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Multicritical behavior of Z2 × O(2) Gross-Neveu-Yukawa theory in graphene
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Multicritical behavior of interacting fermions in graphene’s honeycomb lattice is presented. In particular, we
considered the spin triplet insulating orders, where the spin rotational symmetry of the order parameter is explicitly
broken. By casting the problem in terms of Gross-Neveu-Yukawa theory, we show that such symmetry-breaking
terms are irrelevant near the metal-insulator critical point. A finite Yukawa coupling among bosons and fermions
improves the stability of such critical point against the symmetry-breaking perturbations. Physical sources of
such symmetry-breaking terms are pointed out. Critical exponents are calculated near the transitions as well.
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The pseudorelativistic nature of low-energy quasiparticles
opened a new frontier in condensed matter physics with the dis-
covery of graphene, a monolayer of graphite.1 Even though in
its pristine state graphene appears to be a semimetal, fermions
may also find themselves in various insulating phases as well.
Depending on the relative strength of the different finite-range
components of the Coulomb interaction, the ground state can
lack a plethora of discreet or continuous symmetries. For
instance, a sufficiently strong onsite Hubbard interaction (U )
orients the spin at each site in an opposite direction from
its neighboring ones, whereas the average electron density
acquires a staggered pattern at large nearest-neighbor Coulomb
repulsion (V1).2–4 Yet another insulating phase may result from
a strong next-nearest-neighbor Coulomb repulsion, which
can induce a gapped insulating phase with finite circulating
currents between the sites on the same sublattice.5,6 This
state is named quantum anomalous Hall (QAH) state and
breaks time-reversal symmetry (TRS) upon acquiring a finite
expectation value in the ordered state. However, fluctuations
preempt appearance of a QAH state and stabilize the quamtum
spin Hall (QSH) insulator. The QSH state breaks the TRS
only for each spin component.7,8 These transitions out of
the symmetric semimetallic phase into the gapped insulating
phases are believed to be continuous and belong to the Gross-
Neveu universality class.3,4,9 Recently it has been argued
that Kekule bond density wave order may also appear when
the nearest-neighbor and second-nearest-neighbor interactions
are comparable.10 If the net interaction has an attractive
component, fermions may find various superconducting states
to condense into. For example, an onsite attraction favors
a spin singlet s-wave superconducting ground state.11 A
second-nearest-neighbor attractive interaction leads to a spin
triplet f -wave superconductor.12 A spatially inhomogeneous
superconducting ground state, which breaks the translational
symmetry of the honeycomb lattice into a Kekule pattern of
bond order parameter, is proposed as a variational ground state
for strong attractive interactions between the electrons living
on nearest-neighbor sites.13,14

In recent studies,4,9 it has been argued that near the
semimetal-insulator quantum critical points the pseudorela-
tivistic invariance of the noninteracting theory is restored.
Consequently, the dynamical critical exponent (z) is exactly
equal to unity, leading to a noncritical behavior of the Fermi
velocity. There the nature of the quantum phase transitions in
both spin singlet and triplet channels is considered, assuming

that the interacting Hamiltonian describing the transitions
does not break the spin rotational symmetry. However, the
symmetry can be broken by, for example, the crystal strain or
finite spin-orbit coupling.7 Once we introduce an anisotropy in
the order parameter along one spin direction, theory loses the
O(3) symmetry associated with the spin rotation and enjoys
a reduced Z2 × O(2) symmetry. In the present discussion, I
am concerned with the relevance of the broken spin rotational
symmetry of the order parameters near the quantum criticality.
Within the framework of the one loop ε− expansion, I found
that such anisotropy in the spin degrees of freedom is irrelevant
in the vicinity of the metal-insulator quantum critical point.
However, in a similar situation in an interacting bosonic
system, it has been shown that the order-disorder transition
is driven by a biconal fixed point, enjoying the Z2 × O(2)
symmetry.15 In this discussion, I show that the critical point
associated with the disorder-order transition exhibits full
rotational symmetry. However, this may be a consequence of
the one-loop calculations. An interesting observation is that in
presence of finite Yukawa coupling among the Dirac fermions
and the self-interacting Higgs fields, such anisotropy acquires
an additional degree of irrelevance near the transitions. Here
the Higgs bosons are composite fields.

