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We investigate the boundary effect of the density matrix renormalization group calculation (DMRG), which
is an artifactual induction of symmetry-breaking pseudo-long-range order and takes place when the long-range
quantum fluctuation cannot be properly included in the variational wave function due to numerical limitation.
The open boundary condition often used in DMRG suffers from the boundary effect the most severely, which is
directly reflected in the distinct spatial modulations of the local physical quantity. By contrast, the other boundary
conditions such as the periodic one or the sin2-deformed interaction [A. Gendiar, R. Krcmar, and T. Nishino, Prog.
Theor. Phys. 122, 953 (2009)] keep spatial homogeneity, and are relatively free from the boundary effect. By
comparing the numerical results of those various boundary conditions, we show that the open boundary condition
sometimes gives unreliable results even after the finite-size scaling. We conclude that the examination of the
boundary condition dependence is required besides the usual treatment based on the system size or accuracy
dependence in cases where the long-range quantum fluctuation is important.
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I. INTRODUCTION

The density matrix renormalization group (DMRG) pro-
posed by White1 is by now one of the most powerful
numerical tools to determine the ground states and low-energy
excitations2,3 of the correlated quantum many-body systems in
low dimensions. Accumulated studies revealed that the DMRG
has advantages when the system is not critical (gapped),
where one could effectively reduce the number of basis states
without sacrificing the numerical accuracy. The open boundary
condition (OBC) usually used in the DMRG analysis also
works to reduce the number of bases, which was pointed out
by White in the first stage.1 In fact, compared to the periodic
boundary condition (PBC), OBC has a smaller number of joint
points between the blocks (subsystems) than PBC (one and
two points, respectively), and thus has smaller entanglement
entropy which follows a concept of area law:4 the smaller
the size of the boundary between the two blocks, the smaller
the entanglement entropy one finds between them. However,
one shall have to be careful in this context because the existence
of the open edge points does not only indicate the reduced
entanglement, but means the breaking of the translational
symmetry which leads to two artifacts in critical (gapless)
systems. One is to favor a particular fraction of ground-state
manifolds which are equivalently degenerate in the bulk limit.
The other is to mix partially the states which have different
symmetric properties from the ground-state manifold. The
former effect does not modify the ground-state nature (only
chooses a pure state) and is equivalent to introducing the
infinitesimal symmetry-breaking field in large systems (see
Sec. II A for details). However, the latter may sometimes
allow some low-energy excited state to overwhelm the original
ground state. For example, when the correlation length is
longer than the typical system size, the oscillation induced
by the open boundary may open an apparent gap, particularly
when the number of states kept is not large enough. This is
what we call the “boundary effect.”

The portion of boundary is order 1 while the system is
order L, and by the finite-size scaling, the boundary effect is

expected to decay faster than 1/L on an average. Therefore, by
the proper finite-size scaling, one could in principle get rid of
the boundary effect, and the correlation with the largest length
scale is considered to be the one characterizing the ground
state. In fact, one can take advantage of the OBC in order to ex-
amine the nature of orders or correlations: Due to the boundary
edges, the wave function loses the translational symmetry, and
the two-point correlation of the largest length scale explicitly
appears as a spatial modulation of local physical quantities.
This treatment was actually applied to DMRG by the present
authors. In the one-dimensional Kondo lattice model (KLM)
the two open edges are regarded as impurities which induce the
Friedel oscillations, and by measuring the structural factors of
the charge or spin amplitudes, the authors detected the wave
numbers, 2kF or 4kF , of the Tomonaga-Luttinger liquid state.5

Also in two dimensions, the competition of several different
types of long-range orders with different spatial periodicity
is detected by the spatial modulation of particle density in
the fermionic model on an anisotropic triangular lattice under
the chemical potential on system edges.6 Such analysis is,
however, applicable only when the basic nature of the ground
state is already understood; namely, it clarifies the details of the
already known (stable) ground state but not the ground state
itself. Moreover, the analysis requires a set of results with
high enough accuracy as well as a parameter region where the
scaling law is safely adopted. Once either of the above two is
not fulfilled, one may no longer obtain a reliable result, which
is often the case in DMRG, since there is an upper bound of
the number of states kept, in practice.

The present paper discusses how to classify systematically
the state which does or does not break any symmetry of the
original Hamiltonian within a usual numerical accuracy of
DMRG. We examine how the critical behavior of quantum
many-body states at finite system size is influenced by the
boundary condition by choosing two characteristic examples:
a well-known symmetry-broken long-range order in a spin
chain, and strongly correlated electronic states with extremely
long correlation length. We consider the modified or deformed
OBC, as well as PBC, and demonstrate that the expectation
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value of the local operator depends severely on boundary
conditions so that they cannot be a reliable measure. We
finally see that in order to conclude the presence of long-range
order, it is necessary to confirm that the two-point correlations
remain finite toward the bulk limit irrespective of the boundary
conditions.

