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Orbital magnetic moment and extrinsic spin Hall effect for iron impurities in gold
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1Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Prague, Czech Republic
2Institute of Theoretical Physics, University of Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany

(Received 9 August 2011; published 28 September 2011)

We report electronic structure calculations of an iron impurity in a gold host. The spin, orbital, and dipole
magnetic moments were investigated using the local density approximation (LDA) + U correlated band theory.
We show that the around-mean-field LDA + U reproduces the x-ray magnetic circular dichroism (XMCD)
experimental data well and does not lead to the formation of a large orbital moment on the Fe atom. Furthermore,
exact diagonalization of the multiorbital Anderson impurity model with the full Coulomb interaction matrix and
the spin-orbit coupling is performed in order to estimate the spin Hall angle. The obtained value γS ≈ 0.025
suggests that there is no giant extrinsic spin Hall effect due to scattering on iron impurities in gold.
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During the last several years, broad interest and atten-
tion have been devoted to the spin Hall effect (SHE) in
semiconductors1 and metals.2 This effect amounts to an
observation of a transversal spin current when a charge current
is flowing through a solid. The SHE is caused by the spin-orbit
coupling (SOC) and can occur even in nonmagnetic solids.2

Recently, an experimental observation of a giant SHE in
Au/FePt has been reported.3 A spin Hall conductivity of
∼105 �−1cm−1 and a spin Hall angle as large as ∼0.1 were
measured.3 Guo et al. suggested the effect to be of extrinsic
origin due to the Fe and Pt impurities in gold.4 They reported
a local (spin) density approximation (LSDA) plus Coulomb
U (LDA + U ) solution for Fe in Au with a very large orbital
magnetic moment ML ∼ 1.5μB .

The results of Ref. 4 contradict the LDA + U calculations
presented in Ref. 5, which reported a tiny ML ∼ 0.02μB .
The value of ML from Ref. 4 is clearly inconsistent with
the experimental x-ray magnetic circular dichroism (XMCD)
data for the ratio of ML and the effective spin moment MS ,
RLS = 0.034.6 Assuming MS ∼ 3μB leads to ML ∼ 0.1μB ,
which is an order of magnitude smaller than the prediction of
Ref. 4. It was suggested7 that the discrepancy between Refs. 4
and 5 is due to different choices of the Coulomb U . A large
value of ML is calculated with U = 5 eV (Ref. 4), while much
smaller ones are obtained with U = 3 eV.5

In this work we revisit the electronic and magnetic structure
of the Fe impurity in Au. We examine different flavors of the
rotationally invariant LDA + U method:8 the “fully localized
limit” (FLL) as well as the “around mean field” (AMF) version.
The results for the orbital magnetic moment ML are compared
with the available experimental data.

Both LSDA and LDA + U methods yield broken-symmetry
static-mean-field solutions with ordered spin and orbital
moments, whereas the true dynamical solution of an impurity
in a nonmagnetic host exhibits MS = 2〈Ŝz〉 = 0 and ML =
〈L̂z〉 = 0 when no external magnetic field is applied and
no preferential direction for the orientation of the moments
exists. In order to go beyond the static mean field and to
incorporate the dynamical electron correlations, we employ
the exact diagonalization (ED) method to solve a multiorbital
single impurity Anderson model (SIAM)9 whose parameters
are extracted from LDA calculations. We evaluate the spectral

density at the Fe impurity in Au and estimate the spin Hall
angle due to skew scattering on the impurity. A relation
between the electronic structure and the extrinsic SHE is
discussed.

As a computational model we use an FeAu15 supercell
chosen to keep Fe and its 12 nearest Au neighbors separated
from other impurity atoms. No relaxation is performed as it
is not essential for the close-packed fcc structure. We use the
lattice constant of elemental Au, a = 7.71 a.u. All calculations
are performed making use of a relativistic version (with
SOC) of LDA + U implemented in the full-potential linearized
augmented plane wave (FP-LAPW) basis.10 The radii of the
atomic muffin-tin (MT) spheres are set to 2.3 a.u. (Fe) and
2.5 a.u. (Au). The parameter R × Kmax = 7.6 determined the
basis set size, and the Brillouin zone was sampled with 343 k

points. We checked that a finer sampling with 729 k points
does not modify the results.

