previously published theoretical and experimental data, with
special emphasis on the effect of varying the range separation
parameter in the screened functionals.

II. COMPUTATIONAL DETAILS

All calculations were performed using a development
version of the GAUSSIAN suite of programs,41 with the periodic
boundary condition42–44 (PBC) code used throughout. A wide
array of functionals were applied, including the local spin
density approximation27 (LSDA), the generalized gradient
approximation (GGA) corrected functional of Perdew, Burke,
and Ernzerhof28,29 (PBE), the reparametrization of PBE for
solids, PBEsol,30,31 the revised meta-GGA of Tao, Perdew,
Staroverov, and Scuseria45,46 (revTPSS), and finally a modern
and highly parametrized meta-GGA functional, M06L.47,48

Two screened hybrid functionals were also tested, namely,
the short-range exact exchange functional of Heyd, Scuseria,
and Ernzerhof39,49 (HSE, with the 2006 errata, also referred
to as HSE06) and the functional50 with exact exchange in the
middle range of Henderson, Izmaylov, Scuseria, and Savin
(HISS).51,52 Because regular hybrids with unscreened exact
exchange like B3LYP and B3PW have higher computational
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cost compared to screened hybrids we decided to exclude them
from our study.

Gaussian basis sets of different quality have been tested for
their ability to simulate the properties of STO; the details of
these tests and the modification of the basis set were detailed
enough to merit their own section, Sec. III.

A few numerical considerations should be mentioned here.
During the initial (or exploratory) calculations for the AFD
phase, we found some dependence of octahedral rotation
angle (θ ) on initial atomic positions. After further investi-
gation, this can be attributed to the geometric optimization
convergence criteria. Since θ is so small, very stringent
convergence criteria are required.53 Another modified (versus
the default) setting was that a pruned integration grid for
DFT of (99,590) was employed, which corresponds to the
Gaussian option “ultrafine.” Note that this grid is big enough
for this system to avoid any of the instabilities with M06L
reported in the literature with small grids.54,55 To ensure
this, we tested M06L with a larger grid, without noticing
any modification in the calculated properties. Thus while
“ultrafine” is sometimes insufficient for M06L, it is not for
this system. Other numerical settings in GAUSSIAN were left
at the default values, e.g., integral cutoffs, k-point meshes,56

self-consistent field (SCF) convergence criterion,57 and the
like.

Finally, the geometry of each phase is worth discussing
briefly. The starting configuration for the cubic phase [see
Fig. 1(a)] consisted of the perovskite primitive cell containing
five atoms at the experimental lattice constant58 (a0 = 3.890
Å). For the AFD phase, we could not simply use the five-atom
tetragonal unit cell with rotated oxygens and the lattice
parameters set to a = b �= c. A 20-atom supercell/simulation
cell was necessary, as the phase transition requires a rotation of
every pair of neighboring TiO6 octahedra in opposite directions
[Fig. 1(b)]. Thus, the volume of the AFD supercell is about
four times the volume of the cubic phase with tetragonal
lattice constants a∗ = b∗ = √

2a and c∗ = 2c, with a and
c being the lattice parameters of the five-atom tetragonal
unit cell in the AFD phase. The starting AFD structure of
STO was taken from the experimental structure of Jauch and
Palmer12 obtained at 50 K and downloaded as a CIF file
from the ICSD,59 with a∗ = b∗ = 5.507 Å and c∗ = 7.796
Å. The starting rotation angle for TiO6 octahedra was 2.1◦

while c/a − 1 = 10 × 10−4. Please note that the geometries
were only starting points; as mentioned above all geometries
were optimized with the method and basis set under consid-
eration. In order to avoid introducing any errors coming from
size effects or k-space integration, the calculated properties
of the AFD supercell are always compared with a 20-atom
supercell constructed from four cubic primitive cells (without
octahedral rotation or tetragonality) fully relaxed using the
same k-point mesh. It should be noted that the supercell in
the cubic phase is a local minimum and is higher in energy
than the supercell in the AFD phase for all reported calcu-
lations. The final (reported) θ values were determined from
Ti-O2-Ti angle measurements, and any octahedral tilts can be
estimated by measuring the Ti-O1-Ti angles (the On’s subscript
was defined in Fig. 1). Finally, all geometric visualization was
done using GAUSSVIEW.60

III. BASIS SET EFFICIENCY FOR SrTiO3

The challenge in selecting a basis set is always balancing
accuracy with computational cost. In molecular calculations,
the computational cost of a Gaussian basis set is determined
by the number of functions used, while in PBC calculations
the spatial extent or diffuseness of the basis set also plays a
major role. The more diffuse a basis set is, the larger the chunk
of matter that must be included in the calculations to avoid
numerical issues.

Coupled with the argument that the long density tail is
more necessary for molecular work than work in extended
systems, it becomes obvious that basis sets developed for
nonperiodic calculations can require modification for PBC
use. This section describes the basis set optimization and
modification procedure we employed to find the appropriate
Gaussian basis sets to simulate periodic STO while keeping
within reasonable computational expense. We based our
evaluations of a basis set’s accuracy on cubic STO results using
the Heyd-Scuseria-Ernzerhof39,40 screened Coulomb hybrid
density functional (HSE06).49

The obvious starting point was the basis sets used in
previous calculations and studies of bulk STO, including the
following:

(a) Gaussian-type basis sets published by Piskunov et al.61

in 2000, optimized using the Hartree-Fock and density
functional theories with Hay-Wadt pseudopotentials62–64 for
Sr and Ti, denoted here as P1.