II. BOUNDARY CONDITIONS

A. Symmetry-breaking long-range orders

We consider a class of long-range orders due to translational
symmetry breaking; i.e., the order operators do not commute
with the quantum Hamiltonian of crystals which usually keeps
the translational symmetry. It is known that even when such
spontaneous symmetry breaking occurs in the bulk limit,
quantum fluctuation “obscures” the breaking of symmetry at
finite system size and one finds a unique ground state with
perfect symmetry.7,8

Let us briefly follow the contexts of Ref. 7 by Koma and
Tasaki, which is based on two different kinds of measures,

ms = lim
B→0

lim
L→∞

ms(B,L),

ms(B,L) = 1

L

〈∑
i

Oi(B,L)

〉
, (1)

σ = lim
L→∞

σ (L),

σ (L) = 1

L

√√√√〈[∑
i

Oi(B = 0,L)

]2〉
, (2)

where 〈Oi(B,L)〉 is the expectation value (trace) of local
operator Oi(B,L) on the ith site under the symmetry-breaking
field B and for system size L. Hereafter, we use mere
Oi as the one with B = 0 and finite L except otherwise
noted. In the Heisenberg antiferromagnet, ms is the staggered
magnetization obtained by applying the infinitesimally small
symmetry-breaking field, B → 0, whereas the latter is the
conventional long-range order parameter which consists of
two-point correlation functions, 〈OiOj 〉, between sites i and
j . Koma and Tasaki proved that

ms � rσ (3)

holds for constant r at all temperature for various types of
models with long-range order [r = 1 holds in general, but a
higher symmetry gives stronger bounds, e.g., r = √

3 for the
SU(2) Heisenberg antiferromagnet7,9]. Here, σ > 0 means that
the two-point correlation function does not decay to zero in the
bulk limit, 〈OiOj 〉 �= 0 for |i − j | → ∞. Therefore, Eq. (3)
indicates that σ > 0 guarantees the existence of symmetry
breaking represented by ms > 0.

We now interpret Eq. (3) to the numerical analysis on a
finite-size system at zero temperature. Note that the following
Eqs. (4)–(7) and conditions (I)–(III) are conjectures, which
are derived logically in the following part of this section.
Since the finiteness of the system is characterized by the
presence of boundaries, we first discuss the role of boundary
conditions. When the system does not have any open edges,
e.g., periodic (PBC) or antiperiodic (APBC) boundaries, the
translational symmetry in the Hamiltonian “obscures” the

breaking of translational symmetry at finite L, and we find
〈Oi(L < ∞)〉pbc = 0. Thus we need to include the infinites-
imal symmetry-breaking field B, or analyze the two-point
correlation function σ (L)pbc, which coincides with σ in the
limit of large L: limL→∞ σ (L)pbc = σ .

In the case of open boundary condition, the coupling
between the 1st and the N th sites in PBC is missing and
the translational symmetry is broken in the Hamiltonian. This
works to discriminate the two edge bonds energetically from
the rest of the bonds in the system, which approximately
corresponds to placing the effective external field on the edge
bonds.10 Such effective local field induces oscillation of local
correlations, which is absent in PBC.

We basically confine ourselves to the case where the period
of the oscillation is compatible with the interval between
edge bonds; e.g., if the induced oscillation has twofold
periodicity, the number of bonds, L − 1, must be odd. Then the
open boundary condition corresponds to a locally introduced
symmetry-breaking “field,” Bob, which is coupled to the local
operator Oi = oi+1oi+2 − oioi+1 at the edge sites, i = 1 and
N , where oi is the operator acting on the ith site. The effect of
Bob decays as it propagates toward the system center from
both edges, which is reflected in the gradual decrease of
the oscillation amplitude of 〈Oi〉 with i → N/2. Then, we
expect ms(L)obc � ms . The two-point correlation functions
〈OiOj 〉obc are those under the effective symmetry breaking
“field,” so that we shall find σ (L)obc � σ .

Basically the portion of boundary is order 1 while the
system is order L, and taking the limit of L → ∞ corresponds
qualitatively to having Bob → 0 as in Eq. (1). Thus both of the
above two boundary conditions (PBC and OBC) lead to the
same conclusion,

ms = lim
B→0

lim
L→∞

ms(B,L)pbc (4)

= lim
L→∞

ms(B = 0,L)obc, (5)

σ = lim
L→∞

σ (L)pbc (6)

= lim
L→∞

σ (L)obc, (7)

with ms � σ . We therefore conclude that when σ > 0, we
always find ms > 0.

However, the numerical approximation, e.g., restricting the
number of basis to m in DMRG, sacrifices the inclusion of
long-range quantum fluctuation to some extent. The OBC does
not only work as an “effective symmetry-breaking field,” but
its locality induces a nonuniformity of the quantum fluctuation
and mixes the states which have different symmetry from
the original pure state. While such additional effects may
be weakened as L → ∞, incomplete long-range quantum
fluctuations sometimes cause harmful effect on the original
ground-state symmetry as we will see shortly. Therefore, the
practical procedure to systematically get rid of the artifact of
the boundary condition is required.

