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Two-channel Kondo physics in tunnel-coupled double quantum dots
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We investigate theoretically the possibility of observing two-channel Kondo (2CK) physics in tunnel-coupled
double quantum dots (TCDQDs), at both zero and finite magnetic fields; taking the two-impurity Anderson
model as the basic TCDQD model, together with effective low-energy models arising from it by Schrieffer-Wolff
transformations to second and third order in the tunnel couplings. The models are studied primarily using Wilson’s
numerical renormalization group. At zero field our basic conclusion is that while 2CK physics arises in principle
provided the system is sufficiently strongly correlated, the temperature window over which it could be observed
is much lower than is experimentally feasible. This finding disagrees with recent work on the problem, and
we explain why. At finite field, we show that the quantum phase transition known to arise at zero field in the
two-impurity Kondo model, with an essentially 2CK quantum critical point, persists at finite fields. This raises
the prospect of access to 2CK physics by tuning a magnetic field, although preliminary investigation suggests
this to be even less feasible than at zero field.
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I. INTRODUCTION

Over the last decade or so, quantum dot devices1 have
become increasingly important testbeds for the realization and
controlled experimental study of correlated-electron phenom-
ena. The spin- 1

2 Kondo effect2,3 is the classic example, in
which at low temperatures the spin degree of freedom of the
dot is screened as a result of tunnel coupling to metallic leads.
The rich physical behavior arising, in particular the strong
many-body enhancement of the zero-bias conductance,4–6 has
stimulated the search for related phenomena in more complex
device geometries: extensive work, both experimental and
theoretical, has uncovered a wide range of examples, including
orbital and SU(4) Kondo effects,7–11 underscreened Kondo
behavior,12–15 and several Kondo effects induced by an applied
magnetic field,16–20 to name but a few.

In this paper we consider a tunnel-coupled double quantum
dot (TCDQD).21 The system consists of two locally correlated
and mutually tunnel-coupled quantum dots, positioned in
series between two metallic leads; and tunnel-coupled to
them, such that current can flow through the system under
a voltage bias applied to the leads. Experimentally, recent
advances in nanofabrication have enabled construction of
such systems in both carbon nanotube22–26 and semiconductor
devices.21,27,28

From a theorist’s perspective, the canonical model de-
scribing TCDQDs is the well known two-impurity Anderson
model (2AIM).29–32 In a gate-voltage regime where each dot
is effectively singly occupied, the low-energy physics of the
2AIM is in turn embodied—to leading order in the tunnel
couplings under a Schrieffer-Wolff transformation33—in the
two-impurity Kondo model (2IKM).34–40 The physics of the
2IKM is immensely rich.34–40 In particular, in the absence
of an applied magnetic field, it is well known to contain
a quantum phase transition, for which the quantum critical
point is in essence a two-channel Kondo (2CK) fixed point
(FP).35,36,39–41 That in turn raises the prospect of observing
2CK physics in TCDQD systems, which recent theoretical
work42 has suggested to be potentially viable. This is a central
issue considered in the present paper.

The simplest exemplar of 2CK physics is the 2CK model,43

consisting of a single spin- 1
2 coupled via antiferromagnetic

Kondo exchange to two metallic leads, which compete to
Kondo-screen the spin and result in overscreening of it.43 In
consequence, the 2CK ground state is a non-Fermi liquid,
characterized by the stable infrared 2CK FP and exhibiting
exotic physical properties such as a residual entropy of 1

2 ln 2
(kB ≡ 1).44,45 The 2CK FP is, however, notoriously susceptible
to destabilizing perturbations:39,46,47 interlead charge transfer
in particular—as will always occur to some degree in a real
device (and is inherently contained in the 2AIM)—is well
known to destabilize the 2CK FP,39,46–50 rendering it unstable
on the lowest temperature (T ) scales. The system instead flows
ultimately to a stable strong coupling (SC), Fermi-liquid-like
FP below some characteristic low-temperature Fermi-liquid
scale.

For this reason, two-channel Kondo has experimentally
been the most elusive of the various Kondo effects (we
know of only one example51 where it is believed to have
been observed cleanly). Potential observation of it relies on
the fact that if interlead charge transfer is sufficiently small,
then a T window can at least in principle exist over which
the system flows close to the now-unstable 2CK FP—such
that non-Fermi-liquid behavior could be observed—before
ultimately crossing over to the stable SC FP. The obvious
questions then are42 under what conditions does this arise, and
are the resulting temperatures experimentally credible?

These questions are considered in the present work where,
for vanishing magnetic field in the first instance (Sec. III), we
study directly the 2AIM, together with the effective low-energy
models derived from it (under Schrieffer-Wolff) to second and
third order in the tunnel couplings; respectively, the 2IKM, and
a spin model containing the key effects of cotunneling interlead
charge transfer. We also consider for comparison the model
studied in Ref. 42, in which solely direct interlead charge
transfer is added to the 2IKM. The models themselves are
specified in Sec. II, and the numerical renormalization-group
(NRG) method52–54 (see Ref. 55 for a review) is employed to
study them, backed up by physical arguments.
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FIG. 1. Schematic of the 2AIM, as discussed in text.