First, we apply the conventional LSDA with the von Barth
and Hedin11 exchange-correlation potential implemented
within the relativistic FP-LAPW method.12 Our results for the
spin and orbital moments inside the Fe MT sphere, MS and ML,
are compared with the results of other calculations in Table I.
In spite of a relatively small (16 atoms only) and unrelaxed
supercell, the present results are in fair agreement with
VASP5 results for a substantially larger and relaxed supercell
containing 108 atoms, with the tight-binding linear muffin-tin
orbital (TB-LMTO) results for a 55 atom supercell,13 and with
the Korringa-Kohn-Rostoker atomic-sphere approximation
(KKR-ASA) calculations.14 All calculations indicate a small
value of ML for Fe impurity in Au, which is typical for
3d transitional metals and alloys. The calculated ML/MS

ratio is substantially smaller than the experimental value
RLS = 0.034.6 Typically, ML is underestimated in LSDA due
to the lack of orbital polarization. This leads to a smaller ratio
ML/MS and explains the disagreement with experiment.

The calculated d-orbital density of states (DOS) for an Fe
atom and the first nearest-neighbor Au atoms are shown in
Fig. 1 (top). LSDA yields fully occupied Fe spin-up states
that are hybridized with shallow Au d states. The Fe spin-
down states are substantially more localized. Analysis of the
projected DOS shows that the eg-like (dx2−y2 + d3z2−r2 ) states
become practically fully spin polarized, while the t2g-like
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TABLE I. LSDA magnetic moments on Fe in Au (in units of μB ).

FeAu15 MS ML ML/MS

FP-LAPW 3.04 0.024 0.008
VASP (Ref. 5) 3.08 0.040 0.012
TB-LMTO (Ref. 13) 2.95 0.008 0.003
KKR-ASA (Ref. 14) 0.007

(dxy + dzx + dzy) states are only partially polarized; see Fig. 1
(top).

Now we turn to the LDA + U calculations. We compare
FLL and AMF variants of the rotationally invariant LDA + U

method. The full local occupation matrix with all spin off-
diagonal components is preserved. The double counting of
the nonspherical d-state contributions to the LSDA and the
LDA + U parts of the potential is corrected. The exchange
J = 0.9 eV was used for Fe (Slater integrals F2 = 7.75 eV,
F4 = 4.85 eV). The Coulomb U was varied from 3 to 5 eV.

The spin MS , orbital ML, and dipole MD (Ref. 15) 3d

magnetic moments are given in Table II together with the
occupation of the Fe atom d orbitals, nd . Both FLL and AMF

FIG. 1. (Color online) The spin-resolved d-orbital DOS for Fe
impurity in Au calculated with (top) LSDA and (bottom) AMF
LDA + U , U = 3 eV. Also shown are eg and t2g-like projected DOS
for Fe.

TABLE II. Magnetic moments (in μB ) and 3d occupation nd of
the Fe impurity in Au host as a function of Coulomb U .

FeAu15 FLL AMF

U (eV) 3 4 5 3 4

MS 3.18 3.21 3.29 2.94 2.90
ML 1.24 1.36 1.44 0.16 0.22
7MD 2.36 2.71 3.57 2.16 2.35
RLS 0.23 0.23 0.21 0.03 0.04
nd 6.00 6.00 5.97 6.03 6.03

flavors of LDA + U lead to an enhancement of ML with respect
to the LSDA estimate. It is due to nonspherical Coulomb and
exchange interactions, which are incorporated in LDA + U

(Ref. 16) and cause an additional orbital polarization to that
induced by the spin-orbit coupling. The value of ML increases
with the increase of the Coulomb U . It is observed that the FLL
double counting yields a substantially stronger enhancement
of ML than the AMF method.

There is also a substantial magnetic dipole moment MD

formed on the Fe impurity. When the spin-orbit coupling
is included and spin polarization is allowed, the initial
cubic symmetry is broken, and only the tetragonal symmetry
remains. This effect is rather small in LSDA. It becomes sub-
stantially enhanced in LDA + U due to the additional orbital
polarization. This effect is visible on the AMF LDA + U DOS
shown in Fig. 1 (bottom). The main difference between LSDA
and LDA + U occurs in the spin-down channel for the t2g-like
states; the dxy state peels off from the dzx and dzy states and
becomes occupied.

Experimental XMCD data are available for Fe impurity
in Au.6 The measured value for RLS = ML/[MS + 7MD] =
0.034 is in a very good agreement with our AMF LDA + U

results for U in the range between 3 and 4 eV. On the basis of
these calculations we conclude that a reasonable value of the
Coulomb U for Fe impurity in a Au host is ≈3 eV.

Our FLL results for U = 5 eV are fairly close to those
of Ref. 4, where the LDA + U double counting was not
specified. In this case, the calculated RLS = 0.21 exceeds the
experimental XMCD value by almost an order of magnitude.
Therefore, the FLL LDA +U method does not satisfactorily
describe the electronic structure of Fe impurity in Au.