The above-mentioned nonuniformity under OBC is re-
flected in 〈Oi〉 and 〈OnOn+i〉, and their deviation from the
one in the uniform system is enhanced near the open edges.
Since we need to analyze the systematic behavior of these
quantities in large systems, we examine them at each site
i and n instead of taking their mean value over the whole
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system as in Eqs. (1) and (2). Then, those of site i and
n away from the edges are adopted which should fulfill
limL→∞〈Oi〉 � r limL→∞〈OnOn+i〉 as in Eq. (3).

With this in mind, we propose the necessary conditions the
numerical results must fulfill in order to safely conclude the
breaking of translational symmetry in the bulk limit:

(I) the two-point correlation function 〈OnOn+i〉 remains
finite for i → L/2, after the L and m scaling,

(II) the conclusion obtained by (I) does not depend on
the boundary conditions, including those with and without
symmetry breaking,
(III) as 〈Oi〉 of finite systems becomes uniform under the

variation of the boundary conditions, the corresponding two-
point correlation function 〈OnOn+i〉 approaches the value of
the pure state in the bulk limit.

The rest of the paper is devoted to the numerical “proof” of
this conjecture or proposal in the representative models in one
dimension.

The boundary conditions we consider are classified into
those which keep the translational symmetry and those which
do not. As a typical boundary condition of the former class,
we deal with the system with “deformed interactions” recently
proposed by Gendiar, Krcmar, and Nishino,11 as well as the
PBC and APBC. The representative condition of the latter
class is the OBC. Besides, we consider the cases referred
to as modified open boundary, which is the open boundary
with potentials on edge sites or edge bonds first adopted by
White and Huse.12 As we discussed in this section, the open
boundary works as an effective field on edges, which brings
the spacial nonuniformity of the quantum states. This artificial
effect can be suppressed by adjusting the bond strength or
potentials on edges by hand, and thus one can tune the degree
of inhomogeneity by the “modification of the open boundary.”

We finally comment on the cases where the period of
oscillation of local quantity 〈Oi〉 does not match the length of
the system L. For example, in the case of dimer order, the local
operator Oi is defined as Oi = Si+1 · Si+2 − Si · Si+1, and the
twofold periodic oscillation appears in the nearest-neighbor
spin-spin correlation. In the odd-L system with PBC, a kink,
namely a twisting oscillation, emerges in the system. Since the
PBC keeps translational symmetry, the wave function should
be the superposition of L different wave functions, each with
a kink on the ith (i = 1 ∼ L) bond. Then, 〈Oi〉 is uniform but
is suppressed from the one without a kink by the order of 1/L,
which recovers the bulk value when L → ∞.

When the system of odd L has an open boundary, this kink
is confined to the center site as 〈OL/2〉 ∼ 0. This is because
the dimer bond is pinned the strongest at both edge bonds, and
the oscillations of 〈Oi〉 starting from these strong edge bonds
interfere at the center and form a kink.13 The effect of this kink
on 〈OL/2〉 cannot be excluded by the m or L scaling, since it is
locked at the center of the system. The artifact of kink on the
value of 〈OnOn+i〉 is also nontrivial, and less easy to get rid
of compared to the usual boundary effect of OBC with even
L. We show in Sec. IV that 〈OnOn+i〉 in the dimer state with a
kink in OBC finally approaches the value without a kink with
phase shift π , which means that (II) basically holds regardless
of the presence or absence of a kink. In this sense we can judge
the presence of the dimer order even in the system of odd L

with a kink.14

In the above semiclassical picture, the kink is localized on
a single bond. However, in the quantum systems we deal with,
the kink spreads over a certain length scale due to quantum
fluctuation, and this length scale depends on the stiffness of the
dimer order. Still, if we take L enough larger than this length
scale, the same discussion holds.

B. Modified open boundary

The analysis with modified open boundary in DMRG was
first adopted in the S = 1 Haldane chain with S = 1/2 spins
on the edge sites by White and Huse.12 To evaluate the Haldane
gap of infinite systems, they adjusted the coupling, Jend,
between the S = 1/2 edge spin and the neighboring S = 1
spin, and minimized the nonuniformity of the ground state
away from the edge.

In the present paper, we start from the usual OBC and
modify the amplitude of bond interactions on both ends or
place the potential on both edge sites to analyze the boundary
condition dependence of the ground state. As for the spin
system, the bonds, Jedge, on both left and right edges are varied.
If we place the strong antiferromagnetic bond on one edge, the
singlet correlation on that edge is enhanced, and as a result,
the correlation on the neighboring bond decreases, which
enhances or reduces the inhomogeneity of the ground state. In a
similar manner, the electronic states can be tuned by modifying
the hopping energy of edge bonds, tedge, or by placing the
chemical potential on edge sites, μedge. One can minimize the
nonuniformity of the electron density by adjusting the value
of μedge. Furthermore if one uses different values of μedge

between the two edges, the conduction electrons shift to left
or right, and the position of the center of mass of electrons can
be controlled.