In Sec. IV we consider these models when a nonzero
magnetic field is applied to the dots. For the channel-symmetric
2IKM in particular, we show that its zero-field quantum phase
transition is the terminal end point of a line of transitions
characterized by a 2CK FP. This raises the possibility that,
in the presence of sufficiently small interlead charge transfer,
2CK physics might be accessible by tuning a magnetic field;
which question is then considered. The paper ends with
concluding remarks.

II. MODELS

We begin by specifying the models considered for
TCDQDs, starting with the two-impurity Anderson model
(2AIM)29–32 as the canonical model for such.

A. Two-impurity Anderson model

The 2AIM is illustrated schematically in Fig. 1. It consists
of two single-level dots (labeled ν = 1,2, with level energies εν

and on-level Coulomb replusion U ), mutually tunnel-coupled
by a hopping matrix element t ; and with each dot tunnel-
coupled to a separate noninteracting metallic lead. The model
Hamiltonian is

Ĥ2AIM = Ĥleads + Ĥdots + Ĥhyb, (1)

where for the double quantum dot itself,

Ĥdots = Ĥε + ĤU + Ĥt

=
∑
ν,σ

ενn̂νσ + U
∑

ν

n̂ν↑n̂ν↓ + t
∑

σ

(d†
1σ d2σ + H.c.)

(2)

with n̂νσ = d†
νσ dνσ the σ =↑ / ↓-spin number operator for dot

ν. For the two equivalent leads (likewise denoted ν = 1,2),

Ĥleads =
∑
ν,k,σ

εkc
†
νkσ cνkσ , (3)

and we consider the standard case2 of a flat-band lead with
a (uniform) density of states per orbital of ρ = 1/(2D), with
D the half bandwidth; denoting the total density of states by
ρT = Nρ, with N (→ ∞) the number of orbitals in a lead.
The hybridization term coupling the dots and leads is

Ĥhyb =
∑
ν,k,σ

Vν (d†
νσ cνkσ + H.c.)

=
∑
ν,σ

√
NVν (d†

νσ fνσ + H.c.) (4)

such that dot-ν is tunnel-coupled to lead ν with matrix element
Vν ; and where

f †
νσ = 1√

N

∑
k

c
†
νkσ (5)

is the creation operator for the “0” orbital of the Wilson
chain2,52 for lead ν. Tunnel-coupling to lead ν is embodied
in the hybridization strength �ν = πρT V 2

ν . Unless explicitly
stated otherwise, we consider the case of symmetric tunnel-
coupling, �1 = �2 = �; and the zero-bias Fermi level of the
leads, EF , is taken as the zero of energy.

The effect of a magnetic field applied to the dots, which is
considered in Sec. IV, is encompassed by including

ĤB = −hŜz (6)

with Ŝz = 1
2

∑
ν(n̂ν↑ − n̂ν↓) and h = gμBB; where B is the

applied magnetic field and g is the electron g factor.

1. Symmetries

If ε1 = ε2 and �1 = �2 = � (i.e., V1 = V2), the model
is “left-right (LR) symmetric,” meaning invariant under the
transformation d1σ ↔ d2σ and c1kσ ↔ c2kσ . In addition, if
ε1 = ε2 = −U/2 (but regardless of whether or not �1 = �2),
then the model is particle-hole (ph) symmetric, i.e., invariant
under the ph transformation d

†
1σ ↔ d1σ ,d

†
2σ ↔ −d2σ , c

†
1kσ ↔

c1−kσ , and c
†
2kσ ↔ −c2−kσ . In this paper we consider explicitly

the 2AIM at ph symmetry.56 With LR symmetry also present,
the full set of “bare” parameters for the 2AIM is simply U/�,
t/�, and D/�. The bandwidth D is naturally taken to be
the largest energy scale in the problem, and for our NRG
calculations in practice we take D/� = 100.

B. Schrieffer-Wolff transformations

The 2AIM, allowing as it does for charge fluctuations on the
dots, exhibits a rich range of behavior across its full parameter
space. Here we focus exclusively on the regime where each
dot level is in essence singly occupied, as occurs for U 	
t,�1,�2 in the ph-symmetric systems considered. In this case a
Schrieffer-Wolff (SW) transformation33 may be used to obtain
an effective low-energy model for the system. This involves
perturbation theory in the tunnel couplings V1, V2, and t , i.e.,
the perturbing Hamiltonian is taken to be Ĥ1 = Ĥhyb + Ĥt , and
the only states of Ĥ0 = Ĥ − Ĥ1 retained are those in which the
dots are singly occupied (with a local unity operator denoted
1̂′).

