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First-principles study of electronic and structural properties of CuO
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We investigate the electronic and structural properties of CuO, which shows significant deviations from the
trends obeyed by other transition-metal monoxides. Using an extended Hubbard-based corrective functional, we
uncover an orbitally ordered insulating ground state for the cubic phase of this material, which was expected but,
to the best of our knowledge, was not found in the literature. This insulating state results from a fine balance
between the tendency of Cu to complete its d-shell and Hund’s rule magnetism. Starting from the ground state
for the cubic phase, we also study tetragonal distortions of the unit cell (recently reported in experiments) and
identify the equilibrium structure. Our calculations reveal an unexpected richness of possible magnetic and orbital
orders, relatively close in energy to the ground state, whose stability depends on the sign and nature of distortion.
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I. INTRODUCTION

Among the transition-metal oxide (TMO) compounds, CuO
shows quite peculiar characteristics. At variance with other
TMOs, which crystallize in a cubic rocksalt structure (with
possible rhombohedral distortions), it is found to have a
lower-symmetry monoclinic cell.1–3 Similarly to other TMOs,
CuO has an antiferromagnetic ground state.1 However, its
Neél temperature (TN � 220 K) is lower than the (expected)
linear trend followed by other TMOs the Neél temperatures
of TMOs are observed to increase almost linearly, from
MnO (TN � 116 K) to NiO (TN � 525 K), with the nuclear
charge of the transition metal]. The reduction in TN seems
to be related to the fact that the monoclinic ground state is
stabilized by a Jahn-Teller structural distortion, which yields
lower effective exchange interactions compared to the cubic
structure.4

In spite of the fact that it is not stable, studying the
cubic phase of this material is still interesting as a reference
point for the characterization of all the electronic mechanisms
correlating to structural deformations. In addition, CuO has
also been recently considered as a proxy structure for high
Tc superconducting cuprates,5 to investigate the interplay
between “d” and “p” electrons and for its unconventional, high-
temperature multiferroic character.6 Although cubic CuO, to
the best of our knowledge, has not been observed experi-
mentally, a tetragonal phase of CuO (i.e., elongated rocksalt
cell along one crystal axis) has recently been deposited on
substrates of SrTiO3 thin films.7 The tetragonal phase of CuO
has become a subject of several theoretical studies based
on density functional theory (DFT).5,8,9 All the DFT studies
have predicted, in agreement with the experimental results,
a distortion characterized by 1.1 � c/a � 1.3 (Refs. 5, 8,
and 9) (for which the rocksalt cell is elongated along one
of the crystal axis). Among possible magnetic configurations,
the antiferromagnetic-II configuration (AF-II), characterized
by ferromagnetic (111) planes with opposite spins with
respect to their neighbors, and the AF-IV configuration,
characterized by ferromagnetic (110) planes with opposite
spins with respect to their neighbors, compete for minimum
energy. A self-interaction corrected density functional (SIC)
based study predicts an AF-II ordered ground state with
c/a � 1.1,8 while the hybrid density functionals predict an

AF-IV ordered ground state with c/a � 1.3 (Ref. 9) (it is
important to remark that the experimental lattice parameter
in Ref. 7, for CuO grown on a SrTiO3 substrate, is lower
than the ones used in computational studies obtained with
various functionals, therefore a direct comparison of calculated
c/a values needs care). In both studies, a local energy
minimum was also identified at c/a � 0.9. At this local
minimum, the magnetic structure was found to be AF-II.
DFT + U, limited only to the AF-II magnetic ordering, yields
an equilibrium structure with c/a � 1.1.5 In all these studies,
the cubic phase (i.e., the limit when c/a = 1) is found
to be metallic and corresponding to a local peak in the
energy. However, as pointed out in other studies,5 it seems
quite unlikely that the insulating structures with c/a < 1
and c/a > 1 are “connected” by a metallic state at c/a = 1.
Instead, an insulating state for the cubic structure seems more
reasonable.

In this paper, we revisit the cubic and tetragonal phases of
CuO to investigate the underlying mechanism characterizing
the electronic, magnetic, and structural properties of this
compound using a DFT + U based corrective functional within
the AF-II magnetic order. We find an insulating ground
state for the cubic phase of CuO, which was expected but,
to the best of our knowledge, not found in the literature.
Starting from this insulating ground state for the cubic cell,
we also study tetragonal distortions and find an equilibrium
structure in agreement with experiments and previous cal-
culations. The properties of this ground state are controlled
by an interesting interplay between Hund’s rule magnetism
and electronic localization. We believe that similar effects
could also play an important role in more complex cuprate
materials.