Besides the system with even number of L, we deal with odd
number of L to shift the center of mass of electrons smoothly
along the 1D chain in OBC and at the same time keeping
electron density constant away from the boundary. Although
the average electron filling factor ρ = Ne/L (Ne denotes the
electron number) slightly deviates from the one we have in the
even-L case, we can pin the excess electrons or holes to the
boundary by tuning the value of μedge.

C. Deformed interactions

Recently, Gendiar, Krcmar, and Nishino proposed an
unprecedented analysis to get rid of the boundary effect by
deforming the interaction strength of the system following the
sin2 function which decreases from the center toward both
ends of the system.11,18–21

In this paper we use the following deformed Hamiltonian:

H =
L−1∑
n=1

sin2

(
πn

L

)
g(n,n + 1)

+
L−2∑
n=1

sin2

(
π (n + 1/2)

L

)
h(n,n + 2)

+
L∑

n=1

sin2

(
π (n − 1/2)

L

)
u(n), (8)
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FIG. 1. (Color online) (a) Site dependence of the nearest-
neighbor correlation, 〈Sz

i S
z
i+1〉, in the S = 1/2 Heisenberg model

with OBC and sin2 deformation at L = 32 and m = 200. (b) The
functional form of the sin2 deformation in Eq. (8), and the two types
of wave function of the dimer state, ϕ1 and ϕ2, which have the same
energy.

where g(n,n + 1) is the nearest-neighbor interaction, h(n,n +
2) is the next-nearest-neighbor interaction, and u(n) includes
the on-site interaction and potential. The uniform chemical
potential, μ, is also included as u(n) which is deformed by
the prefactor and becomes nonuniform.19 Figure 1 shows the
site dependence of the nearest-neighbor spin-spin correlation
of the S = 1/2 Heisenberg model, g(n,n + 1) = J Sn · Sn+1,
under the usual OBC and under the deformation of interaction.
One finds that the usual OBC induces a twofold oscillation
which decays slowly toward the system center. The oscillation
is fully suppressed by the deformation and the local quantity
becomes site independent.

Here, we give an interpretation on these site-independent
results. Consider the system with even L = 2N . Then, one
finds the following relation:

N∑
l=1

J sin2 π (2l)

L
=

N∑
l=1

J sin2 π (2l − 1)

L
, (9)

which means that the sum of the coupling constant is the same
between even bonds (2l) and odd bonds (2l − 1) [although the
total number of even bonds with finite coupling is less than that
of odd bonds because sin2(2Nπ/L) = 0, which corresponds to
the missing bond in OBC]. Suppose that we have translational
symmetry broken dimer states with twofold periodicity, which
are represented by two different types of wave functions, ϕ1

and ϕ2, as shown in the lower panel of Fig. 1; ϕ1 consists of
dimers on even bonds and ϕ2 consists of those on odd bonds.
If either of ϕ1 and ϕ2 has lower energy than the other, that state
is selected as the ground state. However, due to the relation

in Eq. (9), ϕ1 and ϕ2 have the same energy, and thus the
translationally symmetric wave function (ϕ1 ± ϕ2)/

√
2 can be

constructed, which has the same ground-state energy. Hikihara
and Nishino recently calculated the electronic system with this
sin2 deformation and found that the overlap with the PBC
wave function is almost 1.20 This result was in fact supported
analytically for the noninteracting case.21 In the results of
the free fermionic model,11 the Heisenberg chain [Fig. 1(c)],
and J1-J2 models, which we will see shortly, the translational
symmetry is indeed recovered by the deformation. Therefore,
we consider that the sin2 deformation is a condition to have
the translationally symmetric ground state at least for simple
single-band short-range interacting systems.

III. J1- J2 MODEL

A. Dimer order

Our first step is to examine how the order operators
discussed in Sec. II A behave under the variation of boundary
conditions when the symmetry-breaking long-range order is
present in the bulk limit. For this purpose, we choose a J1-J2

model, whose Hamiltonian reads

H =
∑

j

(J1 Sj · Sj+1 + J2 Sj · Sj+2), (10)

where J1 > 0. The exact ground state at α = J2/J1 = 0.5,
which is called the Majumdar-Ghosh (MG) point, is exactly
represented by the product of local dimer states, and thus
the dimer-dimer correlation is expected to show no decay
for length scale large enough to neglect the boundary effect
induced by OBC. The existence of dimer long-range order is
established off the MG point in the region of α � 0.24.22

The nearest-neighbor spin-spin correlation operator is given
as

Di = Si · Si+1, (11)

where Si is the spin operator of site i. We use the dimer operator

Oi = Di+1 − Di = Si+1 · Si+2 − Si · Si+1 (12)

to define the order parameter σ in Eq. (2). When the
translational symmetry breaking dimer order is present,
the two-point correlation function, 〈OiOj 〉, remains finite
in the bulk limit.