This perturbation theory can in principle be carried out to
any order in Ĥ1. The leading nonvanishing contributions to
the effective Hamiltonian arise to second order (specifically
1̂′Ĥ1(ε0 − Ĥ0)−1P̂ Ĥ11̂′, where P̂ = 1̂ − 1̂′ is a projector and
ε0 is the ground-state energy of H0); and the effective low-
energy model resulting from the second-order SW transfor-
mation on the 2AIM (neglecting retardation as usual2) is
the much-studied two-impurity Kondo model (2IKM).34–38,40

It consists of two spins- 1
2 , each coupled to a separate lead

by antiferromagnetic (AF) Kondo couplings J1 and J2, and
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mutually coupled by an AF exchange coupling J—precluding
as such charge transfer between the leads. The Hamiltonian is

Ĥ2IKM = J1Ŝ1 · Ŝ01 + J2Ŝ2 · Ŝ02 + J Ŝ1 · Ŝ2 + Ĥleads, (7)

where Ŝν is a spin- 1
2 operator representing dot ν = 1,2, and Ŝ0ν

is the spin- 1
2 operator corresponding to the local spin density

of lead ν (Ŝ0ν = ∑
σ,σ ′ f †

νσ σ σσ ′fνσ ′ with σ the Pauli matrices).
From the SW transformation, the parameters of the 2IKM are
related to those of the 2AIM by ρJν = 8�ν/πU and J =
4t2/U .

It is, however, obvious that a second-order SW transforma-
tion does not capture adequately the low-energy physics of the
2AIM, for it lacks the interlead charge-transfer processes that
ensure the ground state of the 2AIM is always a Fermi liquid,
and which are central in understanding the role of 2CK physics
in TCDQDs.

As mentioned above, SW to higher orders can be carried
out, and to capture interlead cotunneling charge transfer one
must go to third order. The additional third-order term arising
from a SW transformation of the 2AIM, Ĥ3 = 1̂′Ĥ1(ε0 −
Ĥ0)−1P̂ Ĥ1(ε0 − Ĥ0)−1P̂ Ĥ11̂′, is given after lengthy calcula-
tion by

Ĥ3 = VLR

[ ∑
σ

(f †
1σ f2σ + f

†
2σ f1σ )Ŝ1 · Ŝ2 + 2Â · (Ŝ1 × Ŝ2)

]
,

(8)

where VLR = (16tV1V2)/U 2 = √
(JJ1J2)/U and Â is a vector

operator with components

Â = i
∑
σ,σ ′

(f †
1σσ σσ ′f2σ ′ − f

†
2σ σ σσ ′f1σ ′). (9)

Note that Â, which is self-adjoint and odd under 1 ↔ 2
exchange, is not a spin operator; its components satisfying
the commutation relations [Âα,Âβ] = iεαβγ Ŝ

γ

0 , where Ŝ0 =
Ŝ01 + Ŝ02 (with α,β,γ ∈ (x,y,z) and εαβγ is the Levi-Civita
symbol). Ĥ3, in which charge transfer between the leads is
mediated by the dot spins, is clearly a rather complicated
object. It was obtained previously in Ref. 57, but subsequently
neglected. In the following, we refer to the third-order effective
low-energy model specified by Ĥ2IKM + Ĥ3 as the H3 model.

It is important to emphasize that the charge-transfer
processes in the 2AIM involve cotunneling, i.e., are mediated
by the dot spin degrees of freedom. In recent work,42,58 the
2IKM with an additional direct lead-lead tunneling term was
studied as a model for a TCDQD. The Hamiltonian considered
was Ĥ2IKM + Ĥ ′

3, with a charge-transfer term

Ĥ ′
3 = V ′

LR

∑
σ

(f †
1σ f2σ + f

†
2σ f1σ ), (10)

where V ′
LR = 1

4VLR . We refer to this as the H ′
3 model. It is not

the correct effective low-energy model for the 2AIM, and as
such should not be expected to exhibit the same physics as the
2AIM even at low energies (indeed it does not42). We include
it here purely for comparison to the 2AIM and H3 models, to
illustrate that adding the Ĥ3 term to the 2IKM has a notably
different effect to adding the Ĥ ′

3 term.
We have now looked at all the models to be considered in

this paper: the full 2AIM, the effective low-energy models for

the 2AIM derived by SW transformation to second and third
order (the 2IKM and H3 models, respectively), and the H ′

3
model. In the following section we use the NRG52–55,59,60 to
obtain results for these models at zero field. We typically retain
between 2000 and 4000 states at each NRG iteration, and use
an NRG discretization parameter � = 3.

III. 2CK PHYSICS AT ZERO MAGNETIC FIELD

We begin with a brief summary of the 2IKM at zero field,
before considering the effect of interlead charge transfer as
included in the 2AIM, H3, and H ′

3 models.

A. Two-impurity Kondo model

It is well known35–37,39,40 that the LR-symmetric 2IKM
(J1 = J2) exhibits a quantum phase transition (QPT) at a
critical value Jc of the interspin exchange J ; with Jc ∼ O(TK),
and TK the Kondo scale of the system when the spins are
decoupled, J = 0. The transition separates a local singlet (LS)
phase arising for J > Jc, in which the two spins bind to form a
singlet, from a phase in which each spin is separately quenched
by Kondo coupling to its attached lead [we refer to it as
the “Kondo singlet” (KS) phase]. These phases are readily
identified from the phase shift δe in the even combination of
conduction channels/leads, which vanishes in the LS phase,
and is π/2 in the KS phase (see Refs. 40,61, and 42 for
details).

The FP for the transition is distinct from those of the
LS or KS phases, and corresponds to the 2CK FP,35,36,39 as
known, e.g., from conformal field theory39–41 and NRG40

studies (albeit the operator content and finite-size spectrum
of the critical FP differ slightly from the 2CK FP40). On
decreasing the temperature (T )/energy scale at J = Jc, the
system flows from a local moment (LM) FP—where the dot
spins are effectively decoupled from each other and from
the leads, with a corresponding entropy Simp = ln 4—to the
critical 2CK FP characterized by Simp = 1

2 ln 2, on the scale
T ∼ TK (so that TK is also in effect the two-channel Kondo
scale).