The paper is organized as follows: In Sec. II we summarize
the DFT + U method we have used. In Sec. III we discuss the
electronic structure of the cubic phase, from DFT and DFT + U
functionals. In Sec. IV, we introduce an extension of the
DFT + U method to include an effective exchange parameter J
(DFT + U + J) and discuss the resulting electronic structure of
the cubic phase. In Sec. V we study elongated structures and
compare our results with those from the existing literature.
Finally, in Sec. VI we summarize our findings and propose
some conclusions.
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II. DFT + U METHOD

In this study, we employ the Hubbard-based DFT + U
corrective scheme, originally introduced in Refs. 10–12, that
has become one of the most popular choices to study systems
characterized by strong electronic correlations. Although not
able to capture all the possible correlated ground states,
this corrective scheme has proved to be quite versatile in
the description of the properties of several transition-metal
compounds,13,14 minerals of the Earth’s interior,13–18 molecu-
lar complexes,19–22 TMOs,10,11,23–25 magnetic impurities, and
semiconductors.26 Other corrective schemes have also been
successfully used in the literature, including self-interaction
corrected density functionals,27 hybrid density functionals,28

dynamical mean-field theory,29 and reduced density matrix
functional theory.30 Among these, DFT + U has the advantage
to present low computational costs31 and to allow for the
efficient calculation of energy derivatives (e.g., forces, stresses,
elastic constants, etc.). The scheme is based on the addition
of a corrective term, inspired from the Hubbard model, that
favors Mott localization of electrons on atomic sites. The total
energy functional of DFT + U can be written as23

EDFT+U = EDFT[n(r)] + EU

[{
nIσ

mm′
}]

, (1)

where EDFT is a standard approximate DFT functional and the
Hubbard correction EU , according to the simplified functional
by Dudarev et al.,32 is given by

EU =
∑

I,σ

UI

2
Tr[nIσ (1 − nIσ )]. (2)

In the above equation, UI is the Coulomb repulsion parameter
on atomic site I (usually applied on the d states of a transition
metal) and the occupation matrices nI are computed as

nIσ
mm′ =

∑

kv

f σ
kv

〈
ψσ

kv

∣∣φI
m

〉〈
φI

m′
∣∣ψσ

kv

〉
, (3)

where ψσ
kv denote the Kohn-Sham states, f σ

kv represent their
occupations according to the Fermi-Dirac distribution of their
energy, and φI

m are the atomic orbitals with state index m

and centered on site I (in this paper we use orthogonalized
atomic orbitals, i.e., 〈φIσ

m |φJσ
m 〉 = δIJ ). The representation of

occupation matrices in terms of atomic orbitals given in Eq. (3)
is not the only possible choice. The same scheme can be
used with different sets of wave functions such as Wannier
functions33,34 that may offer a more flexible representation of
electronic localization. For the same purpose, a recent work
introduced an extension to the functional of Eq. (2) to include
intersite terms.35 While we expect that the inclusion of these
terms (especially those between O and Cu) might be important
to refine structural properties and to resolve some fine details
in the electronic structure, in this paper we neglect them and
focus on the atomic (on-site) ones.

In our paper, the on-site Coulomb repulsion parameters
UI ’s are determined using the linear response approach
introduced in Ref. 23. In this paper, we have generalized this
approach to include the responses of the s states of Cu and O
treated as a “reservoir” of charge (instead of the neutralizing
“background” of Ref. 23). Our results show that inter-site

interactions (V ) are significantly smaller than on-site ones (U )
and our approximation is justified.

In many cases, the DFT ground state for TMOs have
different properties than the DFT + U ground state. For
instance, DFT + U could stabilize a magnetic ground state
with an insulating gap, while DFT results in a metallic one.
Therefore, a more accurate determination of the UI ’s should
involve a self-consistent procedure, where the linear response
computation is repeatedly performed on the DFT + U ground
state, until a convergence in their values is reached.19,35 This
self-consistent procedure proved to be necessary in our study
due to the qualitative differences between the DFT and the
DFT + U ground states.

