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Exact dispersion relation for nonlinear plasmonic waveguides
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We derive an exact dispersion relation for the surface plasmon polaritons of a nonlinear plasmonic waveguide
using exact field decomposition of TM waves. Our approach generalizes the known linear dispersion relations
to the case of a medium nonlinearity of the form εNL = εL + α|E|2n. We apply the unique dispersion relation
to a plasmonic waveguide with a Kerr-type nonlinearity (n = 1) and show that it enables backward-propagating
modes. It also introduces critical points in the energy spectrum of surface plasmon polaritons that result in
enhanced interaction of nonlinear modes with each other and external electromagnetic fields.
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A problem of continuing interest to scientists working in
the areas of nanoscience, plasmonics, and metamaterials is
the achievement of full control over the optical energy flow
on a nanoscale.1–4 The need for such a control is dictated
by the Internet-traffic demands and information processing
challenges that need to be handled in the near future.5 It is
expected that some of these challenges will be met by nonlinear
plasmonic waveguides in which digital signals in the form of
surface plasmon polaritons (SPPs) are confined to nanoscale
areas (∼100 nm2) and transmitted and altered at Tbit/s rates.6–9

Managing such digital bit streams will be impossible without
exploiting the strong and ultrafast optical nonlinearities of
dielectrics and metals.10–14 It turns out that nonlinearities cause
drastic modification of the SPP energy spectrum; these features
have to be thoroughly understood using a suitable nonlinear
theory prior to being beneficially employed in practice.

During the past three decades, ample attention has been
devoted to deriving nonlinear dispersion equations for the
SPP modes of metal–dielectric interfaces and linear metallic
slabs surrounded by different types of nonlinear media.15–22

It is rather surprising that, to the best of our knowledge, no
analytical expression for the SPP dispersion relation has been
reported so far for a thin nonlinear waveguide surrounded by
metals. The purpose of this Brief Report is to derive such a
relation for a waveguide with the power-law nonlinearity and
analyze it with emphasis on its impact on the performance of
real, integrated plasmonic devices.

We consider a plasmonic waveguide with the geometry
shown schematically in Fig. 1. It is composed of a nonlinear
dielectric layer (medium 1) of thickness 2h that is embedded
between two metallic slabs (medium 2) that are thick enough
to be treated as semi-infinite. Since absorption losses asso-
ciated with propagation through dielectrics and metals can
in principle be compensated by gain (at any wavelength of
interest), we neglect them in this study by taking a positive
(real) permittivity (ε1 > 0) for the dielectric and a negative
permittivity (ε2 < 0) for the metal. For definiteness, we assume
that ε1 depends on the electric field E1 inside the dielectric
layer as ε1 = εL + α|E1|2n, where εL is the linear part, n is
an integer, and α is a constant parameter. The choice n = 1
corresponds to the Kerr nonlinearity.

If we write the complex electric field of the transverse-
magnetic (TM) SPPs inside a j th medium as Ej = (x̂Exj +
iẑEzj ) exp(iβz), where β is the propagation constant and ŝ is
the unit vector along the direction s, its components can be
calculated using the following two real equations (obtained
from Maxwell’s equations):

dExj

dx
= βEzj − d(ln εj )

dx
Exj , (1a)

dEzj

dx
= (

k2
j /β

)
Exj , (1b)

where kj = β(1 − εjϑ
2)1/2, ϑ = k/β, and k = ω/c is the free-

space wave number at frequency ω (c is the speed of light in
vacuum).

Similar to the linear case, the dispersion relation for a
nonlinear waveguide is obtained by matching the general
solutions of Eq. (1) at the two metal–dielectric interfaces
located at x = ±h. In the case of the symmetric waveguide in
Fig. 1, only the interface at x = h is needed. Inside the metallic
layer (x � h), the solution is Ex2 = Ẽx2 exp[−k2(x − h)] and
Ez2 = −(k2/β)Ex2. The requirement of continuity of the
tangential component of E and the normal component of
the electric displacement vector across the interface x = h

yields Ẽz1 = −(k2/β)Ẽx2 and ε̃1Ẽx1 = ε2Ẽx2, where ε̃1 =
εL + αẼ2n

1 and a tilde over a variable denotes its value at
x = h. Combining these two equations and assuming Ẽx1 > 0
for x > 0, we get the first key relation for the derivation of the
dispersion equation: Ẽx1 = γ Ẽ1, where γ = (1 + η2)−1/2 and
η = (̃ε1/|ε2|)(k2/β).