B. Boundary condition dependence

We now compare the results under three different types
of boundary conditions at J2/J1 = 0.4 where the dimer
long-range order is present in the bulk limit. Figure 2 shows
the site dependence of the local operator, 〈Sz

i S
z
i+1〉 = 〈Di〉/3.

Under usual OBC, 〈Di〉 shows twofold periodic oscillation
with a large amplitude. The amplitude of oscillation is
significantly suppressed, when the modified OBC is adopted
with Jedge = 0.475J on both edge bonds. Further, by the sin2

deformation, the oscillation is almost completely suppressed
and the spatially uniform 〈Sz

i S
z
i+1〉 is obtained, which means

that the translational symmetry is recovered. In fact, this
deformation gives almost the identical results with that of the
PBC given in the same figure. In all cases, the magnitude of
|〈Sz

i S
z
i+1〉| has only small i dependence. We also plot the results
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FIG. 2. (Color online) Comparison of local correlation,〈Sz
i S

z
i+1〉,

in the J1-J2 model calculated under usual OBC, modified OBC, de-
formed OBC, and PBC, with L = 32 and m = 200. The convergence
of the results regarding the m dependence is confirmed. For modified
OBC we use Jedge = 0.475J on both ends. The results of OBC with
L = 96 is added to compare with the L = 32 one.

under OBC with L = 96 to show that the L dependence of the
oscillation amplitude is significantly small, indicating that the
distinct twofold oscillation remains after the finite-size scaling
in OBC. Therefore, there is no doubt that the extrapolated value
of 〈Sz

i S
z
i+1〉 in the bulk limit, limL→∞〈DL/2〉, depends severely

on the boundary conditions.
Next, we show two-point correlation functions, |〈OnOn+i〉|,

in Fig. 3 under the same choices of boundary conditions
used in Fig. 2. One finds that all cases almost asymptotically
approach a constant value after i � 30, in sharp contrast to the
severely boundary-dependent 〈Di〉. The slight difference for
the modified boundary condition is due to a boundary effect
of finite systems, and it almost vanishes for large n � 60
as shown in the inset of Fig. 3. From this result, one can
safely confirm that the extrapolated value of the two-point
correlation function, limi→∞ |〈OnOn+i〉|, is a reliable measure
of symmetry-breaking long-range order for any choices of
boundary conditions.

IV. KONDO LATTICE MODEL

A. Preliminary information

The next example is devoted to the Kondo lattice model,
which is one of the basic models for the heavy-fermionic
systems23 and is studied also as a prototype system to clarify
the effects of coupling of localized spins and conduction
electrons.24 The Hamiltonian in one dimension is given as

H = t
∑

j

(
c
†
jσ cj+1σ + H.c.

) + J
∑

j

Sj · sj , (13)

where cjσ denotes the annihilation operator of the conduction
electron at the j th site with spin σ =↑ , ↓, and Sj denotes the
localized spin operator with S = 1/2. sj = 1

2τ σ,σ ′c
†
jσ cjσ ′ is

the spin operator of the conduction electron with Pauli matrix
τ σ,σ ′ . The conduction electrons hop with energy t and interact

0
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J1-J2 model      J2 / J1 = 0.4

 OBC

 PBC

 PBC modified OBC
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O  
   n

  O 
    n

+
i 

n = 40
n = 40
n = 60

L = 196
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FIG. 3. (Color online) Comparison of two-point correlation func-
tions, |〈OnOn+i〉|, in the J1-J2 model with L = 196 and m = 300.
Those of usual OBC, modified OBC, and deformed OBC start from
n = 40, and the PBC one from n = 1. The convergence of the results
regarding the m dependence is confirmed. Inset shows the results of
modified OBC with n = 60 and 40.

with localized spins through the Kondo exchange coupling J .
Its ground state in one dimension is considered as a Tomonaga-
Luttinger liquid (TLL) in the weak-coupling region away from
half filling. In the strong-coupling region, each conduction
electron forms a singlet with localized spins and behaves as
a single hole, and the ferromagnetic metallic ground state is
realized.25

A few years ago, however, there was a proposal by
Xavier et al. on the possible dimer phase in the region of
J/t � 1.6 at quarter filling,26 which was originally considered
a paramagnetic TLL region. Based on the fact that 〈OL/2〉
calculated under OBC with DMRG seems to remain finite after
the size scaling, they claimed that the translational symmetry
is broken in the bulk limit. We carried out similar DMRG
study on the same model and reproduced their results, but with
different conclusions based on the analyses of the boundary
effect.27,28 In fact, the model at 0 � J/t � 1 is in a state which
is extremely difficult to analyze even by DMRG established in
one dimension.29

In the following we show in detail how the two-point
correlations as well as the local quantities behave under
the variation of boundary conditions, which has distinct
differences from those of the dimer phase in the J1-J2 model.