Let us first consider a collection of free fermions on
graphene’s honeycomb lattice. The tight binding model for
spin- 1

2 fermions, on graphene honeycomb lattice with only
nearest-neighbor hopping, is defined as

Ht = −t
∑

�A,i,σ=±1

u†
σ ( �A)vσ ( �A + �bi) + H.c., (1)

where uσ ,vσ are fermioninc operators on two triangular
sublattices of the honeycomb lattice, and �bis, with i = 1,2,3
connect each site on the A sublattice with its three nearest-
neighbors. Keeping the Fourier modes near two inequivalent
Dirac points, located at the corners of the Brillouin zone,2 at
�K = (1,1/

√
3)2π/a

√
3 and �K ′ = − �K , lets us construct an

8-component Dirac fermion � = (�+,�−)�, with

��
σ (�q)= [uσ ( �K+�q),vσ ( �K+�q),uσ (− �K + �q),vσ (− �K + �q)],

(2)
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with σ = ±, which corresponds to electron spin projection
along the z axis. The tight-binding Hamiltonian in the low-
energy approximation then takes the form

Ht =
∑

�q
�†(�q)HD�(�q) + O(q2), (3)

with HD being the Dirac Hamiltonian in two dimensions,
which in our representation acquires a simple form:

HD = σ0 ⊗ iγ0γiqi . (4)

Here the four-component anticommuting gamma matrices
belong to the representation γ0 = τ0 ⊗ τ3,γ1 = τ3 ⊗ τ2,γ2 =
τ0 ⊗ τ1, where τ0 is the two-componenet identity matrix and �τ
are the standard Pauli matrices.4 We also define the remaining
two gamma matrices γ3 = τ1 ⊗ τ2,γ5 = τ2 ⊗ τ2. The two-
component Pauli matrices (σ0,�σ ) act on the spin indices.
Here, for convenience we set the Fermi velocity vF = ta

√
3/2

to unity. Before we consider the effect of electron-electron
interaction on the quasiparticle dispersion, it is useful to
register the symmetries of the free Hamiltonian. The Dirac
Hamiltonian commutes with P = σ0 ⊗ iγ3γ5, which in our
representation stands for the generator of translation. It also
commutes with IK = σ0 ⊗ iγ1γ5 and Iuv = σ0 ⊗ γ2, upon
inverting the momentum axes q1 → −q1 and q2 → −q2,
respectively. These two operators respectively correspond to
the exchange of two nonequivalent Dirac points and the
sublattices.

We now consider the effect of electron-electron interaction
on the gapless excitations spectrum in the vicinity of the
Dirac points. Due to vanishing density of states at Fermi
energy, the gapless excitations are robust against any small
electron-electron interaction. However, if the interactions are
sufficiently strong, the system may suffer semi-metal insulator
transitions. In 2 + 1 dimensions, there are two ways of
generating a dynamical mass at sufficiently strong interactions.
The first order parameter (OP) is

φ = (φs, �φt ) = (〈�†σ0 ⊗ γ0�〉,〈�† �σ ⊗ γ0�〉). (5)

φs( �φt ) preserves (breaks) the TRS and breaks chiral Uc(4)
symmetry (CS) generated by {σ0,�σ } ⊗ {I4,γ3,γ5,γ35}, where
γ35 = iγ3γ5. The TRS is defined as �σ → It�σ , where It is
an antiunitary operator defined as It = UK , with K being
the complex conjugate. Here U is the unitary part and in
graphene representation U = iγ1γ5. In our representation χs

corresponds to a finite chemical potential differing in its sign
from its neighbors, whereas �χt corresponds to a finite Néel
ordering. The second order parameter

χ = (χs, �χt ) = (〈�†σ0 ⊗ iγ1γ2�〉,〈�† �σ ⊗ iγ1γ2�〉), (6)

on the other hand, breaks the TRS for each spin component
but preserves the CS. Such a correlated ground state supports
an intrasublattice current, introduced by Haldane,5 circulating
in opposite directions on two sublattices.

