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Localization in shuffled-lattice random-fill structures
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Here, we demonstrate that stop-gaps can arise in “shuffled-lattices” dielectric structures even for maximally
possible degree of disorder in such structures. Sharp minima of densities of states are observed in spectral regions
corresponding to band gaps of unperturbed structures. Stop-gaps do survive even when shuffled-lattice sites are
randomly filled with scatterers.
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It is known already for quite a long time that band gaps
and sharp changes in transmission/localization length in non-
absorbing dielectric structures are not the exclusive privilege
of the perfect order. One does not need to have a crystalline
self-translated structure as was initially professed in pioneering
works of E. Yablonovich1 and S. John.2 They are not even
optimal for having the largest band gaps [for example, for two-
dimensional (2D) the optimal structures are quasiperiodic ones
with long-range orientational, but not translational, order3–5].
To add more, fractal structures, such as one-dimensional (1D)
Fibonacchi6,7 or Cantor lattices8,9 also demonstrate band gaps.
Finally, even highly amorphous structures such as random
continuous networks of dielectric rods can exhibit band gaps.
Recently, it was shown that such a three-dimensional (3D)
random diamond lattice (termed “an amorphous diamond”)
exhibits completely isotropic complete band gaps even larger
than gaps of the perfectly periodic diamond structure.10,11 The
example of the amorphous diamond is especially interesting
since it shows that careful introduction of randomness can
lead to enhancement of the desired spectral features of the
structure. Generally, interplay of randomness and order in
structures of dielectric scatterers is quite complicated. For
example, for finite structures, moderate random deviation in
size/shape and positions of scatterers might either inhibit or
enhance transmission in regions of the band gap of the perfectly
periodic structure.12–14 In 1D case, it is even possible to inhibit
transmission in a desired frequency region by introducing
an appropriate correlation.15 A strong uncorrelated form or
position disorder tend to obliterate spectral structure associated
with interference from individual scatterers (in particular,
Bragg gaps).13,16 However, when correlations are present, the
result can be quite unexpected.

In this work, we demonstrate that for certain kinds of
structures even a maximally possible randomness does not
obliterate spectral features associated with band gaps. To
illustrate the concept, let us start with studies of localization in
the simplest 1D structures. We assume that the stack is formed
by two different kinds of intermittent layers: the first one (the
layer A) has the refractive index na and the second one (the
layer B) has the refractive index nb, the permeability of both
layers is taken to be unity. We take that widths of A layers
remain constant and equal to a, but these layer positions are
subject to random perturbations; thicknesses of j th B layer
are defined as bj = b + δb

j , where the average thickness of B
layers is b. The localization length,L, for 1D case is calculated

using a standard definition:17 L−1 = −〈ln |T |/l〉, where |T | is
the amplitude transmission coefficient and l is the total length
of the stack, l = ∑N

j=1(a + bj ), N being the number of both
A and B layers; 〈. . .〉 denotes configurational average. For 1D
structures, the transmission coefficient, T , can be calculated
in a standard manner using the transfer matrix formalism.18

Here, we consider a normal incidence.
First of all, let us consider the case when the random

perturbations of distances between A layers are uncorrelated.
For simplicity sake (and without much loss of generality), we
take random perturbations of B layers widths to be distributed
homogeneously in the interval [−�/2,�/2]. Intuitively ex-
pected results one can see in Fig. 1: for a perturbation with the
amplitude � much smaller than the average distance b, one
has a pronounced minimum of the localization length in the
frequency region of the band gap of the ideal structure. When
the perturbation amplitude increases, the localization length
outside the gap decreases, inside the gap and in the vicinity of
the gap it increases.14 For large �, the gap is flattened out. Now
let us consider the case when thicknesses of the neighboring B
layers are correlated in such manner that A layers are shuffled
randomly within defined intervals [see Fig. 1(a)], i.e., one
has bj+1 = b − δj + δj+1, where random perturbations δj are
independent (and taken to be homogeneously distributed in
the interval [−�/4,�/4]). Immediately, one sees that the
localization length minimum corresponding to the band gap
of the ideal nonperturbed structure is affected in much smaller
degree than in the case of uncorrelated B layer widths. For
moderate �, the minimum is only slightly changed, for larger
�, it becomes shallower but is neither shifted nor smeared.
Even for maximal possible disorder there is a sharp dip in the
localization length [see Fig.1(c)]. Even more, if the cells of
the shuffled lattice are randomly filled with scatterers, the
minimum is also surviving the maximal possible position
disorder. In Fig. 1(d), it is shown that random filling with
0.75 probability makes the minimum narrower and shallower
than for the completely filled shuffled lattice. However, the
gap remains rather sharp.