In our calculations, we have used the Perdew-Burke-
Ernzherof (PBE)36 generalized gradient approximationg
(GGA) functional to model the exchange-correlation en-
ergy. The Cu and O atoms are represented by ultrasoft
pseudopotentials and the kinetic energy and charge density
cutoffs are chosen to be 35 and 280 Ry, respectively. The
Brillouin zone integrations are performed using 8 × 8 × 8
Monkhorst and Pack special point grids37 and a Methfessel
and Paxton smearing of the Fermi-Dirac distribution,38 with
a smearing width of 0.01 Ry. We have also tested other
smearing techniques (e.g., Gaussian) and found no quantitative
difference between the results obtained. All calculations were
performed by using the plane-waves pseudopotential “pwscf”
code contained in the QUANTUM ESPRESSO package,39 where
we have implemented the “ + J” corrections (as discussed in
Sec. IV) starting from the existing DFT + U functional.

III. DFT AND DFT + U CALCULATIONS
IN THE CUBIC PHASE

Previous studies of the cubic phase of CuO, based on GGA
functionals, predicted a metallic and a nonmagnetic ground
state. While other TMOs are also predicted to be metallic
within GGA, they have an antiferromagnetic ground state with
ferromagnetic (111) planes of transition-metal ions alternating
with opposite magnetization (AF-II). This magnetic order
imposes a rhombohedral symmetry to the cell that sometimes
produces a distortion. In this paper, CuO is also described
with a unit cell of rhombohedral symmetry. The unit cell
consists of four atoms, of which the two Cu atoms have
opposite spins. We find that the optimized structure has a lattice
parameter of 4.256 Å, which we have adopted for the rest of
the calculations. The density of states obtained with GGA is
shown in Fig. 1. As it can be observed, the GGA functional
yields a nonmagnetic (due to the degeneracy between the two
spin states) and metallic ground state with a finite contribution
to density of states at the Fermi level. This result could be
understood in a simple way by inspecting the splitting of d
levels of Cu in a cubic crystal field, schematically represented
in Fig. 2. On each Cu+2 ion, there are nine electrons placed
in the 3d levels. The d levels are split in the cubic crystal
field into a doubly degenerate eg (higher energy) and triply
degenerate t2g states (lower energy). As illustrated in Fig. 2,
the metallic character and the nonmagnetic ground state is
due to the degeneracy of the highest energy eg states with
either spin. On these four orbitals, Cu hosts three electrons,
thus leading to partially filled bands that result in a metallic,
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FIG. 1. (Color online) The projected density of states calculated
by the GGA functional for cubic CuO.

nonmagnetic ground state. It is important to notice that O
also provides a finite contribution to the density of states at the
Fermi level, thus p states (nonmagnetic) are also partially filled.
This scenario is similar to that of paramagnetic insulators, with
the additional complication of orbital degeneracy. The orbital
degeneracy contributing to the metallic character of this ground
state is obviously a consequence of the cubic symmetry that
makes the eg states equivalent. This degeneracy cannot be
broken by the straight use of DFT + U. The density of states
of the ground state resulting from the GGA + U functional is
shown in Fig. 3, where it is evident that the main effect of
the Hubbard correction consists in the (probably exaggerated)
stabilization of filled d states that shift to lower energies.
Both d states (eg) and p states are left at the Fermi energy.
Owing to the presence of O p states around the Fermi level,
one might be tempted to extend the Hubbard correction to
these states. This was indeed explored in Ref. 40. Figure 4
shows the density of states of CuO obtained with a Hubbard
correction extended to O p states. The Hubbard U on O p states
(Up) was evaluated using the same linear response method of
Ref. 23 that yielded a value of Up � 8.47 eV (versus 9.79 eV
of Cu). As evident from the density of states, while the metallic
character is preserved, a magnetic ground state now emerges
from the lifting of the spin degeneracy. This unique situation is
schematically illustrated in Fig. 5, where an exchange splitting
between opposite spin levels has resulted in a magnetic ground
state. With GGA + U, the nonmagnetic ground state results in
an effective cubic symmetry, therefore the lower energy t2g

states are degenerate (in fact, all Cu atoms are equivalent

eg

1/2

1/2
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FIG. 2. (Color online) Splitting of d levels in a cubic crystal field.
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FIG. 3. (Color online) The projected density of states calculated
by the GGA + U functional. The on-site Hubbard parameter is U =
9.79 eV, which is calculated by the linear response approach (Ref. 23).