(b) The subsequently improved version of P1 published
by Piskunov et al.34 in 2004, which expands P1 by adding
polarization d functions to oxygen and making the Ti s and p
functions more diffuse, denoted here as P2.

Tests on P1 and P2 were done with HSE06, because it has
been found to give the best results versus experiment for both
structural and electronic properties23 in older calculations.
Both P1 and P2 reproduce the experimental equilibrium lattice
constants58 (see Table I) almost perfectly. Cubic STO modeled
with P1 has a slightly higher bulk modulus compared to P2,
although the difference between the two basis sets is fairly
minimal for structural properties. A more important effect is
observed for the electronic properties: P1 and P2 overestimate
the direct band gap of STO by 0.12 and 0.05 eV, respectively,
and seriously overestimate the indirect band gap by 0.28 and
0.21 eV.

TABLE I. The electronic and structural properties of cubic SrTiO3

computed with HSE06 (Ref. 49) and different basis sets. Please see
the text for basis set naming conventions.

Basis set P1 P2 SZVP TZVP Experiment

Direct gap (eV) 3.87 3.80 3.59 3.59 3.75a

Indirect gap (eV) 3.53 3.46 3.18 3.20 3.25a

a0 (Å) 3.900 3.908 3.887 3.902 3.890b, 3.900c

B (GPa) 198 194 204 193 179b,
179 ± 4.6d

aReference 65.
bReference 58.
cReference 66.
dReference 67.
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It is easy to see that the P2 basis set employed with HSE06
leads to results that are closer to experiment than P1, a fact
noted by Piskunov et al.34 for a number of functionals. The
more important point is that increasing the size and quality
of the basis set made a noticeable change in the results;
the immediate question is whether another increase in basis
set size would bring about similar improvement. In other
words, using polarization d orbitals for O and diffuse functions
for Ti improved the HSE06 results, and implies that further
improvement could potentially be achieved if more basis set
improvements are implemented, e.g., including titanium core
electrons and/or adding more diffuse functions for oxygen.

We decided to optimize some of the Def2- (Ref. 68) series
of Gaussian basis sets for use in bulk STO calculations. The
original Def2- basis sets for the atoms of interest in this project
included small-exponent diffuse functions (αmin less than 0.10)
that are spatially quite extended; as stated above, this long tail
is necessary to improve the DFT results for molecules but
not necessary for crystals.69,70 Basis sets with large spatial
ranges dramatically slow down the calculation of Coulomb
contributions to the total energy of crystals. Thus, to be useful
in PBC calculations, Def2- basis sets must be modified by
removing some of the most diffuse functions.

The series of Def2- basis sets are available up to quadruple
ζ valence (QZV) quality for a large set of elements.68,71

In the original optimizations, the oxygen, strontium, and
titanium basis sets were optimized (using HF and DFT)
versus the properties of SrO, TiO, and TiO2 molecules.
Strontium has the inner-shell electrons replaced with small-
core pseudopotentials,72 while the other two atoms utilize all
electron basis sets; this differs from P1 and P2 which use
pseudopotentials on titanium as well. In general, Def2- basis
sets are larger and more expensive than P1 and P2 basis sets,
but are expected to give a better representation of both phases
of STO due to greater “completeness.”

To make a Def2- basis set applicable to PBC, the first step
is selecting a maximum allowable diffuseness, or equivalently
the smallest acceptable Gaussian orbital exponent αmin. The
larger the value of αmin, the faster the calculations become,
but if αmin is set too high, significant degradation of physical
property prediction results. After the threshold is defined, one
pass is made through the basis set to reset all α < αmin to αmin,
and then a second pass is made through the basis set to remove
any redundancies. Note that after modifying or deleting an
element of a contracted basis set, we rely on the internal
renormalization code, i.e., no attempt is made to reoptimize
contraction coefficients.

We first began with the largest Def2- basis sets, Def2-
QZVP and Def2-QZVPP, where P and PP denote number
of polarization functions added, but these were found to be
computationally intractable for bulk STO even for αmin as big
as 0.2, and previous experience has shown that αmin larger than
0.2 causes physically unacceptable results. We then moved to
the smaller basis sets Def2-TZVP and Def2-SZVP. We first set
αmin = 0.12, but found this made the calculations very slow.
Our tests showed that αmin = 0.15 constitutes a more compu-
tationally efficient choice without important loss in accuracy.

Henceforth, the Def2-TZVP and Def2-SZVP, with αmin

modified and redundant s functions removed, will be denoted
TZVP and SZVP, respectively.