Both the LSDA and LDA + U methods yield broken-
symmetry mean-field solutions with nonzero MS and ML.
This is because the part of the Coulomb interaction treated
in the Hartree-Fock-like approximation is transformed into the
exchange splitting field. This exchange field is of the order of a
few eV (see Fig. 1) and by far exceeds any imaginable external
magnetic field. Thus, the LDA + U method, most probably,
provides a reasonable description of the local-moment systems
in (strong) external magnetic fields.

When no external magnetic field is applied and no pref-
erential direction for the orientation of the moments exists,
neither LSDA nor LDA + U suffice. Recently, an attempt has
been made to go beyond the static mean-field approximation
and to solve the SIAM for the Fe impurity in Au employing
the Hirsch-Fye quantum Monte Carlo method.7 The authors
used a simplified three-orbital model with a diagonal Coulomb
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vertex and a spin-diagonal spin-orbit coupling only. These
simplifications make an estimate of the accuracy of the
quantitative results reported in Ref. 7 difficult.

In order to deal with the electronic structure of the Fe
impurity in the absence of the external magnetic field, we
apply the finite-temperature ED method17 to the complete
five-orbital d shell subject to the full spherically symmetric
Coulomb interaction, spin-orbit coupling, and a cubic crystal
field. The effective multiorbital impurity Hamiltonian can be
written as9

H − μN =
∑

kmσ

εkb
†
kmσ bkmσ +

∑

mσ

εdd
†
mσdmσ

+
∑

mm′σσ ′
(ξ l · s + �CF)σ σ ′

mm′ d†
mσ dm′σ ′

+
∑

kmσ

(Vkd
†
mσbkmσ + H.c.)

+ 1

2

∑

mm′m′′

m′′′σσ ′

Umm′m′′m′′′d†
mσ d

†
m′σ ′dm′′′σ ′dm′′σ , (1)

where d
†
mσ creates an electron in the d shell and b

†
kmσ creates an

electron in the “bath,” which models those host-band states that
hybridize with the impurity d shell. The bath is predominantly
composed of s and p bands of Au. The impurity-level position
εd and the bath energies εk are measured from the chemical
potential μ. Parameters ξ and �CF specify the strength of the
spin-orbit coupling and the size of the cubic crystal field on the
impurity. They are determined from LDA calculations as ξ =
60 meV and �CF = 32 meV. The hybridization parameters Vk

and the bath energies εk do not depend on m and σ . This is
a good approximation for Fe in Au since the lower-symmetry
components of the hybridization turn out to be considerably
smaller than ξ and �CF.

For the ED method to be applicable, the continuum of the
bath states is discretized. The parameters εd , εk , and Vk are
chosen so that the impurity Green’s function corresponding
to the discretized Eq. (1) with U = 0 approximates the
impurity Green’s function from the LDA as closely as possible.
Namely, we require several lowest moments of the respective
densities of states to coincide, M (SIAM)

n = M (LDA)
n , where

Mn = ∫
εngd

0 (ε) dε/
∫

gd
0 (ε) dε.18 The integrals run over a

1-eV-wide interval centered at the Fermi level, which confines
the LDA impurity resonance. The actual values of the bath
parameters are ε

(I)
k = 80 meV and V

(I)
k = 220 meV when

the index k is restricted to a single value and the bath
contains 10 spin-orbitals (bath I: “d + 10 spin-orbitals”). For
a bath twice as large we get ε

(II)
k ∈ {−310, 340} meV and

V
(II)
k ∈ {140, 170} meV (bath II: “d + 20 spin-orbitals”). The

position of the impurity level εd obtained from this procedure
is subsequently shifted by a Hartree-like contribution in order
to maintain the LDA impurity occupation nd = 6.18 when the
local Coulomb term is introduced.

After the parameters of the discrete impurity model are
set, the band Lanczos method19,20 is utilized to determine
the lowest-lying eigenstates of the many-body Hamiltonian
and to calculate the one-particle Green’s function Gd

SIAM.

FIG. 2. (Color online) The d-electron spectral function of the
impurity model of Eq. (1) with U = 3 eV and two variants of discrete
bath: (top) 10 bath spin-orbitals and (bottom) 20 bath spin-orbitals.