It is worth mentioning that the singlet components of
the OPs (χs,φs) break the Ising-like symmetry among the
sublattices, whereas the triplet OPs ( �χt , �φt ) additionally break
the full spin rotational symmetry. Therefore, the quantum
critical points (QCPs) corresponding to the development of
χs and φt belong to the same universality class. Analogously

the QCPs associated with the generation of �χt and �φt also enjoy
the same universality class.9 Moreover, all the OPs listed above
transform as scalars under the pseudo-Lorentz transformation.
Therefore, near the quantum critical points, driving the system
out of the semimetallic phase to the ordered insulating phases
the dynamical critical exponent (z) is expected to be unity.
Nevertheless, a Loretz symmetry-breaking perturbation is
found to be irrelevant near the QCPs.4,9

Next we concentrate on the spin triplet insulating orders,
namely ( �χt , �φt ), and at the same time set χs = φs = 0. Let
us start with the onsite Hubbard interaction (U ) only, for
simplicity. However, we introduce a nontrivial anisotropy
along one particular spin projection. On a methodological
level, it appears interesting to study the relevance of such
anisotropy near the semimetal-insulator quantum critical point.
The quantum mechanical action in the presence of anisotropic
interaction along one particular spin projection reads as S =∫ 1/T

0 dτd �xLint, where

Lint =�̄σ0⊗γμ∂μ�+g‖(�† �σ‖ ⊗ γ0�)2+g⊥(�†σ3⊗γ0�)2,

(7)

where �σ‖ = (σ1,σ2) and μ = 0,1,2. μ = 0 stands for the imag-
inary time component. The Einstein summation convention
is assumed, but only over the repeated space-time indices.
Within the framework of the Hubbard model with only onsite
repulsion, one discovers g‖ = g⊥ = U/16.16

By performing the Hubbard-Stratonovich transformation,
one can rewrite the effective action corresponding to Lint in
d− dimension as

S =
∫

ddx

{
− [�̄σ0 ⊗ ∂/� + g‖ �φ‖(�† �σ‖ ⊗ γ0�)

+ g⊥φ⊥(�†σ3 ⊗ γ0�)] + 1

2
[(∂μ

�φ‖)2 + (∂μφ⊥)2] + m‖ �φ2
‖

+m⊥ �φ⊥
2+λ‖

(∑
i=1,2

φ2
i

)2

+λ⊥φ4
3 + λ̃

12

(∑
i=1,2

φi
2φ3

2

)}
.

(8)

Here the fermion bilinears are coupled to the Higgs OPs,
φis. In the Yukawa form, the theory is renormalizable in
3 + 1 dimensions, where both Yukawa (g2

‖,g
2
⊥) and Higgs-self

energy couplings (λ‖,λ⊥ ,̃λ) are essentially dimensionless.
In particular, when g2

‖ = g2
⊥, concomitantly λ‖ = λ⊥ = λ̃, �φ

corresponds to Néel order parameter.
Next, we consider the renormalization group study of the

coupling constants in the Yukawa theory, Eq. (8). Here we
restrict ourselves only to the one-loop expansion. In particular,
we are interested in studying its flow equations in d =
4 − ε dimensions. The coupling constants (λ⊥,λ‖ ,̃λ,g⊥,g‖) are
dimensionless in d = 4, and hence a controlled perturbative
expansion can be performed in terms of a small parameter ε,
define above.17 For similar studies in a system of interacting
bosons, the readers may consult Ref. 18. Subscribing to
the fact that the pseudorelativistic invariance is respected
near the QCPs,4,9 upon integrating out the fast bosonic and
fermionic modes within the four-momentum shell �/b <
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(ω2 + �k2)1/2 < � (b > 1), one can write down the differential
flow equations of the coupling constants as

dg2
‖

d ln b
= εg2

‖ − (2N + 2)g4
‖ + g2

‖g
2
⊥, (9)

dg2
⊥

d ln b
= εg2

⊥ − (2N + 3)g4
⊥ + 2g2

‖g
2
⊥, (10)

dλ‖
d ln b

= ελ‖ −
(

5

3
λ2

‖ + 1

6
λ̃2

)
− 4Nλ‖g2

‖ + 24Ng4
‖, (11)

dλ⊥
d ln b

= ελ⊥ −
(

3

2
λ2

⊥ + 1

3
λ̃2

)
− 4Nλ⊥g2

⊥ + 24Ng4
⊥, (12)

dλ̃

d ln b
= ελ̃ −

(̃
λλ‖ + 1

6
λ‖λ⊥ + 2

3
λ̃2

)
− 2Nλ⊥(g2

⊥ + g2
‖)