We comment in passing on the relation35–38,61 Jc = αTK

with α a constant, which we find from NRG calculations indeed
holds for sufficiently small ρJ1  1.62 The precise value of α

naturally depends on how TK (pertaining to J = 0) is defined;
and in this there is freedom of choice. In practice we choose
TK to be the T for which Simp(TK) = ln 2, halfway between
Simp = ln 4 characteristic of the LM FP and the T = 0 entropy
Simp = 0 for the stable strong-coupling FP in the KS phase.
With this, the constant α ≈ 8. If instead we had chosen to
define TK as 8/2.2 times the temperature for which Simp = ln 2,
then α � 2.2, as is often quoted in the literature.35–38,61 There
is, however, no fundamental distinction between these different
practical definitions of TK.

Finally, while the comments above refer to the LR-
symmetric case, we add that the QPT is also known63,64 to
remain robust to J1 �= J2, with a line of 2CK critical FPs in
the (J1,J2) plane separating LS and KS phases, and a critical
Jc dependent on T

(1)
K and T

(2)
K , the two distinct J = 0 Kondo

scales now arising.
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B. Effects of charge transfer

We now look at the effect of adding interlead charge-
transfer processes to the 2IKM (focussing on the LR-
symmetric case). These destroy the QPT occurring in the
2IKM, and with it the stability of the 2CK quantum critical
point, the pristine transition being replaced by a continuous
crossover between KS and LS ground states, characterized by
a stable SC FP with Simp(T = 0) = 0. This is well known for
the 2AIM48–50 and H ′

3
42,47 models, and our NRG calculations

indicate the same for the H3 model (unsurprisingly, it being
the effective low-energy model for the 2AIM).

Although the 2CK FP is rendered unstable by charge
transfer, with decreasing T the system may first flow close
to it on a scale T ∼ TK (as for the 2IKM)—evident, e.g., in
a characteristic 1

2 ln 2 entropy plateau—before flowing to the
stable SC FP on a low-energy Fermi-liquid scale T ∗ [which we
calculate in practice from Simp(T ∗) = 1

4 ln 2, halfway between
the characteristic values for the 2CK FP and stable SC FP]. If
this situation arises, then the 2CK FP is effectively “visible”
at finite temperature, occurring over an appreciable T window
provided

T ∗  T  TK. (11)

The obvious questions then are42 under what conditions
does this behavior arise? And for the 2AIM in particular
(as the canonical model for TCDQDs), does it occur for
experimentally realistic temperatures?

To answer these questions we consider explicitly the T

dependence of the entropy Simp(T ). As for the 2IKM, TK is
the Kondo scale when the spins/dots are decoupled, viz. J = 0
for the spin models H3 and H ′

3, and t = 0 for the 2AIM; with
TK defined via Simp(TK) = ln 2, as above (although in practice
the resultant TK differs insignificantly from that which can be
read off, e.g., Fig. 2 below from Simp(TK) = ln 2). To optimize
the possibility of observing the 2CK FP at finite T we follow
Ref. 42 and consider J = Jc (∼ TK) for all spin models and t =
tc for the 2AIM—where the models flow closest to the 2CK
FP—chosen42 in either case so that the even-channel phase
shift δe = π/4. The phase shifts δe are themselves determined
straightforwardly from the potential scattering on the even
lead at the SC FP54 (itself obtained by comparing the NRG FP
energy levels with those calculated separately from free even
and odd conduction chains with equal and opposite potential
scattering).

Figure 2 shows NRG results for Simp(T ) for the 2AIM
with U/� = 20 (solid line), with TK as indicated. We wish
to compare this to spin models (H3, H ′

3, and 2IKM) with the
same TK, to which end we consider ρJ1 = ρJ2 = 0.093 (the
value of which differs somewhat from that given by the SW
transformation, reflecting simply the fact that for U/� = 20
the SW asymptotics for ρJ1 have not quite been reached).
And for the spin models with charge transfer, we take VLR =√

JcJ
2
1 /U as in Sec. II B.

On decreasing T for the 2IKM with J = Jc, the system
naturally flows to the 2CK FP (Simp = 1

2 ln 2) for T ∼ TK,
and remains there. For the H ′

3 model, with direct interlead
tunneling, there is a clear 1

2 ln 2 entropy plateau before flow
to the stable SC FP (Simp = 0) on the scale T ∼ T ∗; with
T ∗  TK in this case, so that 2CK physics arises over an

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10-12 10-10 10-8 10-6 10-4 10-2 100

S i
m

p
 / 

ln
 2

ρ T

TK

FIG. 2. Simp vs ρT [ρ = 1/(2D)] from NRG for 2AIM with
U/� = 20 and t = tc (solid line), and for the 2IKM (long-dashed
line), H3 (dotted line), and H ′

3 (short-dashed line) models with
ρJ1 = 0.093 and J = Jc. The common Kondo scale TK is indicated
by an arrow.

appreciable temperature window. The behavior of the 2AIM
for U/� = 20 is quite different. After descent on the scale
T ∼ U from its trivial high-T limit Simp = ln 16 to the LM FP
with Simp = ln 4, the system flows directly to the SC FP on the
scale T ∼ TK, with no hint of flow in the vicinity of the 2CK
FP. The H3 model is also seen to exhibit the same low-energy
behavior.