Inside the nonlinear medium, Eq. (1) can be solved in
quadratures owing to the fact that the electric field components
obey a conservation law.23 It is not difficult to find this law by
integrating the equation

d

dx

(
k2

1

β2
Ex1

)2

= dE2
x1

dx
− ε1ϑ

2 dE2
1

dx
,

which mathematically follows from Eq. (1). A little algebra
shows that

(ε1 + nεL)E2
1 − ε1(2 − ε1ϑ

2)(n + 1)E2
x1 = C±, (2)
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FIG. 1. (Color online) Schematic dependence of the electric
field components Ex and Ez on the transverse coordinate x for
(a) symmetric and (b) antisymmetric SPP modes of a nonlinear
plasmonic waveguide, formed by a nonlinear dielectric layer of
thickness 2h and permittivity ε1 sandwiched between two metallic
layers of permittivity ε2.

where we marked the integration constant C with the subscript
± to stress that its value depends on the symmetry of the SPP
mode, determined by the symmetry of the transverse electric
field with respect to the reflection in the plane x = 0.24 If we
denote the amplitude of the electric field in this plane by E0,
then the constant may be written as

C± = [ε0 + nεL − ε0(2 − ε0ϑ
2)(n + 1)σ±]E2

0 , (3)

where ε0 = εL + αE2n
0 , σ± = (1 ± 1)/2, and ± correspond to

the modes with Ex1(x) = ±Ex1(−x).
Equation (2) is an algebraic equation of degree 4n with

respect to the unknown E1, but it reduces to the 2n-order
equation with respect to E2

1 . Hence, it admits a general solution
and allows Ez1 to be analytically expressed as a function of
Ex1 only when n = 1 or n = 2. Since the left-hand side of
Eq. (2) cannot be written in terms of a single variable ε1, the
replacement εL → ε1 in the linear conservation law would
fail to restore its nonlinear analog. For the same reason, the
nonlinear dispersion relation cannot be deduced through a
similar replacement performed in the dispersion equation for
a linear waveguide.

The nonlinear dispersion relation for SPP modes can now
be obtained by integrating Eq. (1) while Ez1 is treated as a
function of Ex1. The result is given by the integral∫ γ Ẽ1

E0σ±

ε1 + 2nαE2
x1E

2n−2
1

ε1 − 2n(k1/β)2αE2
x1E

2n−2
1

dEx1

Ez1
= βh. (4)

In writing this equation we have taken into account that
dEx1/dx > 0 for x > 0. The quantity Ẽ1, which enters the
dispersion relation explicitly and through the parameter γ ,
can be calculated from the following (6n + 2)-order algebraic
equation:

[ ε̃1 + nεL − ε̃1(2 − ε̃1ϑ
2)(n + 1)γ 2]Ẽ2

1 = C±. (5)

For the Kerr-type nonlinearity (n = 1), this equation is a
fourth-order polynomial with respect to Ẽ2

1 and can be solved
exactly; for n > 1 its roots should be found numerically.

Equations (2)–(5) allow us to compute ωSPP = ck to any
desired precision, if values of β and E0 are known. It is easy to
verify that, when α = 0, they reduce to the known dispersion
relation of linear plasmonic waveguides. Indeed, Eqs. (2) and

(3) in this case provide

Ez1 =
√

(1 − εLϑ2)E2
x1 + [1 − (2 − εLϑ2)σ±]E2

0 ,

while Eq. (5) yields the relation(
Ẽ1

E0

)2

= 1 − σ±(2 − εLϑ2)

1 − (2 − εLϑ2)/(1 + η2
L)

,

with ηL = (εL/|ε2|)(k2/β). Using these expressions in Eq. (4)
and introducing a new parameter q =

√
1 − εLϑ2, we come

up with the expected result3,6,24–26

tanh(qβh) = (ηL/q)±1.

For the purpose of illustrating the SPP dispersion pecu-
liarities in nonlinear plasmonic waveguides, we focus on the
Kerr nonlinearity for which Eqs. (2) and (5) can be solved
analytically. From Eq. (2), we find that

Ez1 =
(

b +
√

b2 + ac±
αa

− E2
x1

)1/2

,

where a = 2 + 4ϑ2αE2
x1, b = 4(1 − εLϑ2)αE2

x1 − 2εL, and
c± = αC± + 4εL(2 − εLϑ2)αE2

x1. The roots of Eq. (5) are
given by Ferrari’s formula.27 We assume that the plasmonic
waveguide is characterized by the parameters εL = 2.25, ε2 =
1 − ω2

p/ω
2, and ωp = 1.36 × 1016 Hz, and consider two values

of the nonlinear coefficient α = ±2 × 10−16 m2/V2, with the
plus and minus signs corresponding to self-focusing and self-
defocusing nonlinear media, respectively.