Table I summarizes the calculated electronic and structural
properties of cubic STO using our basis set modifications as
well as the aforementioned P1 and P2. The optimized basis
sets SZVP and TZVP give an overall excellent agreement with
experiment:58 direct band gaps are now underestimated by 0.16
eV while indirect band gaps are now underestimated by ∼0.05
eV. These two new basis sets are larger than the previously
utilized P1 and P2, are more accurate for indirect gaps, as well
for other measured properties, and due to their greater size are
expected to be closer to the upper limit of HSE06 accuracy
for this system. Note also that the electronic properties of
STO remain almost unchanged by moving from a SZVP to a
TZVP basis set. The deviations from the experimental lattice
constant do not exceed 0.07% and 0.3% for SZVP and TZVP,
respectively, but are more substantial for the bulk modulus,
reaching 14% for SZVP and 8% for TZVP. Finally, the
same series of basis set optimizations were also performed
using HISS and M06L functionals, which lead to the same
conclusions regarding the basis set efficiency; these are not
presented here for space reasons.

Before moving on to the Results section, a brief mention
of the expense of the various basis sets should be included. In
terms of relative CPU time, one SCF cycle takes about 12 units
for TZVP compared to 6 units for SZVP and 1 unit for P2.
All of these basis sets still have potential uses; SZVP or P2,
for example, might be very useful for a rapid investigation of
the electronic properties of some complex STO systems. But,
in terms of completeness, TZVP is the most complete and the
closest to the plane-wave basis set limit, followed by SZVP,
then P2.

IV. RESULTS: BASIS SET AND FUNCTIONAL
EVALUATION

In this section we present the calculated properties of
SrTiO3, always discussing the results of each functional using
the TZVP basis set first, followed with a discussion of the
sensitivity of the functionals to smaller basis sets, namely,
SZVP and P2.

A. Structural properties of cubic SrTiO3

The calculated equilibrium lattice constants and the bulk
moduli of cubic STO obtained using different functionals and
basis sets are reported in Table II. Unless otherwise specified,
the deviation of theory from experiment will always be versus
the data of Abramov et al., i.e., that work shall be treated
as the target values. Focusing first on the TZVP results, we
observe that the screened hybrids HSE06 and HISS give lattice
parameters in excellent agreement with experiment.

The calculated bulk modulus using HSE06 is fairly close
to the experimentally reported values, although overestimated
by 8%. (The same magnitude of overestimation has also been
reported in the HSE and PBE0 plane-wave calculations of
Refs. 23 and 24, respectively.) However, a larger bulk modulus
overestimation of 15% is observed for HISS, which constitutes
the largest deviation from experiment among all the studied
functionals.

M06L and revTPSS predict slightly higher equilibrium
lattice constants than do screened hybrids, but their bulk
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TABLE II. Computed lattice parameter a0 (Å) and bulk modulus B (GPa) for cubic STO using different combinations of functionals and
basis sets, compared to experiment.

HSE06 HISS M06L revTPSS LSDA PBE PBEsol Experiment

a0 (Å) 3.890a, 3.900b

TZVP 3.902 3.883 3.925 3.921 3.862 3.941 3.897
SZVP 3.887 3.869 3.909 3.903 3.845 3.924 3.881
P2 3.908 3.891 3.930 3.920 3.870 3.946 3.903
B (GPa) 179a,
TZVP 193 206 187 180 201 169 184 179 ± 4.6c

SZVP 204 218 198 193 214 180 196
P2 194 205 191 184 203 173 187

aReference 58.
bReference 66.
cReference 67.

moduli are closer to experiment, with revTPSS being espe-
cially close. The LSDA underestimates the lattice constant
by 0.03 Å, while PBE predicts lattice constants 0.05 Å
larger than experiment. PBEsol is in excellent agreement
with the experimental lattice constant. Thus PBEsol corrects
the LSDA underestimation and the PBE overcorrection to
LSDA for lattice constants; in addition, the PBEsol bulk
modulus deviates by less than 3% from experiment, while
the LSDA and PBE are off by 11% and 12%, respectively.
This is an example of PBEsol meeting its purpose, as it
improves the PBE lattice constant and bulk modulus for
the cubic phase, approaching very closely the experimental
data.

Turning now to the functional sensitivity to basis set size,
we observe from the HSE06 results that the SZVP basis
set predicts bond lengths that are very slightly shorter than
the TZVP and a bulk modulus that is 6% higher. As such,
SZVP predicts SrTiO3 to be 14% harder than experiment. P2
behaves in the opposite direction, predicting slightly longer
bonds when compared to TZVP, while the bulk moduli are
only 1 GPa higher. From Table II, this sensitivity of HSE06
to the smaller basis set can be generalized to M06L, revTPSS,
and the semilocal functionals LSDA, PBE, and PBEsol.

Finally, it should be noted that PBEsol results offer the best
agreement with experimental structural properties58 of SrTiO3

among all the studied functionals with the TZVP basis set,
followed by the screened hybrid HSE06 and the meta-GGA
revTPSS.

B. Electronic properties of cubic SrTiO3

The computed electronic properties of SrTiO3 are sum-
marized in Table III. As expected, HSE06 gives an excellent
estimate of the electronic properties when used with the large
TZVP basis sets. Deviations from the experimental values are
0.16 eV for the direct gap and 0.05 for the indirect gap. A
cursory glance over the rest of Table III indicates that no other
functional was comparable to HSE06’s efficacy for band gaps,
i.e., everything else we tried had much larger errors.