NRG may also be used to calculate the T = 0 zero-bias
conductance Gc. For LR-symmetric systems,61

Gc = 2e2

h
sin2(δe − δo) = 2e2

h
sin2(2δe) (12)

with δe(o) the phase shift in the even (odd) channel, and the
second equality follows at ph symmetry.40 Calculation of δe

thus gives Gc directly. Figure 3 shows Gc vs [J − Jc]/Jc

for the 2AIM (where J = 4t2/U is taken), and the H3 and
H ′

3 models, with Jc ∼ TK as ever. For the H ′
3 model the half

width of this conductance peak (vs [J − Jc]/Jc) is known42

to be proportional to
√

T ∗/TK, the fact that it is evidently
1 indicating the clear scale separation T ∗  TK seen from
the entropies of Fig. 2. Gc for the 2AIM and H3 models are
similar, as expected (the differences again reflect that SW is
asymptotically exact only as U/� → ∞). In these cases, by
contrast, the conductance half width is clearly O(1). This too
is consonant with the entropies shown in Fig. 2, where for
U/� = 20 there is no flow in the vicinity of the 2CK FP, and
as such TK is the sole low-energy scale in the problem.

We also point out here that our conductance results are in
agreement both with previous work on the 2AIM,50 and recent

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1

G
c 

/ (
e2  / 

h)

(J - Jc)/Jc

FIG. 3. For the same parameters as Fig. 2, the T = 0 zero-bias
conductance Gc vs (J − Jc)/Jc for the 2AIM (solid line), the H3

model (long-dashed line) and the H ′
3 model (short-dashed line).
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FIG. 4. Simp(T ) vs T/TK for the 2AIM (with t = tc) for U/� =
20 (solid line), 30 (long-dashed line), 40 (short-dashed line), 50
(dotted line). A 1

2 ln 2 plateau appears as U/� is increased, indicating
flow in the vicinity of the 2CK FP.

work on the H ′
3 model;42 that the two models give different

results is a natural consequence of the fact that they are not
simply related by SW transformation.

The 2CK FP, as manifest in a 1
2 ln 2 entropy plateau,

does not then occur for U/� = 20 in the 2AIM (or in its
effective low-energy model H3). To observe it in the 2AIM
necessitates a larger U/� in order to suppress interlead
cotunneling charge transfer (i.e., to reduce VLR in the effective
low-energy model), although this will also reduce TK itself
(since2 TK ∝ exp[−πU/(8�)]). To illustrate this, Fig. 4 shows
Simp(T ) vs T/TK for the 2AIM, for various values of U/�.
On increasing the interaction a 1

2 ln 2 entropy plateau appears,
indicating the opening of a temperature window in which the
system flows in the vicinity of the 2CK FP, with a clear scale
separation T ∗  TK for sufficiently large U/�; in practice
U/� � 40. In this regime our numerics are consistent with
the form

T ∗

TK
= F

(
U

�

)
TK

U
, (13)

and although we have not performed exhaustive calculations
our results indicate F (x) ∼ bx2 with b ∼ O(1) a constant. The
behavior T ∗ ∝ T 2

K also arises42 in the H ′
3 model.65 Here it is

found42 that

T ∗ = b′(ρV ′
LR)2TK (14)

with b′ ∼ 102 approximately constant, V ′
LR = 1

4VLR and (as
above) (ρVLR)2 = Jc(ρJ1)2/U . Since Jc ∼ TK itself, Eq. (14)
gives T ∗ ∝ T 2

K.
As mentioned above, increasing U/� in the 2AIM in order

to access a reasonable T window for 2CK physics naturally has
the effect of reducing TK, temperatures lower than which are
needed to access the 2CK regime. From Fig. 4, U/� � 40
is in practice required for a reasonable window to arise.
But for U/� = 40, our NRG results give TK/U ∼ 4 × 10−9.
Taking U = 2 meV, as is experimentally typical,23,26,28,66 this
corresponds to TK ∼ 10−7K—far lower than can be reached
in experiment (a minimum of around 10 mK). Even reducing
U/� to 30, where a 1

2 ln 2 “plateau” is just about visible in
Fig. 4, yields TK ∼ 10−5 K, some three orders of magnitude
lower than what is experimentally feasible. In contrast to
previous estimates,42 our conclusion is that it is highly unlikely
2CK physics could realistically be observed in tunnel-coupled
DQDs.