Figure 2 shows dispersion relations ωSPP(β) in the
self-focusing case (α > 0) in the case of two nonlinear
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FIG. 2. (Color online) Dispersion curves of SPPs for three values
of E0 (electric field at mode center at x = 0) in the case of 100- and
250-nm-thick nonlinear plasmonic waveguides with a self-focusing
Kerr nonlinearity (α > 0). Thin circles marked by the letters S
(symmetric mode) and A (antisymmetric mode) indicate specific
points on dispersion curves corresponding to waves moving forward
(f) and backward (b); two critical points are marked as Ac and Sc. The
light line in the nonlinear medium with α = 0 is shown as dotted. For
material parameters, refer to the text.
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FIG. 3. (Color online) Same as Fig. 2 except that SPP dispersion
curves are for 100- and 250-nm-thick nonlinear plasmonic waveg-
uides with a self-defocusing Kerr nonlinearity (α < 0). All parameter
values are identical to those used for Fig. 2.

waveguides of thicknesses 100 and 250 nm. Black curves
correspond to a linear waveguide (or weak-intensity SPP
modes propagating in a nonlinear waveguide). It is evident that
the presence of self-focusing nonlinearity profoundly alters
the dispersion of SPPs, giving birth to backward-propagating
modes and critical points in the SPP density of states. The
backward-propagating modes exhibit a negative group velocity
and are described by portions of the dispersion curves with
negative slopes. As shown by a thin horizontal line, a nonlinear
plasmonic waveguide can support up to four SPP modes at
a single frequency ω: two forward-propagating modes (Sf

and Af) and two backward-propagating modes (Sb and Ab);
the wave numbers βq corresponding to these modes are the
roots of the dispersion relation ωSPP(β) = ω. We note that a
steep growth in the intensity of the electromagnetic field with
increasing β may prevent the backward-propagating modes
from being accessible experimentally for large values of β.

The critical points28 of the SPP energy spectrum correspond
to the peaks of nonlinear dispersion curves in Fig. 2 and are
obtained by setting ∂ωSPP/∂β = 0. They arise in the event that
the total energy flow of the plasmon mode becomes zero. The
quantity of primary interest is the density of states, defined as

D(ω) =
∫ ∞

0

dβ

2π
δ[ω − ωSPP(β)] =

∑
q

βq

2π

∣∣∣∣∂ωSPP

∂β ′

∣∣∣∣−1

β ′=βq

,

because it becomes singular at these points. Simple algebra
shows that D(ω) diverges near the critical frequency ωc as
(ωc − ω)−1/2. In practice, divergency is avoided by metal

losses, but the density of states near ωc can become very
large. As a result, coherent coupling between SPPs and optical
emitters can be enhanced by a large factor at ω = ωc, limited
solely by metal losses.29,30 The same physics also intensifies
interaction between SPPs of different modes and leads to an
enhanced interaction of SPPs with the external fields. The
comparison of different curves in Fig. 2 suggests that the
positions of critical points may be changed by varying either
the thickness of the nonlinear layer or the intensity of the input
beam used to excite the SPPs.

The situation is significantly different in the self-defocusing
case (α < 0), as is apparent from the dispersion relations
plotted in Fig. 3. The self-defocusing nonlinearity still doubles
the number of SPP modes at certain frequencies, but it gives
rise neither to backward-propagating modes nor to the critical
points (the density of states corresponding to the needle-
shaped sections of the dispersion curves is finite). Another
fundamental difference of the curves in Fig. 3 from those in
Fig. 2 is that they exhibit a cutoff in the reciprocal space
for large β. The cutoff frequency and wave number strongly
depend on E0 and h, as do the positions of critical points.
Similar to the case of α > 0, the modes of a specific symmetry
that coexist at the same frequency differ by the electromagnetic
field intensities associated with them. It may also interest the
reader to note the difference between SPP dispersion in a
metallic slab surrounded by a dielectric, and that in a gap
plasmonic waveguide.15,16 In the first instance, the nonlinear
dispersion relations only marginally differ from their linear
analogs, whereas in our case a drastic reconstruction of the SPP
energy spectrum occurs even for small nonlinear coefficients,
because of the different heterostructure topology.

In summary, SPP dispersion relations have been derived
for plasmonic waveguides with an arbitrary power-law non-
linearity within the dielectric core. When applied to a Kerr
medium as an example, the dispersion relations reveal in the
case of a self-focusing nonlinearity the existence of backward-
propagating modes as well as the critical points in their energy
spectra where the density of states is enhanced. In the case of a
self-defocusing nonlinearity, backward-propagating modes do
not exist. Moreover, the density of states is not enhanced at the
critical points, which now indicate a power-dependent cutoff of
the forward-propagating modes. We note in passing that Eq. (4)
can also be used to study symmetry-breaking bifurcations
of SPP modes,31,32 if the assumption of a particular mode
symmetry in Eq. (2) is discarded. This topic requires further
investigation.
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