+ 24Ng2
‖g

2
⊥, (13)

where gx = Sd�
εgx, λx = Sd�

ελx, x = ‖, ⊥, and λ̃ =
Sd�

ελ̃. Sd is the surface of a d-dimensional unit sphere and
N corresponds to the number of 4-component spinor. Thus,
for graphene, N is equal to 2. The ultraviolet cutoff, � ≈ 1/a,
corresponds to the interval of energy over which the linear
approximation of the density of states holds.19 First we study
the flow of the Yukawa couplings in the (g2

‖,g
2
⊥) plane. Since

we consider the flow of the coupling constants in the critical
hyperplane, we wish to find the fixed point which is stable
from all directions. From the first two flow equations, Eqs. (9)
and (10), one finds that the fixed point in this plane stable from
all directions is located at

g2
‖ = g2

⊥ = ε

2N + 1
. (14)

Therefore, near the quantum critical point, two Yukawa
couplings (g2

‖,g
2
⊥) enjoy equal strength (Fig. 1). This feature

is independent of the value of N . Hence for the rest of our
discussion we set g2

‖ = g2
⊥. Next we consider the Higgs sector

of the theory. Upon setting both the Yukawa couplings equal
(= ε/5 for N = 2), we found the fixed point, in the (λ‖,λ⊥ ,̃λ)
plane stable from all direction, resides at

λ‖ = λ⊥ = λ̃ = 48

55
ε. (15)

Therefore, only the fixed point with all three Higgs and
both the Yukawa couplings having equal strength has one
unstable direction and thus is critical.20 The unstable direction
corresponds to flow of the mass of the Higgs field, m‖ = m⊥ =
m, and its flow reads as

dm2

d ln b
= 2m2 − 5

6
λm2 − 2Ng2m2, (16)

where g2
‖ = g2

⊥ = g and λ‖ = λ⊥ = λ̃ = λ. The mass of the
Higgs field (m) is proportional to the temperature. Therefore,
near the metal-insulator quantum critical point, anisotropic
coupling turned out to be irrelevant and consequently the
spin rotational symmetry is restored. The emergence of SO(3)
symmetry near the QCP happens to take place for arbitrary N .
A renormalization group study on a closely related but purely
bosonic �4 theory (g‖ = g⊥ = 0) is performed over a most
general O(n1) ⊕ O(n2) symmetric Landau-Ginzburg-Wilson
Hamiltonian, involving two fields φ1 and φ2 enriched by n1

and n2 components, respectively. In an extensive five-loop

g

g

FIG. 1. Flow diagram in the Yukawa coupling space. Fully stable
fixed point is located at g2

‖ = g2
⊥ = ε

2N+1 = ε

5 for N = 2.

ε− expansion it was found that for n1 = 1 and n2 = 2,
the disorder-order transition is governed by a biconal fixed
point possessing a Z2 × O(2) symmetry. However, the critical
exponents near the biconal fixed point are extremely close to
the ones for the SO(3) symmetric Heisenberg fixed point.15

It is worth mentioning that the critical point associated
with the order-disorder transition enjoys the O(2) symmetry
even though the interactions are invariant under a Z2 × Z2

symmetry. On the other hand, when n1 + n2 > 3, the system
finds itself in an ordered phase via decoupled fixed points.
It is admitted that the emergence of the spin rotational
symmetry near the quantum critical point may be an artifact of
the one-loop calculations. However, it is worth mentioning
that the negative eigenvalues of the stability matrix near
the spin symmetric fixed point announced above acquire
additional contributions of the same sign for finite Yukawa
couplings. Therefore, the flows of the irrelevant trajectories
toward the critical point are faster when the Higgs fields
are coupled to the fermions. By taking g‖ = g⊥ = 0, the
eigenvalues of the stability matrix at λ‖ = λ⊥ = λ̃ = 6

11ε are
(−1,−7/11,−2/11) ε, whereas those with g‖ = g⊥ = ε/5
are (−19/5,−177/55,−137/55) ε, with N = 2. Therefore, it
may be worth studying the multicritical behavior of the present
model beyond one-loop level.