The resulting d-orbital spectral function Im(Gd
SIAM)/π is

shown in Fig. 2 for the two models of the bath and for the
Coulomb interaction parameters U = F0 = 3 eV and J =
0.9 eV (F2 = 7.75 eV, F4 = 4.85 eV). The inverse temperature
β = 500 eV−1 was used in these calculations. Although the
details of the spectral peaks depend somewhat on the particular
choice of the bath, the overall structure of the spectrum with
a peak(s) in the vicinity of the Fermi level is preserved when
the bath parameters are varied. The spin S = 1.91, orbital
L = 2.21, and total J = 3.87 moments are calculated for
the d shell from the expectation values 〈X̂2〉 = X(X + 1),
X = S,L,J . Individual components of the moments, 〈Ŝz〉 and
〈L̂z〉, vanish so that the spin-orbital symmetry is preserved and
neither spin nor orbital polarization is induced in the absence
of the external magnetic field.

Now we estimate the spin Hall angle from the skew
scattering on the impurity with a local magnetic moment.
Following Refs. 21 and 4, we evaluate the spin Hall angle
as

γS
∼= 12δ1(cos 2δ−

2 − cos 2δ+
2 )

25 − 15 cos 2δ+
2 − 10 cos 2δ−

2

, (2)

where δ1 is the p-wave phase shift, which is assumed to be
small for the nonresonant scattering, |δ1| ∼= 0.1. The d-wave

TABLE III. Impurity occupations nj and the spin Hall angle γS

obtained with two different bath models for U = 3 and 5 eV. The
nonmagnetic LDA calculation and an atomic-like calculation are
shown for comparison.

Model U (eV) nd n3/2 n5/2 γS

LDA 6.18 2.62 3.55 0.008
Bath I 3 6.18 2.68 3.50 0.011
Bath I 5 6.18 2.85 3.33 0.021
Bath II 3 6.18 2.94 3.24 0.026
Bath II 5 6.18 2.94 3.24 0.026
No bath 3–5 6.18 2.98 3.19 0.029

113112-3



BRIEF REPORTS PHYSICAL REVIEW B 84, 113112 (2011)

phase shifts δ+
2 for j = 5/2 and δ−

2 for j = 3/2 are related
to the occupations n3/2 and n5/2 of the corresponding 3d

subshells via the Friedel sum rule δ
(j )
2 = πnj/(2j + 1).9 The

Hall angle γS vanishes when all d orbitals are equally occupied
(δ−

2 = δ+
2 ), it grows as an increasing spin-orbit coupling favors

the occupation of the j = 3/2 subshell, and it eventually
reaches a maximum γ

(max)
S = 4δ1/5 when the j = 3/2 subshell

is completely filled (n3/2 = 4 and δ−
2 = π ).

The occupation numbers nj and the Hall angle γS obtained
for the Hamiltonian of Eq. (1) are listed in Table III for
the two bath models introduced earlier and for U = 3 and
5 eV. Results of the nonmagnetic LDA calculation and of an
atomic-like calculation without any bath orbitals are shown
for comparison. The angle γS increases when the Coulomb U

is added and keeps growing with further increase of U . For
a fixed value of U , the Hall angle decreases with increasing
hybridization V since the spin-orbit splitting in the host band
is negligible, and the hybridization thus effectively reduces the
spin-orbit effects in the Fe d shell.

Our results are consistent with the measurements of Fert
et al.22 of the anomalous Hall coefficient of ∼0.01 in dilute 3d

noble metal alloys. The angle γS ≈ 0.025 we obtain is 50%
smaller than the earlier theoretical estimate γS = 0.055 by Gu
et al.7 and substantially smaller than the “giant” γS = 0.11
reported by Seki et al.3 Note that the results of Ref. 3 were
very recently reexamined in Ref. 23, where it was shown that
the increase of Au-Hall cross thickness from 10 to 20 nm

substantially reduces the spin Hall angle. Moreover, very
recent calculations24 proposed that light impurities, C, N, and
Ar, can lead to a substantial enhancement of the spin Hall
effect in gold, and hence the observed Hall angle could be an
effect of sample contamination. Thus the existence and origin
of a “giant” spin Hall effect in Au remains controversial.

To summarize, our calculations show that the AMF
LDA + U method with the Coulomb U around 3 eV
reproduces very well the XMCD experimental data for Fe
impurity in an Au host. The calculated orbital moment at
the Fe atom, ML = 0.16 μB , is almost ten times smaller
than that reported by Guo et al.4 We explicitly show that the
reason for this difference is not only in the use of a smaller
value of U (Ref. 7) but also in the appropriate choice of the
LDA + U flavor. Furthermore, using the exact diagonalization
of a multiorbital impurity model, we estimate the spin Hall
angle due to the scattering on the Fe impurity in the Au
host as γS ≈ 0.025. It is substantially smaller than γS = 0.11
reported by Seki et al.3 We conclude that scattering of Fe
impurities in Au does not yield a giant SHE.
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