The key to understand such survival of spectral features
associated with the long-range order despite large random
perturbation is the fact of shuffled lattices being an example
of a hyperuniform structure.19 The distribution of points in
the d-dimensional space is hyperuniform if the variance of
the point number in a sphere with the radius R grows as Rd−1.
Whereas for uniformly random distributions of points (say, the
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FIG. 1. (Color online) An example of 1D (a) “shuffled lattice”
structure; dotted lines depict cell borders and gray blocks represent
A layers. (b) The localization length L for the uncorrelated position
disorder of A layers. The inset in (b) shows a band-gap diagram
for the perfect structure demonstrating the position of the Bragg
band gap. (c) L for the shuffled-lattice position disorder of A layers.
(d) L for the shuffled-lattice position disorder of A layers with
randomly filled cells; cells are filled with the probability 0.75. In
(b)–(d), solid, dashed, dash-dotted, and dotted curves correspond to
� = 1, 6, 12, and 24l0, the structure of 1000 triple (B-A-B) cells was
taken, a = b = 12l0, refractive indices are na = 1.458 (as for silica),
nb = 1, � = (a + b)ω/2πc is the normalized frequency and l0 is the
characteristic length scale; the incidence is normal.

Poissonian one) the variance grows as the volume of the sphere,
and not as the surface area. Usual perfectly periodic structures,
fractal ones, and the most recent example of an amorphous
diamond are hyperuniform structures.5,10,11,19 Uncorrelated
position disorder breaks hyperuniformity, whereas even for
the largest possible disorder the shuffled-lattice structure
remains hyperuniform. It preserves long-range order,20–22 i.e.,
interference effects, akin to those leading to formation of
Bragg band gap, do survive. Naturally, the shuffled lattice with
some scatterers randomly removed is also the hyperuniform
one. In this case, one is also to expect preservation of
the long-range order and collective interference effects. The
consideration given above leads to a suggestion that preser-
vation of the collective interference for the randomly filled
shuffled-lattice structures will take place in structures of higher
dimensions.

To demonstrate that it is indeed so, let us consider a simple
example of the dielectric structure composed of a finite square
lattice of square rods in the air [an example of its shuffled
and randomly filled version one can see in Fig. 2(a)]. We
assume that the shuffling is performed by random shifting
of rods from the center of the j th cell by the vector �rj =
δx
j �nx + δ

y

j �ny , where �nx,y are unit vectors in directions of x

and y axis, δx,y

j are independent random perturbations taken to
be homogeneously distributed in the interval [−�,�], where
� � L − a, L being the period of the lattice and a is the
side of the square rod. We investigate a projected localized
density of states (PLDOS) in the frequency region of the first

FIG. 2. (Color online) (a) A part of band-gap diagram for the
perfect square lattice corresponding to the first Bragg gap; right inset
shows the path through the first Brillouin zone; on the left inset
is an example of a shuffled square lattice structure with 10% of
scatterers missing. A maximal possible degree of shuffling disorder
is considered. (b) Examples of the PLDOS for TM field averaged over
50 realizations of the structure. Thick and thin solid lines correspond
to regular structure and the shuffled structure; dashed and dash-dotted
lines correspond to “overshuffling” when scatterers can be moved
outside the cell by 0.25a and 0.75a; a is the scatterer side. (c)
Examples of the PLDOS for TM field averaged over 50 realizations
of the structure and (d) corresponding to single realizations of the
structure are shown. Solid lines correspond to the shuffled structure
with all filled cells; dashed and dash-dotted lines correspond to 5
and 10% average missing cells in the same structure; the structure
is 20 × 20 cells. Refractive index of the square scatterers is, as for
silicon, 3.42. Greens function is calculated in the geometrical center
of the structure. � = Lω/2πc is the normalized frequency.

band gap of the unperturbed structure [its band diagram in this
region is shown in Fig. 2(a)]. For simplicity sake, we consider
only TM waves (results for TE waves are quite similar). The
PLDOS for the frequency ω at the point �r can be defined in the

standard manner as ρ(ω,�r) = 2| �d|2ω
πc2 �nd · Im[

←→
g (�r,�r,ω)] · �nd ,

i.e., the PLDOS is the imaginary part of the macroscopic
dyadic Green function convoluted with unit vectors �nd in
the direction of the vector of the emitter’s dipole moment �d ,
where the dyadic Green function is defined from the solution
of the following inhomogeneous wave equation for the electric
field:23

− 1

c2
ε(�r)

∂2 �E(�r,t)
∂t2

+ ∇ × ∇ × �E(�r,t) = μ0
∂ �J (�r,t)