The middle-range-screened hybrid HISS tends to overes-
timate the direct and indirect band gaps by 0.35 and 0.73
eV, respectively. M06L and revTPSS tend to underestimate
both band gaps, by an average of ∼1.2 and ∼1.4 eV,
respectively. The semilocal functionals LSDA, PBEsol, and
PBE underestimate the experimental band gaps by an average
of 45% or 1.5 eV. This was expected, and is in agreement with
the behavior observed earlier in the literature for this system.23

It can be easily seen from these results that HSE06 is the best
functional choice for investigating this system.

Turning to basis set sensitivity, it can be seen from the
HSE06 numbers that band gaps are nearly unaffected by using
the smaller SZVP basis sets, but when used with the still
smaller P2 basis set, direct and indirect band gaps increase
by ∼0.25 eV versus TZVP. The predicted direct band gap
becomes closer to experiment when using P2 and HSE06,
probably due to a cancellation of errors effect, while the
indirect band gap is noticeably worse. This same sensitivity
holds for almost every other functional, with SZVP and TZVP

TABLE III. Direct and indirect band gaps computed for Cubic SrTiO3 using different basis sets and functionals compared to experiment.

HSE06 HISS M06L revTPSS LSDA PBE PBEsol Experiment

Direct gap (eV) 3.75a

TZVP 3.59 4.39 2.51 2.24 2.08 2.11 2.10
SZVP 3.59 4.45 2.53 2.28 2.12 2.14 2.14
P2 3.80 4.56 2.63 2.52 2.34 2.33 2.34
Indirect gap (eV) 3.25a

TZVP 3.20 3.98 2.09 1.87 1.75 1.74 1.75
SZVP 3.18 4.03 2.10 1.89 1.76 1.75 1.76
P2 3.46 4.22 2.24 2.17 2.04 1.99 2.02

aReference 65.
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giving about the same band gaps and P2 opening the band gaps
up by a few tenths of an eV. M06L appears to be slightly less
sensitive; no obvious reason for this exists.

C. Stability of the AFD phase of STO

In this section we use the various functionals and basis
sets previously tested for the cubic phase to examine the
stability of the AFD phase of STO. The functional and basis
set combinations tested face the challenge of predicting the
AFD octahedral rotation angle, θ , as well as the tetragonality
parameter c/a, which as shown in Sec. I is not trivial. The
performance of each functional with TZVP is presented, and
then an analysis of the functional’s sensitivity to the smaller
basis sets is presented in turn.

Figure 2 shows that the screened hybrid functional HSE06
is excellent for the structural properties of AFD, as it was for
the cubic phase. Both the rotation angle θ and the c/a ratio are
in very good agreement with experiment. These properties are
not significantly affected when SZVP is used, but HSE06 with
P2 predicts a very very small angle for the AFD phase, while
retaining a good c/a. This is one area where TZVP noticeably
outperforms P2 with HSE06.

HISS and revTPSS behave like HSE06 for both TZVP and
SZVP, giving a good estimate of both order parameters. How-
ever, they demonstrate a higher sensitivity to the smaller P2
basis set and required the use of a very stringent convergence
criterion to finally relax the structure back to a pseudocubic
phase with θ ≈ 0. On the other hand, M06L predicts the AFD
phase to be unstable, and relaxes to a nonrotated structure
regardless of the basis set used.

The semilocal functionals LSDA, PBEsol, and PBE all
overestimate the tetragonality of the AFD phase by predicting
θ and c/a almost twice the size of the experimental results.
The highest overestimation was observed for the LSDA,
followed by PBEsol then PBE. Note that our result here is
in excellent qualitative agreement with the behavior found in
the plane-wave calculations of Wahl et al.;23 quantitatively,
however, the LSDA, PBEsol, and PBE octahedral angles with
TZVP are 25%–30% lower than the plane-wave results23–26

(for a detailed numerical comparison see Table IV, and
Ref. 23 has additional comparison with experiment). Similar
behaviors have been recently published24,75 for LSDA and
PBE calculations with finite-range numerical atomic orbitals.
This indicates that localized basis sets tend to reduce the
AFD octahedral rotation compared to plane waves but do not
succeed in suppressing the DFT overestimation.

When used with the SZVP basis sets, the LSDA, PBE,
and PBEsol rotation angles are larger than the TZVP ones.
Furthermore, when LSDA, PBEsol, and PBE are used with
the P2 basis set, we observe a small and coherent reduction in
the octahedral rotation angle of the AFD structure compared
to TZVP results. This demonstrates that semilocal functionals
have different degrees of sensitivity to the quality of the
localized basis sets used, but the functional choice is always the
more important source of error. Thus the functionals examined
here will lead to exaggerated AFD θ values for all basis sets
considered.

V. DISCUSSION: PHYSICAL PROPERTIES OF STO

Before talking about specific issues, there are a few general
conclusions we can reach from examining the results in Sec. IV

(1) HSE06-P2 did a good job in describing accurately the
structural properties for the cubic phase as well as providing
a descent estimation of the band gap. However, its failure to
correctly model the structure of the AFD phase indicates that it
must be abandoned as a useful combination for this and related
systems.