in spite of the rhombohedral symmetry). The rhombohedral
symmetry, induced by the antiferromagnetic order, lifts this
degeneracy and splits them into a nondegenerate state with A1g

symmetry and a doublet of eg symmetry as illustrated in Fig. 5.
However, the material is still metallic due to the degeneracy of
minority-spin eg states. It is important to notice that O p states
still contribute to the metallic character (thus resulting in a
partially filled p band) with equal contributions from the two
spins, in spite of the polarization of the d states. The magnetic
ground state in GGA + U + Up is not directly due to Up, but
rather a consequence of the redistribution of electrons. To
illustrate this point it is instructive to compare the occupations
of d and p orbitals [i.e., traces of nIσ

mm′ i given in Eq. (3)] between
the two cases (with GGA + U and GGA + U + Up). For
GGA + U, we obtain n

↑
Cu(eg) = n

↓
Cu(eg) � 1.84, while nOp

�
4.94. In the case of GGA + U + Up we obtain n

↑
Cu(eg) � 1.96,

n
↓
Cu(eg) � 1.40, while nOp

� 5.27. The main consequence of
using Up consists in the increase of nOp

and the consequent
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FIG. 4. (Color online) The projected density of states calculated
by the GGA + U + Up functional. The on-site Hubbard parameters
are U = 9.79 eV and Up = 8.47 eV, which are determined by the
linear response approach (Ref. 23).

115108-3



HIMMETOGLU, WENTZCOVITCH, AND COCOCCIONI PHYSICAL REVIEW B 84, 115108 (2011)

EF

1gA

g

eg

e δ

δ

exc

crys

FIG. 5. (Color online) Splitting of Cu d states in a rhombohedral
field with the onset of magnetic ordering.

depression of the population of the d orbitals. Thus, the
magnetic ground state seems to be promoted by the partial
(and numerically marginal) decrease in the population of d
orbitals. This picture is corroborated by Fig. 4, which shows
the explicit contribution to the density of states around the
Fermi level from minority-spin dz2 (one of the eg) states, which
accounts for half of the density. It is also important to notice
how the peak in the dz2 density of states correlate with those
of the p states, suggesting partial hybridization between Cu
and O.

The emergence of the magnetic, albeit metallic, ground state
is due to the rhombohedral symmetry and cannot be broken
by the Hubbard corrections. Thus, the metallic character is
a consequence of the crystal symmetry, similar to the case of
FeO.23 The effective equivalence between the eg states dictated
by the cubic or rhombohedral symmetry could be understood
as effectively recovered by the superposition of two (or more)
equivalent ground states (of lower symmetry) having either
of the eg orbitals occupied. To check this hypothesis and to
obtain one of these states, we have set the calculation in a larger
unit cell of lower symmetry. This unit cell is described by the
lattice vectors given by v1 = (−0.5,0.5,0), v2 = (0,1, − 1),
v3 = (0.5,0.5,1), and contains four Cu and four O atoms.
Each magnetic (111) plane contains two Cu atoms in this unit
cell and they are treated as different kinds, albeit associated
with the same pseudopotential. This artifact removes the
effective equivalence of eg states even for the eight-atom cell
description of the cubic structure. A similar trick was also used
for FeO to stabilize a broken-symmetry (orbitally ordered)
phase that reproduced the structural distortions of the material
under pressure.23 The ground state obtained in the eight-atom
cell has slightly lower energy per Cu-O pair (�E � 1.88
eV/CuO) compared to the rhombohedral four-atom unit cell,
and thus the broken-symmetry configuration is energetically
favored.

It is important to remark that even in the broken-symmetry
phase, an energy gap appears only if a finite Hubbard correc-
tion Up is used on the O p states. Without a Hubbard correction
on O p states, the material is predicted to be nonmagnetic and a
metallic ground state still emerges from the degeneracy of the
eg orbitals with opposite spin. This correction stabilizes the O p
states and increases their occupancy at the expense of lowering
Cu d state occupancies. Thus, Cu d orbitals are left with nine
electrons. Hund’s rule magnetism favors the localization of
the hole in this shell on one of the minority spin eg states. The
calculated d and p occupations reflect the localization of the
hole: n

↑
Cu(eg) � 2.0, n

↓
Cu(dz2 ) � 0.0, n

↓
Cu(dx2−y2 ) � 1.0, while

nOp
= 5.51. These occupations also show that the Cu atoms

acquire a finite magnetization which results in an AF-II ground
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FIG. 6. (Color online) The projected density of states in the
broken-symmetry phase. The on-site repulsion terms are Ud =
9.79 eV and Up = 8.47 eV (calculated from the response of the
GGA ground state).

state. The density of states of this ground state is shown in
Fig. 6.