While we have focused above on LR-symmetric systems,
the physics of the models considered remains qualitatively the
same when LR symmetry is broken: interlead charge transfer,
whether of cotunneling or “direct” form, destroys the QPT
exhibited by the 2IKM. If we consider breaking LR symmetry
by decreasing just one of the dot-lead couplings, then interlead
charge transfer is suppressed, leading to a decrease in the
T ∗ scale. This raises the question of whether 2CK physics
might more readily be observed in a strongly asymmetric
TCDQD device. That is not, however, the case. As for the
LR-asymmetric 2IKM, the (experimentally relevant) 2AIM, if
it flows at all in the vicinity of the 2CK FP, does so on the scale
of min(T (1)

K ,T
(2)

K ). Decreasing, e.g., �2 at fixed �1 will thus not
only reduce the T ∗ scale, but also the scale T

(2)
K on which the

system flows to the 2CK FP. Introducing LR asymmetry in
this way therefore decreases the temperature at which 2CK
physics might be observed.

IV. 2CK PHYSICS AT FINITE MAGNETIC FIELD

Having discussed the possibility of observing 2CK physics
in a TCDQD at zero magnetic field, we now ask whether it
might be possible to do so at finite field. Again we begin
with the 2IKM, showing first that in the LR-symmetric case
the quantum phase transition known to arise at zero field is
the terminal point of a line of QPTs accessed by tuning the
magnetic field.

A. Two-impurity Kondo model

At zero field, the trivial atomic limit of the 2IKM
[i.e., Eq. (7) with J1 = J2 = 0] has a singlet ground state,
|S〉 = 1√

2
(|↑↓〉 − |↓↑〉) (representing the two dot spins), with

a degenerate triplet at energy J above the ground state.
Application of a magnetic field to the dot spins [Eq. (6)] lowers
the energy of one triplet component, |T1〉 = |↑↑〉 (for h > 0),
with a triplet-singlet energy difference ET1 − ES = (J − h).
At a “critical” field h = hc = J the ground state will thus
be doubly degenerate, constituting as such a pseudospin- 1

2
comprised of |S〉 and |T1〉.

The energies of the remaining |T0〉 and |T−1〉 triplet
components lie at least J above the ground state. On coupling
the dot spins to the leads, only the pseudospin- 1

2 need therefore
be retained in the low-energy manifold of dot states, provided
J 	 TK ∼ Jc [or J 	 max(T (1)

K ,T
(2)

K ) for J1 �= J2]; since TK

(defined as usual for J = 0) is the sole low-energy scale in
the problem when J = 0. In other words, the |T0〉 and |T−1〉
triplet components may be neglected provided J 	 Jc, and
only the pseudospin- 1

2 need be retained. Since this pseudospin
can be flipped by the Kondo exchange on coupling to the
leads, and since it is coupled to two leads, we thus expect19

that two-channel Kondo physics should arise in the 2IKM with
J 	 Jc, at a critical field h = hc ∼ J .

The preceding physical argument may be put on firmer
footing by deriving an effective low-energy model for the
2IKM with J 	 Jc and h � hc, retaining only the states which
form the two components of the pseudospin (with local unity
operator 1̂′ = |S〉〈S| + |T1〉〈T1|); i.e., from Ĥeff = 1̂′Ĥ2IKM1̂′
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to leading order, with Ĥ2IKM in Eq. (7). This yields67 the
following effective low-energy model Ĥeff = Ĥ ′

eff + Ô:

Ĥeff = 1

2
J1

[
Ŝz

01τ̂
z + 1√

2
(Ŝ+

01τ̂
− + Ŝ−

01τ̂
+)

]

+1

2
J2

[
Ŝz

02τ̂
z + 1√

2
(Ŝ+

02τ̂
− + Ŝ−

02τ̂
+)

]
+ Ô (15)

(in addition to Ĥleads, taken as read). Here τ̂ denotes the
pseudospin- 1

2 , with components τ̂ z = 1
2 (|T1〉〈T1| − |S〉〈S|),

τ̂+ = |T1〉〈S| and τ̂− = (τ̂+)†; and Ô = Ô1 + Ô2 with

Ô1 = 1
4J1Ŝ

z
01 + 1

4J2Ŝ
z
02,

(16)
Ô2 = (J − h)τ̂ z.

The first two lines of Ĥeff , denoted Ĥ ′
eff , comprise a two-

channel Kondo model with both channel anisotropy (for
J1 �= J2), which is well known to be a relevant perturbation to
the 2CK model,39,46,47 and with spin anisotropy, known to be
irrelevant to the 2CK FP.46,68

Since any channel anisotropy destroys the 2CK FP, consider
first the LR-symmetric case J1 = J2. Now we must consider
the effect of Ô = Ô1 + Ô2, each term of which is a relevant
perturbation,68 separately rendering the 2CK FP unstable
[as we have also confirmed directly via NRG on Eq. (15)].
However, for any given J , J1, and J2, the magnetic field h is a
free parameter, which can then be tuned to ensure a vanishing
coefficient of the relevant primary field associated with Ô,
rendering it ineffective and the 2CK FP in consequence stable.
This is the critical field, h = hc. From the physical arguments
above we expect hc ∼ J [although not identically J , as is
obvious from Eq. (16)].