B. Modified open boundary

In the KLM the open boundary condition can be modified
by the chemical potential μedge = μ(1 − δ) and μδ on the left
and the right edges, respectively. The value of μ/t is tuned to
−1.6 in order to keep the density of charges at quarter filling
within the accuracy of 10−3 away from the edge sites, and δ is
introduced to shift the center of mass of electrons. Figures 4(a)
and 4(b) show the site dependencies of the bond kinetic
energy 〈c†i ci+1 + H.c.〉 and the nearest-neighbor correlation
of localized spins 〈Sz

i S
z
i+1〉 for several choices of δ.
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FIG. 4. (Color online) Spatial modulation of two local quantities,
(a) bond kinetic energy, 〈c†i ci+1 + H.c.〉, and (b) nearest-neighbor
correlation of localized spins, 〈Sz

i S
z
i+1〉, in the Kondo lattice model

calculated with usual OBC with L = 24 and modified OBC with
L = 25 with m = 600. The convergence of the results regarding the m

dependence is confirmed. For modified OBC we use μedge = μ(1 − δ)
and μδ on left and right edge site, respectively, with μ/t = −1.6.
(c) Schematic illustration of the electronic states under modified
boundary condition by the chemical potential, μedge. The size of the
shaded circles represents the density of conduction electrons.

Under the usual OBC with even L, both 〈c†i ci+1 + H.c.〉 and
〈Sz

i S
z
i+1〉 show large oscillation. The same oscillation is found

when the modified boundary is adapted to the odd-L system
with δ = 0, namely when μ is placed on only one of the edge
sites. From this result, one can understand that μ works to
pin the extra charges off quarter filling, Ne − (L − 1)/2, to
the edge site, and the rest of the system remains quarter filled.
Then, as δ is increased from 0 toward 0.5, the amplitude of
oscillation is gradually suppressed.

Figure 4(c) shows the schematic illustration of the effect
of μ and δ on edge sites. The usual OBC with an even
number of lattice sites pins the electron density to be the
bond-centered spatial modulation along the one-dimensional
chain. When the boundary is modified as 0 < δ < 0.5, the
electrons on the left and right edges have different hopping
amplitude to their neighbors, which works to displace the
spatial modulation of hoppings and to suppress the oscillation
of hopping amplitude as we find in Fig. 4(a). Since the
hopping of electrons induces correlations between the local
spins through the Kondo exchange interaction, δ also modifies
the local spin correlations as shown in Fig. 4(b). This result
raises the question of whether the oscillation of 〈Sz

i S
z
i+1〉

found in the OBC is an intrinsic property of the KLM. To
study the boundary condition dependence in detail, we next
analyze the two-point correlation function of the local spins.
Figure 5 shows the dimer-dimer correlation of the local spins
|〈OnOn+i〉|. For usual OBC, |〈OnOn+i〉| saturates toward the
finite value already at i ∼ 20, which apparently suggests the
existence of a dimer state. However, when the boundary is
modified (δ > 0), the functional form changes significantly
and starts to decay monotonously.

To examine whether the odd L of the one-dimensional chain
artificially suppresses the dimer correlation or not, we also
calculate |〈OnOn+i〉| of the J1-J2 model under both even and
odd L starting from n = 5 as in KLM, which is shown in the
inset of Fig. 5. In the case of the J1-J2 model with the true
long-range dimer order in the bulk limit, |〈OnOn+i〉| of the
odd L first decays and takes the minimum (or a dip) at around
i ∼ 12 which is near the system center, then shows an upturn,
and finally approaches the value of the even L, which is almost
an i-independent constant. The local decay (dip) of the dimer
correlation is due to the kink structure formed by the phase
shift π between the two dimer orders starting from both ends:

modified OBC 

1/4 - fillingJ/ t = 1Kondo lattice model     
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i 

= 0.5

OBC

OBC
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O  
   n

  O 
    n

+
i 

FIG. 5. (Color online) Two-point correlation functions of the
dimer operator, |〈OnOn+i〉| (for fixed n = 5) in the Kondo lattice
model with m = 600 (the m dependence is found to be negligible
for the present L’s). The usual OBC with L = 32 and modified OBC
with L = 33 for several choices of δ (μedge is the same as Fig. 4) are
compared. The inset shows the two correlation functions, |〈OnOn+i〉|,
of the J1-J2 model with usual OBC at L = 32 and 33 with n = 5, to
be compared with those of the Kondo lattice model in the main panel.
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the misfit of odd L and the twofold periodicity of the dimer
order. Since the kink is located around the center of the system,
the dimer correlation gradually decreases toward the system
center. But for long distances beyond the center of the system,
this kink is always located between the two dimer operators Oi

and Oj , and the dimer correlation increases up to its original
value with an additional phase shift by π .