Although the application of a Hubbard correction Up on
noncorrelated O p states is questionable, this computational
experiment is an indication of the fact that this system
is characterized by a competition between two opposite
tendencies: full occupation of Cu d states and the stabilization
of a magnetic ground state through Hund’s rule coupling. If the
number of electrons on d states is lower than a certain threshold
value, then the Hund’s rule magnetism is dominant, otherwise
a nonmagnetic ground state will appear. This competition is
due to two factors: a number of d electrons between nine and
ten and O p states close in energy to the d states which are able
to act as a charge “reservoir” for them. It is important to remark
that the conventional GGA + U functional results in a metallic
and nonmagnetic ground state even in the eight-atom cell, and
the system has effectively cubic symmetry. The localization of
the hole in the d states of Cu, driven by Up, breaks this effective
symmetry and leads to an insulating antiferromagnetic ground
state. In the next section we further test this hypothesis by
an extension to the + U corrective functional that explicitly
includes a magnetic coupling J to encourage a magnetic ground
state on each Cu atom.

IV. DFT + U + J FUNCTIONAL AND ITS APPLICATION
TO THE CUBIC PHASE

The DFT + U functional introduced in Eq. (2) contains
only a minimal set of on-site interaction parameters. In this
section, we propose an extension of the DFT + U functional
that includes magnetic (exchange) interactions (DFT + U + J).
While this is not new in literature (a review of previous
approaches is given in Ref. 41), the functional we propose here
deviates from previous formulations. The alternate corrective
scheme can be obtained from a general second quantized
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expression for electron-electron interactions [derived in Eq. (6)
of Ref. 35] given by

V̂int = 1

2

∑

I,J,K,L

∑

i,j,k,l

∑

σ,σ ′

〈
φI

i φ
J
j

∣∣Vee

∣∣φK
k φL

l

〉

× ĉ
†
I iσ ĉ

†
Jjσ ′ ĉKkσ ′ ĉLlσ , (4)

where capital letters {I, . . . ,K} represent site indices, low-
ercase letters {i, . . . ,k} represent state indices, {σ,σ ′} are
spin indices; Vee denote the (screened) Coulomb interaction
kernel between electrons and φI

i denote the atomic wave
function corresponding to state i centered on site I . The
operators ĉ

†
I iσ ,ĉI,iσ create and annihilate electrons with atomic

wave function φI
i and spin σ . Assuming that on-site interac-

tions are dominant (especially for the localized d states of
transition-metal ions) we keep only terms with I = J = K =
L in the above sum. Moreover, we approximate the on-site
effective interactions by the atomic averages of Coulomb
and exchange terms UI = 1

(2l+1)2

∑
i,j 〈φI

i φI
j |Vee|φI

j φ
I
i 〉 and

J I = 1
(2l+1)2

∑
i,j 〈φI

i φI
j |Vee|φI

i φ
I
j 〉. As a result, we obtain

EHub =
∑

I,σ

UI

2
[(nIσ )2 + nIσnI−σ − Tr[nIσ nIσ ]]

+J I

2
[Tr[nIσ nIσ + nIσ nI−σ ] − (nIσ )2], (5)

where the occupations nIσ
ij = 〈ĉ†I iσ ĉIjσ 〉 are computed using

the expression given in (3); nIσ = Tr[nIσ ] and nI = ∑
σ nIσ .

We introduce a double-counting term to be subtracted from
EHub that is evaluated as the mean-field approximation of
(5) in the fully localized limit,42 where each atomic orbital
is either filled by a single electron or totally empty. In this
approximation we have

Tr[nIσ nIσ ] → nIσ , Tr[nIσ nI−σ ] → nIσmin,

where σmin denotes the minority spin. The above expression
is true for both magnetic and nonmagnetic systems (for
nonmagnetic systems σmin = σ , since spin-up and spin-down
densities are equivalent). In the fully localized limit, the entire
double-counting term thus reads

Edc =
∑

I

UI

2
nI (nI − 1) −

∑

I,σ

J I

2
nIσ (nIσ − 1)

+
∑

I

J I nIσmin . (6)

The first term in the above equation is already included in the
standard DFT + U functional given in Eq. (2). After some
algebra, we easily obtain the expression of the corrective
functional as