(2) HSE06-SZVP has the drawback of predicting a stiffer
SrTiO3 in the cubic phase, although it predicts electronic
properties as well as TVZP. It also predicts a stiffer AFD
structure, but the octahedral angle and c/a parameters are
very good.

(3) HSE06-TZVP gave the best agreement with experiment
for the cubic phase and for the AFD phase. It is definitely the
most reliable combination of functional and basis set among
all studied variations. Thus HSE06-TZVP can be used with
confidence on more complicated structures, as well as to
understand the change in the electronic structure during the
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FIG. 2. (Color online) Performance of different functional and basis set combinations in predicting the order parameters of the AFD phase
transition in STO. Dashed lines depict the experimental octahedral angle measured at 4.2 K from Ref. 11 (left) and the tetragonality parameter
obtained at 50 K from Ref. 12 (right).

115122-6



MODELING OF THE CUBIC AND ANTIFERRODISTORTIVE . . . PHYSICAL REVIEW B 84, 115122 (2011)

TABLE IV. Structural and electronic properties of the antiferrodistorsive phase of SrTiO3 compared to previously simulated data and
experiments. a∗ and c∗ are the lattice parameters of the AFD supercell and c/a = c∗/

√
2a∗. �E = Ecubic − EAFD represents the gain in total

energy after the cubic to AFD phase transition, while �Eg denotes the corresponding increase in the band gap.

LSDA PBE PBEsol HSE06 HISS revTPSS M06L Experiment

a∗ (Å)
Present 5.449 5.568 5.500 5.515 5.448 5.543 5.551 5.507f

Ref. 23a 5.440 5.562 5.495 5.515
Others 5.566b

c∗ (Å)
Present 7.727 7.900 7.812 7.809 7.772 7.846 7.862 7.796f

Ref. 23a 7.755 7.897 7.818 7.808
Others 7.908b

(c/a − 1) × 10−4

Present 27 32 44 12 14 7.6 7 10f

Ref. 23a 80 40 60 10
Others 40e 46b

θ (deg)
Present 4.14 3.54 3.81 2.01 1.92 2.01 0 2.01 ± 0.07f

Ref. 23a 6.05 4.74 5.31 2.63 2.1g

Others 8.40c,6d 4.9b

4e

�E × 10−5 (eV)
Present 1796 854 44 35 578 258 122
Ref. 23a 1900 700 1100 200
Indirect band gap (eV)
Present 1.820 1.787 1.808 3.227 3.995 1.890 2.060 3.246h

Ref. 23a 1.970 1.790 1.930 3.110 3.160i

�Eg (meV)
Present 75 49 58 27 15 15 30 50j

Ref. 23a 160 10 110 40

aPlane-wave calculation using a different HSE screening parameter.
bReference 24, plane-wave data.
cReference 26.
dReference 25.
eReference 75 using numerical atomic orbitals.
fReference 12 (at 50 K).
gReference 11 (at 4.2 K).
hReference 73.
iReference 74.
jReference 73 difference between 85 K and 8 K measured gaps.

cubic to AFD transition for this system. More concisely, we
believe that this combination is an accurate enough functional
in a good enough basis set to explain phenomena in metal
oxides.

A. Band structure alteration by the AFD phase transition

The band structure of the cubic unit cell of STO computed
with HSE06 and TZVP is shown in Fig. 3, with the high-
symmetry points � = (0,0,0), X = (0, 1

2 ,0), M = ( 1
2 ,

1
2 ,0), and

R = ( 1
2 ,

1
2 ,

1
2 ) labeled, in the first Brillouin zone of the simple

cubic system. The dashed line depicts the Fermi level lying at
the valence band maximum at the R point.

Our band structure agrees qualitatively with previous band
structures from LSDA-PW calculations, which can be seen
(for example) in Fig. 5 of Ref. 26, as well as the B3PW-P2
band structure in Ref. 34, Fig. 2(a), with the exception of a
few details. Our direct band gap (� → �) of 3.59 eV and

-6

-4

-2

0

2

4

6

8

10

12

R

E
ne

rg
y(

eV
)

ΓMXΓ X

FIG. 3. Band structure of cubic SrTiO3 unit cell calculated with
HSE06 and TZVP. The dashed line depicts the Fermi level lying at
the valence band maximum (R special point.)
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indirect gap (R → �) of 3.2 eV are in better agreement with
experiment65 compared to the underestimation observed in the
LSDA-PW gaps and the overestimation found with B3PW-
P2. Thus for a DFT approach, this diagram is the best band
structure to date to our knowledge. [An even more accurate
band structure was computed using the experimental lattice
constant of SrTiO3 by mean of a post-LSDA quasiparticle
self-consistent GW (QSGW) correction to the band structure
by Hamann and Vanderbilt.76]