The above arguments imply that for the LR-symmetric
2IKM (J1 = J2) with J 	 Jc, there should be a QPT at
a critical hc, with a 2CK critical FP; and hence a line of
2CK critical FPs in the (h,J ) plane. We have confirmed this
with NRG calculations on the 2IKM. Figure 5 shows an
illustrative phase diagram for fixed ρJ1 = ρJ2 as a function
of (h/Jc,J/Jc) (recall that Jc is the critical J for zero field,
with Jc ∼ TK), the critical line hc(J/Jc) separating an h > hc

phase, which is continuously connected to the zero-field KS
state, from that connected to the zero-field LS phase. Although
the arguments given above apply strictly to J 	 Jc, the
transition is seen to extend continuously down to J = Jc (as

 0

 2

 4

 6

 8

 0  2  4  6  8  10

h 
/ 

J c

J / Jc

Kondo Singlet

Local Singlet

FIG. 5. NRG-determined phase diagram for LR-symmetric
2IKM as a function of h and J , for ρJ1 = ρJ2 = 0.093. Jc (∼ TK) is
the critical J for zero field (ρJc � 1.63 × 10−5 here).
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FIG. 6. Simp(T ) vs ρT for 2IKM with ρJ1 = 0.093 and ρJ =
5 × 10−4 (∼ 31ρJc 	 ρJc) at the critical field h = hc (ρhc = 4.55 ×
10−4 or hc/J = 0.91), upon decreasing J2 from J1: 2ρ(J1 − J2) = 0
(point-dash line), 10−6 (dotted line), 10−5 short-dashed line), 10−4

(long-dashed line), and 10−3 (solid line), corresponding, respectively,
to [J1 − J2]/Jc = 0,0.03,0.3,3, and 30.

a simple appeal to continuity would suggest). As expected
from the physical arguments above, hc � J indeed arises for
sufficiently large J . Indeed near-linear behavior is seen in
practice to set in for J/Jc � 2 or so, and for J/Jc 	 1 we have
confirmed the linear form hc = −a + bJ where the gradient
b → 1 (and a > 0 is a constant).

For J1 �= J2 by contrast, Ĥeff [Eq. (15)] is channel
anisotropic. The 2CK FP is consequently unstable,39,46,47 as
likewise follows from the arguments above for the 2IKM at
h = hc (at least for J 	 Jc). The system instead flows to a
stable SC FP with Simp(T = 0) = 0; flowing for sufficiently
small |J1 − J2| from the 2CK critical FP (Simp = 1

2 ln 2) to the
stable SC FP, on a scale T∗ known from the 2CK model46,69

to vanish as T∗ ∼ (J1 − J2)2. The validity of this picture has
been confirmed by NRG and is illustrated in Fig. 6, showing
the T dependence of Simp(T ) for the 2IKM at the critical
h = hc for fixed J and J1, upon decreasing J2 from J2 = J1

where the 2CK critical FP is stable. The low-energy scale
T∗—which in practice may be identified from Simp(T∗) =
1
4 ln 2—is immediately evident on increasing J1 − J2 from
zero; and analysis of the numerics indeed confirms it to vanish
as T∗ ∼ (J1 − J2)2.

We also note that the temperature scale (call it T ′
K) on which

the 1
2 ln 2 entropy plateau in Fig. 6 is reached is visibly lower

than its counterpart shown in Fig. 2 for the 2IKM at zero
field (with the same ρJ1), which is TK ∝ exp(−1/ρJ1).2,70

This can be understood from the low-energy model Ĥ ′
eff

(as appropriate to Fig. 6), it being sufficient to consider the
channel-symmetric case J1 = J2. This is a spin-anisotropic
2CK model, of form Ĥ ′

eff = ∑
ν=1,2[JzŜ

z
0ν τ̂

z + 1
2J⊥(Ŝ+

0ν τ̂
− +

Ŝ−
0ν τ̂

+)] with [see Eq. (15)] exchange couplings Jz = J1/2
and J⊥ = J1/

√
2 (each less than J1). And the characteristic

low-energy scale for the model, T ′
K, on which temperature

scale the 1
2 ln 2 entropy is approached, is readily shown

from perturbative scaling2,70 to be T ′
K ∝ exp(−π

2
1

ρJ1
), whence

T ′
K  TK.

This means, in other words, that much lower temperatures
are needed to observe 2CK physics at the critical point of
the 2IKM at finite field than at zero field—scarcely a viable
prospect in the light of Sec. III B.
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B. Two-impurity Anderson model

We now turn to the 2AIM at finite field. If t 	 tc (i.e.,
J = 4t2/U 	 Jc), we expect similar behavior to the 2IKM:
a sufficiently large magnetic field ∼hc renders the singlet and
lowest triplet atomic-limit states degenerate, suggesting the
possibility of 2CK physics at low temperature. As was the
case in Sec. III B, however, whether two-channel Kondo can
actually be observed in the 2AIM at finite field depends on
the effect of charge transfer inherent to the model, since this
destabilizes the 2CK FP.