EHub − Edc =
∑

I,σ

UI − J I

2
Tr[nIσ (1 − nIσ )]

+
∑

I,σ

J I

2
{Tr[nIσ nI−σ ] − 2δσσminnIσ }. (7)

Comparing (2) and (7), one can see that the on-site Coulomb
repulsion parameter (UI ) is effectively reduced by J I for

interactions between electrons of parallel spin and a positive J

term further discourages antialigned spins on the same site. As
a result, the functional given in Eq. (7) encourages magnetic
ordering. Within the simple Dudarev model,32 the inclusion of
J has only been considered as the effective renormalization of
U (i.e., UI → UI − J I ) and the terms in the second line of
(7) were not included. The quadratic term in the second line
of Eq. (7) can be explicated as

∑

I,σ

J I

2
nIσ

mm′n
I−σ
m′m . (8)

Since the occupations can be understood as the expectation
value nIσ

m,m′ = 〈ĉ†Imσ ĉIm′σ 〉, this term describes an “orbital
exchange” between electrons of opposite spins (e.g., up-spin
electron from m′ to m and down-spin electron from m to m′).
It is important to notice that this term is genuinely beyond
Hartree-Fock. In fact, a single Slater determinant containing
the four states m ↑, m ↓, m′ ↑, m′ ↓ would produce no
interaction term as the one above. Therefore, this contribution
to the corrective functional can be understood as resulting
from the interactions between configurations that differ from
each other by two single-electron states. In this context, the
use of occupation numbers computed as in Eq. (3) is not
legitimate (these configurations do not contribute together to
any single term of the electronic charge density). Thus the
expression of the J term given in Eq. (7), based on a product
of nIσ and nI−σ , is an approximation of a functional that
would require the calculation of the two-body density matrix.
Based on this reasoning, we argue that these interaction terms
are not captured by approximate DFT functionals, where the
total energy is a functional of the one-body electron density.
Therefore, we can suppose that they are completely missing
from the DFT functional and we can neglect them in the
double-counting term that thus leads to

Edc = EU
dc −

∑

I,σ

J I

2
nIσ (nIσ − 1), (9)

where EU
dc = 1/2

∑
I UInI (n1 − 1). The double-counting

term in Eq. (9) was previously considered in Refs. 43 and 44. It
corresponds to the sum over like-spin electron pairs multiplied
by the exchange parameter, and takes into account the total
exchange energy in an average way. As a matter of fact, we
have verified that that both dc terms (6) and (9) yield the
same ground state for CuO. However, the one in Eq. (9)
is numerically more stable and we have adopted it in all
calculations presented here.

Although never included in corrective DFT-based function-
als, terms as in Eq. (8) were introduced in numerical studies
based on model Hamiltonians.45,46

In order to calculate the Hubbard exchange parameter J ,
we have extended the linear response approach23 used in
the previous section and we have computed the responses
of on-site magnetizations mJ = nJ↑ − nJ↓ to a magnetic
perturbation βmI . Modeling the total energy of the solid
with the double-counting term [either Eq. (6) or (9)], and
rewriting it in terms of the on-site occupations nI and
magnetizations mI , we can calculate the exchange parameter
J I from ∂2E/(∂mI )2 = −J I /2. The second derivative of the
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FIG. 7. (Color online) The projected density of states in the
broken-symmetry phase. The Hubbard parameters for the Cu-d states
are U = 9.79 eV and J = 2.50 eV (calculated from the response of
the GGA ground state).

energy with respect to on-site magnetizations are calculated
using the response matrices χIJ = ∂mI/∂βJ so that J I =
−2[(χ0)−1

II − (χ )−1
II ]. In this equation χ0 denotes the bare

response matrix which is computed from the noninteracting
Kohn-Sham problem, which needs to be subtracted from the
response of the interacting system to obtain the value of J I as
described in Ref. 23.

In this paper, the J parameter was computed using a
32-atom supercell and we found that J � 2.5 eV (the 16-atom
supercell employed for the calculation of U proved to be
insufficient for obtaining linearly behaving magnetic response
matrices). We would like to stress that the values U � 9.79 eV
used in the previous section and J � 2.5 eV are obtained by
the response of the GGA ground state, and are used as “test”
values in the previous and current sections. More precise
values are obtained by a self-consistent procedure (i.e., by
recomputing the responses using the GGA + U ground state)
for the discussion of elongated structures in the next section.