Figure 4 shows the total density of states (DOS) of the
unit cell as well as the projected density of states (PDOS)
on every atomic orbital. The PDOS of oxygen represents the
sum of the contributions of all three oxygen atoms in the
cubic unit cell. In the energy window shown here, the DOS is
dominated by oxygen 2p, titanium 3d, and strontium 4d states.
(All the remaining orbitals have a negligible contribution,
so their PDOSs are not shown.) The valence band (VB)
from 0 to −6 eV is dominated by oxygen 2p states, with a
small contribution from titanium 3d states in the range −3
to −6 eV. The conduction band (CB) is clearly dominated
by titanium 3d in the energy range 3.2–7 eV, with a smaller
contribution coming from the three oxygen 2p states as well.
The admixture in the VB and CB between the titanium 3d

and oxygen 2p orbitals demonstrates that the Ti–O bonds
have a partially covalent character with a small degree of
hybridization. (This behavior has been noted in previously
published data.26) Between 7 and 9 eV, the spectrum is the sum
of contributions from oxygen 2p, titanium 3d, and strontium
4d orbitals. The higher-energy region in the CB (9–12 eV) is
dominated by strontium 4d orbitals with small contributions
from titanium 3d and with oxygen 2p vanishing at around
10.5 eV.

Figure 5 compares the total electronic densities of states
for the cubic and AFD supercells. As a general trend, the
cubic to AFD phase transition does not lead to a significant
modification in the total DOS; both the valence and the
conduction bands experience a slight shift to higher energies
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FIG. 4. (Color online) Total electronic density of states (DOS) of
cubic SrTiO3 unit cell calculated with HSE06 and TZVP. Projected
densities of states (PDOSs) of the main contributing atomic orbitals
are also shown.

together with some small modifications. However, the VB
shift does not affect the peak at the VB maximum, while a
very small shift to higher energies is observed for the CB
minimum, indicating that the band gap increase by ≈27 meV
after the transition. This same behavior holds for all the
functional and basis set combinations tested, and is in line
with some experimental observations74 reporting very small
changes in their measured band gaps due to the cubic to
tetragonal structural transition. Further confirmation of this
physical effect can be seen in recent photoluminescence
measurements,73 which reported that the band gap increased
by 50 meV when the temperature decreased from 85 to 8 K,
which is a temperature range over which the AFD rotation
would go from incomplete to nearly total.

A more detailed comparison between the PDOS for each
atomic orbital can give a better understanding of the origin of
these modifications (see Fig. 5). It is important to mention that
in the AFD supercell, there is one nonrotating O1 atom and two
rotating O2 oxygens for every Sr and Ti atom. Concentrating
on the oxygen 2p orbitals, we observe that the nonrotating
O1 atoms are nearly unchanged in the PDOS compared to the
cubic phase, with the exception of a tiny shift to higher energy
(not shown here for sake of simplicity), which can be attributed
to the elongation of the cell along the z axis. However, the O2

demonstrate a much more significant shift to higher energies,
along with changes in the height and width of some peaks.
This is mainly caused by the octahedral rotation involving O2

atoms. The titanium 3d and strontium 4d spectra experience
the same aforementioned shift to higher energies in the VB
and the CB due to the elongation of the lattice, with a few
noticeable changes in the titanium 3d spectrum at −2.9 as well
as between 5 and 6.5 eV. Most of the modifications observed
in the total DOS, with the exception of a few, originate from
the changes in the O2 2p and Ti 3d spectra with the O2 being
far more important.

B. The effect of the HSE screening parameter ω

Relying on the assumption that plane waves are much
closer to the infinite basis set limit than the Gaussian basis
sets we used, it is useful to compare our HSE06-TZVP
results with the HSE plane-wave results. To our knowledge,
only Wahl et al.23 have published data using plane waves
and a Heyd-Scuseria-Ernzerhof39,40,49 style screened Coulomb
hybrid density functional for this system. However, a direct
comparison with our present data is not possible because Wahl
et al. used a different screening parameter in their calculations.

Briefly, the HSE functional partitions the Coulomb poten-
tial into short-range (SR) and long-range (LR) components:

EHSE
xc = 1

4EHF,SR
x (ω) + 3

4EPBE,SR
x (ω)

+EPBE,LR
x (ω) + EPBE

c . (1)

The screening parameter ω defines the separation range, as it
controls the distance at which the long-range nonlocal inter-
action becomes negligible, i.e., it “turns off” exact exchange
after a specified distance. Wahl et al. used ω1 = 0.159 a.u.−1,
effectively using an HSE-style functional, but not either of
the functionals HSE03 or HSE06.77 Krukau et al.49 applied
HSE while varying ω in the range 0.11� ω � 0.20 to a
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FIG. 5. (Color online) Modification in the total and partial atomic electronic densities of states of SrTiO3 upon the cubic to AFD phase
transition.

number of bulk metals and semiconductors. They concluded
that a small increase of ω substantially lowers the calculated
band gaps and the smaller the value ω takes in this range,
the closer the calculated band gaps and lattice constants
are to the experiment. Based on the above, Krukau et al.49

recommended ω2 = 0.11 a.u.−1 for both the HF and PBE
parts of the exchange. This is the value we used in all our
calculations, and this value is part of the formal definition of
HSE06. However, in order to make a comparison between our
HSE(ω2)-TZVP and the HSE(ω1)-PW data of Wahl et al., we
must perform a HSE and TZVP calculation with ω1 and isolate
the screening parameter effect on the calculated properties of
SrTiO3.