Finally let us consider the other triplet order �χt = 〈�† �σ ⊗
iγ1γ2�〉 that breaks the TRS for each spin component. The
insulating state is referred as quantum spin Hall insulator
(QSHI). Upon incorporating the fluctuations in the ordered
phase around the saddle point, it also can preempt appearance
of quantum anomalous Hall insulator. A sufficiently strong
second-nearest-neighbor repulsion can take the system into
such an ordered phase.5,6 The spin rotational symmetry of
this interaction is broken in the presence of a finite spin-orbit
coupling, which is proportional to the third component of the
order parameter.7 In a graphene system, the spin-orbit coupling
∼0.01–0.2 K is extremely small in comparison to the finite
range Coulomb repulsions.21 Even though we cannot study the
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critical properties of the semimetal-insulator instability toward
the QSHI phase, at d = 2 + 1 it belongs to the Gross-Neveu
universality class of the antiferromagnetic instability. This is
because the term �̄[�σ ⊗ iγ3γ5]� can be transformed into
�̄[�σ ⊗ I4]�, while keeping the free Lagrangian invariant.4

Therefore, in the presence of a finite spin-orbit coupling the
order parameter �χt lives on the surface of the S2 sphere in three
dimensions.

To summarize, we here considered the spin triplet insulating
orders of Dirac fermions, when the spin rotational symmetry
of the interactions are explicitly broken. Performing the
Hubbard-Stratonovic transformation, we present the theory as
a Z2 × O(2) symmetric Gross-Neveu-Yukawa theory. Within
the framework of one-loop ε− expansion, where ε = 4 − d,
we found a quantum critical point that restores the symmetry
under spin rotation and drives the system from a symmetric
semimetallic phase to a ordered insulating phase.9 Even though
the conclusion is based on a simple one-loop calculation, we
found that such QCP acquires extra stability when the bosonic
Higgs fields are coupled to fermionic fields via Yukawa
interactions. This result dictates that even when there exists
anisotropy in an interacting model at the lattice scale, along
different spin directions, it smears out near the transition
and the symmetry under spin rotation is restored. Recent
quantum Hall experiments22 revealed a Kosterlitz-Thouless
scaling of the resistivity near the metal insulator transition,
when the system is tuned to filling one-half. This observation
initiated a search for the origin of the vortex-like excitations
of the Dirac fermions. One candidate for the possible order
parameter with the requisite U (1) structure is the Kekule
bond density wave, which is favored by the electron-phonon
coupling.23,24 Another possibility is the antiferromagnetic
order,25,26 favored by onsite Hubbard interaction, projected
onto an easy plane by Zeeman coupling. In the presence of
a magnetic field, the relativistically invariant band collapses

onto set of Landau levels (LLs) and existence of a half-filled
LL drives the system through a metal-insulator transition
even at infinitesimal interactions. At zero field criticality gap
shows a perfect square root dependence on the magnetic field.
If the Hubbard interaction is not too far from its critical
(zero-field) strength for insulation,19,27 scaling (sublinear) of
the interaction-induced gap is essentially determined by the
zero-field critical properties. The magnetic field then plays
the role of finite-size length scale. Such scaling function has
been computed field theoretically, as well as numerically in the
Hartree limit.25,28 In this work, I showed that the Néel order is
unlikely to be restricted in the easy plane, within the framework
of the anisotropic Hubbard model, though the source of
anisotropy in the Hubbard model is currently unknown.
However, a finite Zeeman coupling immediately restricts
the Néel order in the easy plane and may support vortex
excitations.13,16

Finally one can compute the critical exponents near the
critical point which restore the spin rotational symmetry.
These have been also previously computed in Ref. 9. Namely,
the correlation length exponent can be calculated from Eq.
(16), yielding ν = 1

2 + 21
55ε. Moreover, one can compute

the bosonic anomalous dimension, which is ηb = 4
5ε, and

the fermionic anomalous dimension ηψ = 3
10ε as well. The

fermionic anomalous dimension determines the behavior of the
fermion propagator G−1

ψ ∼ (ω2 + k2)(1−ηψ )/2 near the critical
point as one approaches the QCP from the semimetallic side
of the transition.
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