In agreement with the discussion at the end of the previous
section, the explicit account of magnetic interactions through
the new functional results in an insulating and antiferro-
magnetic ground state (with a broken-symmetry phase). The
resulting density of states is shown in Fig. 7. The exchange
interaction parameter J enhances the splitting between oppo-
site spin electrons and favors a magnetic (insulating) state. As
can be seen in Fig. 7, the GGA + U + J functional localizes a
hole in the dz2 state on each Cu atom, while all other d states
are filled and lie below the gap. This result suggests that the
insulating ground state is stabilized by magnetic interactions. It
is important to remark that this ground state is not stable in the
conventional GGA + U since the on-site magnetic interactions
included in the extended corrective functional of Eq. (7) play a
key role in the emergence of the insulating state. Recently, the
importance of the exchange coupling J in favoring metallic or
insulating ground states of correlated systems has also been
verified using the dynamical mean-field theory.47 However,
magnetic and nonmagnetic ground states are very close in
energy. We hypothesize that this balance could be inverted by

doping. We have also checked that it is possible to localize
the hole on the dx2−y2 orbital or a configuration with mixed
occupations [i.e., one hole localized on dx2−y2 on one Cu atom
and one hole localized on dz2 on the other Cu atom of the
same (111) plane]. These configurations have slightly higher
energies than the ground state we have discussed above (the
state with mixed occupations is ∼0.3 eV/cell higher in energy
than the ground state, and the configuration with the dx2−y2

hole is ∼0.5 eV/cell higher in energy than the ground state).
The relatively low-energy difference between them is due to
symmetry that makes eg states almost degenerate.

As pointed out in the Introduction, the broken-symmetry
insulating state in the cubic phase, to the best of our knowledge,
has not been found, and the degeneracy between the eg levels
was lifted through a tetragonal distortion in other works.5,8,9

We have shown instead that the symmetry can be broken even
for the cubic cell (with a lower-symmetry eight-atom unit cell,
effectively corresponding to the cubic structure) and that an
insulating state can result from magnetic interactions. In the
next section, we study elongated structures and determine their
ground-state properties using the eight-atom cell.

V. TETRAGONALLY DISTORTED STRUCTURES

In this section we discuss the ground-state properties of the
tetragonally distorted structures. We limit our study only to the
case of AF-II ordering (unlike some previous studies,8,9 which
also considered other magnetic configurations) and determine
the value of the tetragonal distortion c/a corresponding to
lowest energy. To do so, we have calculated the Hubbard
parameter U at each value of c/a between 0.9 and 1.2 using the
linear response approach in a self-consistent procedure, while
the J parameter was fixed to the value obtained from the cubic
cell and just with the GGA response (we assumed its variation
to be less important). In fact, the value of the parameter J

must be calculated from the response of a nonmagnetic ground
state (i.e., the GGA ground state of the cubic phase of CuO),
since the linearity of the response matrices is not preserved
when the ground state is magnetic (i.e., GGA + U + J ground
state, or any tetragonally distorted phase). Therefore, we have
limited the calculation of J to the nonmagnetic phase. The U

parameters, on the other hand, are computed self-consistently
until their value converges within an accuracy of ∼0.2 eV. The
value of the lattice parameter a was fixed, so the volume of the
cell varies between different calculations. However, we have
also studied a deformation at fixed volume and obtained very
similar results, which will not be discussed in this paper. In
Fig. 8 we show the calculated values of Hubbard U parameter
as a function of c/a. We show both the values calculated
from GGA response (the green/light gray line) and the values
that are calculated self-consistently (the red/gray line). The
self-consistent values of the U parameters are smaller than the
ones calculated from the GGA response, especially around
the region close to c/a ∼ 1 (i.e., the cubic phase). This
difference is due to the fact that the GGA ground state in
the cubic structure is metallic and paramagnetic, while the
GGA + U + J ground state is insulating and antiferromagnetic.
This effect is also visible at large tetragonal distortions,
however, it is less dramatic than for c/a � 1, since GGA
yields ground states that are antiferromagnetic for c/a � 1.1
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FIG. 8. (Color online) Calculated Ud for each value of c/a. The
green (light gray) line shows the linear response values calculated
from the GGA response and the red (gray) line shows the self-
consistently calculated values.