Following the approach of Sec. III B, we compare the
behavior of the (channel-isotropic) 2AIM with two effective
low-energy models: the H ′

3 model in a magnetic field h ∼ hc,
and the result of a third-order Schrieffer-Wolff transformation
of the 2AIM. The latter is found to be equivalent to the H3

model at h ∼ hc upon retaining only the |S〉 and |T1〉 dot states
[viz. Ĥ ′′

eff = 1̂′(Ĥ2IKM + Ĥ3)1̂′], and is given explicitly by

Ĥ ′′
eff = Ĥeff − VLR

[∑
σ

σ (f †
1σ f2σ + f

†
2σ f1σ )

(
τ̂z − 1

4

)

+ 1√
2

(f †
1↑f2↓ + f

†
2↑f1↓)τ̂− + 1√

2
(f †

2↓f1↑

+ f
†
1↓f2↑)τ̂+

]
, (17)

where σ = +/− ⇐⇒ ↑ / ↓, and Ĥeff is given by Eq. (15).
Figure 7 shows results for Simp(T ), in which the parameters

are chosen to correspond to the 2AIM with U/� = 20, as
considered earlier in Fig. 2. First, for comparison, the short-
dashed line reproduces the 2IKM result from Fig. 6 for J1 =
J2, where the 2CK critical FP is stable and hence Simp(T =
0) = 1

2 ln 2. Next, the dotted line in Fig. 7 shows the behavior of
the corresponding H ′

3 model (direct interlead charge transfer)
with VLR = √

JJ1J2/U . Since Ĥ ′
3 destabilizes the 2CK FP

there is ultimately a crossover to the SC FP with vanishing
residual entropy, but the crossover scale here is sufficiently
small compared to T ′

K that a 1
2 ln 2 entropy plateau remains

visible. The temperature window over which the plateau exists
can be optimized by tuning h very slightly away from the
critical hc of the corresponding 2IKM; this has already been
performed for the dotted line in Fig. 7 [where (h − hc)/hc �
2 × 10−4].
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FIG. 7. Simp(T ) vs ρT for different models with h � hc. Shown
for the 2IKM (short-dashed line), H ′

3 model (dotted line), and H3

model (long-dashed line); in all cases, ρJ1 = ρJ2 = 0.093, ρJ =
5 × 10−4 (	 ρJc), and VLR = √

JJ1J2/U . For the 2AIM (solid line),
we consider U/� = 20 and t/� = 0.71 (corresponding to ρJ =
ρ[4t2/U ] = 5 × 10−4).
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FIG. 8. Simp(T ) vs ρT for the 2AIM with h � hc, t/� = 1 	
tc/�, and U/� = 20 (solid line), 30 (long-dashed line), 40 (short-
dashed line) and 50 (dotted line). As U/� increases, the ln 2 entropy
plateau extends to lower T , but for the values of U/� considered no
1
2 ln 2 plateau is found.

Turning now to the 2AIM and H3 models, we have repeated
the process of searching for the widest 1

2 ln 2 entropy plateau
by varying h around hc. However, our calculations show no
such plateau for the parameters considered: the entropy always
crosses directly from ln 2 to zero, as illustrated by the solid and
dashed lines in Fig. 7 (2AIM and H3 models, respectively).
This is not surprising, since it mirrors the h = 0 behavior
shown in Fig. 2: while the H ′

3 model for U/� = 20 shows
a distinct 2CK entropy plateau, the 2AIM and H3 models do
not.

In Sec. III B we explained that the 2CK FP can indeed be
observed at h = 0 in the 2AIM, if one considers the model
at a larger U/� � 40. It is thus natural to ask if the same is
true for 2CK at finite field. We have undertaken preliminary
calculations for U/� up to 50 (in practice the largest for
which the calculations are feasible) in an effort to answer this
question. In each case we have examined the entropy around
h � hc ∼ Jc for signs of a 1

2 ln 2 plateau but, as illustrated in
Fig. 8, do not find any sign of 2CK behavior. This suggests that
if 2CK is to be found in the 2AIM at finite field, it will arise
only for U/� in excess of 50, for which the corresponding T ′

K

will surely be out of range of experimental grasp.

V. CONCLUDING REMARKS

In this paper we have examined the possibility of observing
two-channel Kondo physics in tunnel-coupled DQDs. In the
two-impurity Kondo model limit, such physics clearly arises
at zero magnetic field near the 2CK critical point, but in real
quantum dots the effects of interlead charge transfer, which
destabilize the 2CK fixed point, must of course be considered.

While direct interlead hopping generally destroys the 2CK
physics on energy scales small compared to the Kondo scale,42

thus providing a seemingly large window over which 2CK be-
havior should be observable, we have argued that cotunneling
charge-transfer processes—proceeding via the dot spins, and
arising naturally within the 2AIM—significantly reduce the
likelihood of realizing the 2CK physics experimentally.

A finite magnetic field opens up the possibility of a field-
induced 2CK effect. For channel (LR-)symmetric systems, we
showed that the quantum phase transition of the zero-field
2IKM is the terminal point of a line of QPTs at finite field,
the effective low-energy critical model at large h being a spin-
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anisotropic 2CK model. Again, however, the charge-transfer
processes present in real TCDQDs turn the line of QPTs into
a crossover; in this case their effect is even more destructive,
and we find no evidence of field-induced 2CK physics in the
2AIM on experimentally realizable energy scales.

It has been proposed that longer, even-numbered quantum
dot chains might be good candidate systems for observing 2CK
physics.63 Increasing the number of dots between the leads
suppresses charge transfer,63 but it also leads to a decrease64

in TK, so that while the longer dot chain systems are more likely

to flow close to the 2CK FP (TK 	 T ∗), they are likely to do
so at lower temperatures than for the two-dot case considered
here. More work is needed to determine whether longer dot
chains indeed offer a more promising route to accessing 2CK
physics.
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