Table V shows that the HSE(ω1)-TZVP lattice constant
and bulk modulus change very slightly on decreasing the
screening parameter from ω1 to ω2: the changes are 0.001 Å
and 1 GPa, respectively. A much more significant effect is,
however, observed for the band gaps: decreasing the screening
parameter by 50% (ω1 → ω2) leads to an increase in the
band gaps, effectively a rigid shift of 0.22 and 0.24 eV for
the direct and indirect band gaps, respectively. If examined
from the other direction, decreasing the screening parameter
from ω1 to ω2 (with HSE and TZVP) tends to bring the band
gaps closer to the experiment (see Table V), which suggests
that ω2 provides better agreement with experiment than does
ω1. The same structural changes and band gap shifts were
also found for the small basis sets SZVP and P2, which
are not presented here and which demonstrate that this effect
is completely independent of the basis set used. Finally, the

HSE(ω2)-TZVP band gaps are very close to the HSE(ω2)-PW
values we estimated, suggesting that our TZVP basis set is
very close in quality to the previously used plane waves, and
thus is closer to the basis set limit.

This section contains one of the most important results
of this paper, which as such should be clearly restated. If
we use the same version of HSE used in plane-wave studies,
we can show that our TZVP is a high-quality basis set as it
matches the excellent plane-wave results. If we use the proper

TABLE V. Variation of the cubic STO lattice parameter (a0 in
Å), bulk modulus (B in GPa), and direct (Ed

g ) and indirect (Ei
g)

band gaps (in eV) on decreasing the HSE screening parameter from
ω1 = 0.159 a.u.−1 to ω2 = 0.11 a.u.−1. Results are from our Gaussian
basis set (TZVP) and the plane-wave (PW) calculations in Ref. 23.

Gaussian PW
ω1 −→ ω2 ω1 −→ ω2 Experiment

a0 3.903 3.902 3.904 3.903e 3.890a, 3.900b

B 192 193 192 193e 179a, 179±4.6c

Ed
g 3.37 3.59 3.47 3.67e 3.75d

Ei
g 2.96 3.20 3.07 3.27e 3.25d

aReference 58.
bReference 66.
cReference 67.
dReference 65.
eEstimated values if ω2 = 0.11 a.u.−1 was used in plane-wave
calculations of Ref. 23.
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TABLE VI. Our most converged direct (Ed
g ) and indirect (Ei

g)
band gaps (in eV) for cubic STO alongside previously published
hybrid functional results done with the P2 basis set. Original regular
hybrid data (Ori) and the corrected data (Corr) according to the basis
set sensitivity effect deduced in Sec. IV B.

Ed
g Ei

g

Functional/basis Ori. Corr.estimated Ori. Corr.estimated

Expt. (Ref. 65) 3.75 3.25
Present HSE06/TZVP 3.59 3.20
Ref. 34 B3PW/P2 3.96 3.74 3.63 3.35

B3LYP/P2 3.89 3.67 3.57 3.30
Ref. 78 B3PW/P2 4.02 3.80 3.70 3.42
Ref. 20 B3PW/P2 – – 3.63 3.35
Ref. 79 B1-WC/P2a 3.91 3.57

aP2 basis set with all electrons for Ti; basis set correction cannot be
applied.

ω in HSE with our basis set, we arrive at the best results and
smallest errors versus experiment ever reported for SrTiO3, to
our knowledge.

Finally, it should be noted that this is not an ad hoc
parametrization of ω to give the best results for this study. We
were able to obtain results that closely match experiment by
using a demonstrably high-quality basis set and a parameter
in the density functional determined by a large test bed of
structures and properties.49

C. Screened hybrids compared to regular hybrids

Table VI summarizes the calculated band gaps of HSE06
with TZVP and compares them with previously published
gaps computed with the regular hybrids B3PW and B3LYP,
done with the P2 basis set. There are noticeable differences
between the results of HSE06 and the regular hybrids, with
HSE06-TZVP giving band gaps very close to experiment
while regular hybrids used with P2 overestimate the gap,
especially the indirect band gap. The band gap overestimation
is of the same magnitude as we observed in Sec. IV B for
HSE06 with P2 as well as all the other functionals tested on
STO with P2. This suggests that P2 is also behind the band
gap overestimation in the regular hybrids data reported in the
literature.20,34,78 By comparing the P2 and TZVP band gaps
from Table III, we can deduce that the P2 basis set has the effect
(versus a large basis set) of increasing the direct and indirect
band gaps by average values of 0.22 and 0.28 eV, respectively.
By applying this P2 → TZVP basis set correction to the
regular hybrid B3PW-P2 and B3LYP-P2 the original band
gaps (see the corrected values in Table VI), the original band
gaps are brought closer to the experimental values, and thus
closer to the HSE06-TZVP results as well. Consequently,
differences in the computed electronic properties of HSE06
and B3PW and B3LYP are considerably attenuated and this
suggests that the screened hybrid HSE06 is comparable in
accuracy with regular hybrids for STO, while being much
more computationally efficient.