and c/a � 0.9. From our calculations, we find that the hole
in the d states of Cu atoms is localized on the dx2−y2 orbitals
for c/a > 1 and on the dz2 orbitals for c/a � 1. These orbital
configurations are expected, since the elongation of the z axis
lowers the Coulomb repulsion energy of electrons localized
on dz2 orbitals. Therefore, the localization of the hole in the
dx2−y2 orbitals (or, equivalently, the localization of an electron
on the dz2 orbitals) is energetically favorable for c/a > 1 and
vice versa. The minimum energy configuration was found to
be at c/a � 1.15, as shown in Fig. 9. The energy differences
for different values of c/a are in overall agreement with the
findings of previous studies.5,8

We have also calculated the energy band gaps for each
structure, which lie between 1.4 eV (c/a = 0.9) and 0.4 eV
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FIG. 9. (Color online) The ground-state energy profile as a
function of the tetragonal distortion c/a. The orbital localizations
of the holes on Cu d states for c/a > 1 and for c/a < 1 are labeled.
The ground-state energies of different hole localizations for the cubic
phase are also shown.

(c/a = 1.2) and decrease with c/a. The energy band gap for
monoclinic CuO was determined to lie between 1.21 and
1.7 eV experimentally.48,49 The largest value of 1.4 eV we
have obtained is within the experimental range, but for larger
values of c/a, the gap becomes lower than the experimental
one. The difference is probably related to the fact that the
structures we are considering have different symmetry than
the ones studied experimentally.

The value of the tetragonal distortion we found for
the most stable configuration (c/a � 1.15) is lower than
the experimentally observed value of c/a � 1.35. This dif-
ference could be related to the fact that our calculations
do not take into account surface effects (strains) which are
important for ultrathin films of tetragonal CuO grown on
the SrTiO3 support. Indeed, it was recently shown that when
surface effects are taken into account, better agreement with
experimental results is obtained.50 The c/a we found is in
agreement with the results of Refs. 5 and 8, however, it is lower
than c/a � 1.377 of Ref. 9. This difference may be related
to the different localization properties of the hybrid-density
functionals used in Ref. 9 and DFT + U. The functional used in
this paper strongly localizes the electrons on atomic sites, and
is less accurate in representing hybridization effects that could
be important in CuO. The disagreement could be removed
with the use of the intersite interactions, which was shown
to improve structural properties.35 In addition, a structurally
consistent calculation of the Hubbard parameters as was done
in Ref. 14 is expected to result in more precise structural
properties. Finally, we would like to stress that the local
minimum located at c/a � 0.95, which was identified in some
previous works,8,9 has disappeared in our calculations, as
can be seen in Fig. 9. Based on our results, we think that
the local minimum was the consequence of the artificially
high energy of the metallic cubic phase compared to the
distorted ones. We argue that the metallic state obtained with
the approximate DFT functional for c/a = 1 results from
the degeneracy of eg orbitals, which is the result of cubic
symmetry.

VI. SUMMARY

In this paper we have studied the electronic structure
of CuO both in the cubic and tetragonal phases. We have
identified the insulating state in the cubic structure, which
was expected but, to the best of our knowledge, not found.
The emergence of the cubic insulating state requires the
breaking of symmetry in the electronic structure and leads
to an orbitally ordered ground state. We have found that
the insulating ground state results from a delicate balance
between two tendencies: filling the d shell of Cu with (nearly)
ten electrons and localizing a hole on one of the eg states
to stabilize a magnetic ground state. After stabilizing the
magnetic ground states, we have identified several local
energy minima in the cubic configuration (paramagnetic, with
holes localized on dx2−y2 orbitals, on dz2 orbitals, and with
mixed types of localizations) at slightly higher energies. We
have also studied tetragonal distortions in the system and
found the lowest-energy configuration to be at c/a � 1.15.
Our findings are in reasonable agreement with experimental
results, although inclusion of intersite interactions in the
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functional could improve the agreement. Finally, we clarified
the transition (through the cubic phase with c/a = 1) between
the two different localization regimes of Cu d electrons
(on dx2−y2 orbitals for c/a � 1 and on dz2 orbitals for
c/a > 1) and suggested that the metallic state predicted by
approximate DFT functionals for c/a = 1 is an artifact of
the degeneracy between eg states, enforced by the symmetry
of the crystal. We believe that the interplay between orbital
ordering and magnetism and the interaction between the
d and p electrons, highlighted in this paper, will be of
interest in studying high Tc superconductors, where similar
electronic dynamics and competitions between charge and

spin degrees of freedom are believed to play an important
role.
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