Such nonmonotonic correlation function is also expected
for the KLM of odd L, if the long-range dimer order is present.
However, the results in Fig. 5 for finite δ show that the dimer
correlation monotonically decreases for long distance even for
the case of symmetric edge potentials at δ = 0.5. This result
suggests that the dimer order is not an essential property of the
KLM at quarter filling at J = 1. The large δ dependence of
electronic states [see Fig. 4(a)] and concurrently of the spatial
structure of localized spins [Fig. 4(b)] are the sign that the
electronic state is severely boundary condition dependent, and
one should analyze the finite-size scaling and its boundary
condition dependence in order to determine the bulk property
of the system safely.

C. sin2 deformation and periodic boundary

The final set of results is devoted to examining the effect of
finite size L and finite number of basis states m in DMRG under
the condition where the effect of the missing bond in OBC is
as weakened as possible. Based on the discussion in Sec. II C,
we perform the calculation under the sin2 deformation, which
reproduces the translationally invariant wave function for the
J1-J2 model.

In the KLM, we add uniform chemical potential as n-
independent u(n) which is needed to keep the electron density
at quarter filling, and deform the Hamiltonian according
to Eq. (8). Figure 6(a) shows the comparison of the site
dependence of electron density, 〈ni〉, between usual OBC
and deformed OBC. In usual OBC, the electron density
significantly deviates from 0.5 near the system boundary, and
as a result, the density around the center slightly exceeds
quarter filling. Such deviation due to the boundary effect is
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FIG. 6. (Color online) Site dependence of the electron density in
the quarter-filled Kondo lattice model at J/t = 1, under the usual
OBC and sin2 deformed OBC with L = 32 and m = 600.
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FIG. 7. (Color online) Site dependence of (a) bond kinetic energy,
〈c†i ci+1 + H.c.〉, and (b) nearest-neighbor correlation of localized
spins, 〈Sz

i S
z
i+1〉, in the quarter-filled Kondo lattice model at J/t = 1,

under the usual OBC and sin2 deformed OBC with L = 32 and
m = 600.

suppressed in the deformed case, and the electron density
becomes nearly site independent. Thus, the results of the latter
are guaranteed to be less affected by the missing bond between
the two edges.

The comparison of the local quantities of two boundary
conditions is given in Fig. 7. The oscillation amplitude of
electron hopping, 〈c†i ci+1 + H.c.〉, and the nearest neighbor
correlation of localized spins, 〈Sz

i S
z
i+1〉, are both suppressed

by the deformation of interaction. It is interesting to find that
the mean value of 〈Sz

i S
z
i+1〉 remains a positive finite value

even under the deformation. In usual OBC, 〈Sz
i S

z
i+1〉 has a

large twofold oscillation between the comparable negative
and positive values, and the local spin correlations are
characterized by classical q = π/2 antiferromagnetic state,
↑↑↓↓. However, by the comparison of the two results, one
can conclude that the antiferromagnetic correlation is only
stabilized by the boundary effect (the missing bond in usual
OBC). The remaining ferromagnetic local correlation seems
to be more intrinsic than the antiferromagnetic one in the
J/t = 1 KLM. In fact, the phase diagram given in Ref. 30
indicates that system at this parameter is very close to the
ferromagnetic phase transition.

Finally, we show in Figs. 8(a) and 8(b) the L and m

dependencies of the two-point dimer correlation function,
|〈OnOn+i〉|. The presented results show the following two
important features: The decay of |〈OnOn+i〉| is always more
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FIG. 8. (Color online) Two-point correlation functions of the
dimer operator, |〈OnOn+i〉| (for fixed n = 5) in the Kondo lattice
model. (a) Series of results under usual OBC and deformed OBC by
varying the system size L. (b) The variation of results of the deformed
OBC (L = 44) for several choices of m, to be compared with that of
the usual OBC with L = 40 and m = 600. In both panels, the result of
PBC with L = 64 (m = 600 for non-Abelian Hilbert space) is given
for comparison.

rapid for larger system size L irrespective of whether we have
usual OBC or deformed OBC. Having larger m also leads
to the rapid decay in the deformed OBC. Let us discuss the
implication of these two features. In general, the accuracy of
DMRG is guaranteed by asymptotically restricting the number
of bases m needed to reproduce the quantum states. However,
this technical advantage may sometimes bring in a by-product
when m is not taken large enough: an artificial suppression
of intrinsic long-range quantum fluctuation which is required
to suppress the boundary-induced symmetry braking. If we
focus on the value of |〈OnOn+i〉| at the particular length i in
Fig. 8(a), we always find smaller values for larger L. Since the
calculation with larger L includes the component of quantum
fluctuation with larger length scale, this fact indicates that the
dimer correlation should indeed be suppressed if the system
includes a proper long-range quantum fluctuation present in the
bulk limit. The same discussion holds for the m dependence:
by including a larger number of m, the more the fluctuation
effect is included. If such fluctuation is intrinsic, the dimer
correlation will be suppressed by the increase of m, which is
in fact the case.