The final issue to discuss is the comparison of the structural
and elastic properties of STO computed with HSE06 versus
regular hybrids. Perovskite crystals in the cubic structure have

TABLE VII. Calculated elastic constants with HSE06-TZVP for
cubic STO compared to experiment and previously published results
with the regular hybrid functional B3PW and the P2 basis set from
Ref. 34. a0 is in Å, B, C11, C12, and C44 are in GPa.

a0 B C11 C12 C44

HSE06-TZVP 3.902 193 351.4 113 137.3
B3PW-P2 3.900 177 316 92.7 120.1
B3LYP-P2 3.940 177 328.3 105.7 124.6
Expt. 3.890a 179a 317.2 102.5 123.5b

3.900c 179±4.6d 330 105 126e

3.910 184 128f

aRef. 58
bRef. 81 at room temperature.
cRef. 66
dRef. 67
eRef. 81: maximum measured values for C11 and C44 at 133 K; C12

increases further as temperature drops.
fRef. 82.

only three independent elastic constants, namely, C11, C12, and
C44, as well as a bulk modulus:

B = 1
3 (C11 + 2C12). (2)

We calculated the elastic constants of STO using HSE06
and TVZP, following the methodology described in Ref. 80.
Ideally we would like to compare our cubic elastic constants
calculated at 0 K with low-temperature data, but experimen-
tally the cubic structure turns to a tetragonal structure below
a transition temperature, making any comparison of this kind
impossible. Experimentally, Bell and Rupprecht81 found that
the elastic constants of STO measured between 303 and 112
K obey the following empirical relations:

C11 = 334.1

[
1 − 2.62 × 10−4(T − Ta) − 0.0992

(T − Ta)

]
, (3a)

C12 = 104.9

[
1 − 1.23 × 10−4(T − Ta) + 0.1064

(T − Ta)

]
, (3b)

C44 = 126.7

[
1 − 1.30 × 10−4(T − Ta) − 0.1242

(T − Ta)

]
, (3c)

where the elastic constants are in GPa, T is the temperature, and
Ta = 108 K is the critical temperature. C11 and C44 reach their
maximum values at 133 K where STO is still cubic, and then
they start to decrease as −1/(T − Ta) in the region around the
transition temperature; in contrast, C12 continues to increase
as 1/(T − Ta) in the same temperature range.

Since we do not know at what temperature the change
from the cubic to tetragonal phase begins to take place, it is
better to limit our comparison to data measured at 133 K and
above. Table VII summarizes our results and compares them
with experiment as well as previously published results with
B3PW-P2 and B3LYP-P2. HSE06-TZVP provides excellent
lattice constants but predicts the bulk modulus to be 8% higher
than experiment. The elastic constants from HSE06-TZVP
overestimate the experimental data at room temperature by
10% and the 133 K data by 6%; this was expected given the
overestimation of the bulk modulus. The B3PW hybrid also
gave very good lattice constant and bulk modulus, but the
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calculated elastic constants are lower than the room- and the
low-temperature experimental values. B3LYP predicted a lat-
tice constant higher by 1% and a good bulk modulus, and offers
the best agreement with the low-temperature elastic constants.
In summary, none of the screened or regular hybrids considered
was able to give simultaneously excellent bulk moduli and
elastic constants; still the combination HSE06-TZVP offers
the best compromise between efficiency, accuracy, and speed.

VI. CONCLUSION

We used the ab initio code GAUSSIAN to simulate the prop-
erties of SrTiO3 using a large spectrum of functionals, from
LSDA, GGAs (PBE and PBEsol), and meta-GGAs (M06L
and revTPSS) to modern range-separated hybrid functionals
(HSE06 and HISS), assessing their ability in predicting the
properties of the cubic and the AFD phases of STO.

We found that pure DFT functionals tend to overestimate
the octahedral rotation angles of the AFD phase, in agreement
with previously reported results in the literature using plane-
wave basis sets of comparable quality.23 Also, basis sets
of low quality tend to inhibit the tetragonality of the AFD
phase and sometimes even suppress it, regardless of the
functional used. We therefore constructed a localized basis
set of sufficient completeness (or size) to correctly simulate
the TiO6 octahedral rotation and the cubic phases of STO.
We also evaluated the band gap errors arising from the use of
the P2 basis set and from the magnitude of the HSE screening
parameter ω. By applying our basis set and ω corrections to the

previously published work with regular and screened hybrid
functionals on STO, we showed that the discrepancies between
published simulated data can be explained and that hybrid
functionals used with sufficiently big Gaussian-type basis sets
can give results comparable with plane-wave calculations and
in excellent agreement with experiment.

The screened hybrid functional HSE06 predicts the elec-
tronic and structural properties of the cubic and AFD phases
in very good agreement with experiment, especially if used
with the high-quality basis set TZVP. HSE06-TZVP is the
most reliable combination of functional and Gaussian basis
set for STO which is computationally tractable with the
current computer power. It is accurate enough to enable us
to understand the changes in the band structure during the
cubic to AFD phase transition. The success of HSE06 with
TZVP encourages its use on more complicated cases like
bond breaking and overbinding and defect formation, where
the basis set completeness is expected to play a major role.
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