Let us briefly comment on the relation of the above L and
m scaling with the entanglement entropy. In the systems with
small L and m, the number of eigenstates is limited to a small
number. This smallness generally enhances the separation of
discrete energy levels and suppresses long-range quantum
fluctuations, which severely influences the accuracy of long-
range two-point correlation functions near the critical point.
Meanwhile, the long-range quantum fluctuation generates
quantum entanglement between two regions in the system,
so that the increase in L and m enhances the entanglement
entropy. Therefore, not only the two-point correlation function
but also the entanglement entropy shall serve as a measure of
to what extent the long-range quantum fluctuation is taken into
account near the critical point. The detailed and quantitative
analysis on the relation of entanglement entropy with the
boundary effect is left as a future problem.

We finally note that the results of these L and m scaling
asymptotically approach the one under the PBC in the same
panel of Fig. 8. The |〈OnOn+i〉| of PBC clearly shows
an algebraic decay characteristic of the Tomonaga-Luttinger
liquid. As discussed in Ref. 11 (see Sec. II), the sin2

deformation is one of the ways to recover the translational
invariance, which is demonstrated in Sec. III for the J1-J2

model. To recover perfectly the translational symmetry by
the deformation in KLM at J = 1 is rather out of scope in
the present calculation, because the on-site Kondo singlet
correlation competes with the inter-site hopping, and the
applicability of the sin2 deformation is not clear. However,
even in such a difficult case, the analysis of the asymptotic
behavior of |〈OnOn+i〉| gives us the strong indication that the
true bulk property of the system approaches the one given
under PBC, and that the dimer correlation is only induced by
the boundary effect. The good coincidence of |〈OnOn+i〉| in
Fig. 5 and Fig. 8 under different series of boundary conditions
is regarded as its collateral evidence.

V. SUMMARY AND DISCUSSION

To summarize, we made a case study analysis on the density
matrix renormalization group calculation and proposed the
systematic treatment to determine whether the symmetry-
breaking long-range order exists or not. Since the two-
point correlation function in the bulk limit gives the lower
bound of the symmetry-breaking long-range order parameter
(see Sec. II A), we focused on the two-point correlation
functions and systematically studied their boundary condition
dependence. We demonstrated the calculations on the two
contrasting cases, the J1-J2 model which has dimer long-range
order, and the Kondo lattice model at quarter filling whose
ground state has not reached a consensus yet due to numerical
difficulty.

Four different types of boundaries are adopted and their
effect on the expectation values of order operators are
analyzed. In the usual OBC we always find oscillation of local
quantities, e.g., the nearest-neighbor spin-spin correlation
〈Sz

i S
z
i+1〉 or bond kinetic energy 〈c†i ci+1 + H.c.〉 oscillates

with the largest amplitude. The modified OBC relaxes the
oscillation to some extent under the variation of imbalance
between potentials on both edges. Then, the deformation
of interactions and PBC basically recover the homogeneity
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of local quantities. As the boundary effect fades out in
such a way, the two-point correlation function also shows
a systematic boundary condition dependence, and thus the
degree of inhomogeneity of the local quantities gives a measure
of to what extent the boundary effect of OBC is included in the
wave function. Therefore, by examining the correspondence
of local quantities and the two-point correlation function, one
could analyze the overall features of the boundary effect as
summarized in (III) of Sec. II A.

Such boundary condition dependence is particularly distinct
when the system is critical. When the system has symmetry-
breaking long-range order (gapped), the two-point correlation
function is insensitive to the boundary conditions. This
fact is confirmed in the J1-J2 model, where the two-point
correlation functions reach the same value after the finite-size
scaling even when the corresponding local correlations take
the significantly different value with each other. By sharp
contrast, when the system lacks a distinct gap, the boundary
condition severely affects the two-point correlation function
as we find in the Kondo lattice model:28 In OBC it seems to
behave convex upward and asymptotically approach a finite
value with increasing distance, which is easily transformed
to the algebraic decay, once either of the modified OBC,
sin2 deformation, or PBC is adopted. The boundary condition
dependence of the two-point correlation function (Figs. 5

and 8) is in good correspondence with that of the local
quantities (Figs. 4 and 7), and such boundary-dependent
behavior is clearly different from that observed in the J1-J2

model. These results show that the dimer correlation observed
in OBC is not an intrinsic property of the KLM and that
it is difficult to conclude that the symmetry-breaking long-
range order does exist at quarter filling at J/t = 1. This
fragile example which requires a difficult numerical treatment
provides us with a good lesson that numerical study, although it
sometimes becomes as rigorous as analytical techniques, may
have much analysis dependence, and one quite often needs
care to understand the intrinsic physics lying behind.

We conclude that the DMRG calculation, which is often
performed on OBC, sometimes reaches misleading conclu-
sions. While OBC is very useful to analyze the detailed nature
of the well-known ground state, we argue that to have a reliable
conclusion on the determination of the ground state itself, the
examination of the boundary condition dependence on the
two-point correlation should be performed.
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