∂t
,

(1)

�E(�r,t) =
∫ +∞

−∞
dt ′

∫
dr ′ ←→

g (�r,�r ′,t − t ′)μ0
∂ �J (�r ′,t ′)

∂t ′
,

In these equations, ε(�r) is a position-dependent permittivity
and �J (r,t) is the source current. The Fourier domain dyadic

Green function is
←→
g (�r,�r ′,τ ) = ∫ ∞

−∞
dω
2π

e−iωτ
←→
g (�r,�r ′,ω). The

key to our approach is that the calculation of the Green function
can be accomplished by solving Eq. (1) with the excitation
current of the special form: �JGF(�r,t) = �(t) �d(�r ′)δ(�r − �r ′)/μ0,
where �(t) is a unit step function, �d(�r ′) is a dipole source
at position �r ′. Using this expression with Eq. (1), one gets
that the electric field values equal to the time domain Green
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dyadic values convolved with the source dipole: �E(r,t) =←→
g

(r,r ′,t) · �d(�r ′). For our simulations, we have adopted this
method calculating the time domain Green function by using
a homemade FDTD Maxwell equation solver.24 The results
obtained are in full correspondence with the ones obtained with
a fluxes-based method of PLDOS calculation.25 Results for the
PLDOS calculation one can see in Fig. 2 for the structure of
20 × 20 cells. One can see there examples of the PLDOS
for an individual realization [see Fig. 2(d)] and examples of
the PLDOS averaged over 50 realizations [see Fig. 2(c)]. For
comparison, the PLDOS for the ideal unperturbed structure
is shown in Fig. 2(b). Notice, that overshuffling (i.e., when
scatterers can randomly move out of the cell) quickly destroys
the gap [see Fig. 2(b)]. Even when the scatterer cannot
move out of the nearest row of cells surrounding the given
one, the gap is flattened out. But even maximal possible
shuffling disorder does not lead to the degradation of the
gap. Similarly to 1D case, the gap becomes narrower and the
low-frequency band edge shifts rather pronouncedly toward
higher frequencies. The PLDOS for different realizations of the
structure differs mainly by the band edge shifts, so the PLDOS
averaged over different realizations [50 for the examples
considered in Figs. 2(b) and 2(c)] is quite similar to the PLDOS
for a single realization. So, the PLDOS for the maximally
shuffled lattice is rather close to the PLDOS for the unperturbed
structure; the influence of the long-range order unbroken by
shuffling is obvious. However, the shape of the field localized

FIG. 3. (Color online) Examples of individual realizations of
TM electric field distribution for the structure considered in Fig. 2.
(a) The localized field distribution for the unperturbed square lattice.
(b) The localized field distribution for the maximally shuffled lattice
for the frequency corresponding to the gap [� = 0.27 for Fig. 2(c)].
(c) The delocalized field distribution for the maximally shuffled lattice
for the frequency corresponding to the edge of the gap (� = 0.35).
(d) The localized field distribution for 10% missing scatterers in the
maximally shuffled lattice (� = 0.3). Other data are as for Fig. 2.

in the gap shows rather drastic difference. The field localized
in the ideal structure has a symmetry defined by the lattice [see
Fig. 3(a)]. Even a delocalized field has the same symmetry; if
one places the monochromatic point isotropic source with the
radiation frequency outside the gap in the center of the cell of
the ideal structure, the field would leak in certain directions
defined by the geometry of the structure.26 But for the
shuffled structure neither localized nor leaking fields exhibit
any visible symmetry, and for different realizations, field
profiles could be quite different. Simultaneously, the region
of localization increases not very strongly in comparison
with the ideal structure [see Fig. 3(b)]. One understands
such behavior noticing that preservation of the long-range
order does not mean a preservation of the local order. On
a smaller scale the structure is essentially disordered. Thus
one has a curious random cavity effect; the field is localized
due to the long-range order, but the field profile can be quite
arbitrary.

For the structure with some rods randomly missing, the
difference between 1D and 2D cases is more pronounced. One
can see in Fig. 2(d) that for an individual realization of the
maximally shuffled structure, narrow peaks of the PLDOS
arise in the gap region. For different realizations, positions
of these peaks are different. In Fig. 2(c), it can be seen
that for comparatively small percent of missing rods (5%
in the depicted example) the gap in the averaged PLDOS
still survives. However, already for 10% missing rods the
gap is obliterated completely; peaks for different realizations
of the structure are overlapping. The nature of these peaks
in the density of states can be guessed by looking at the

FIG. 4. (Color online) An examples of an individual realization of
TM electric delocalized field distribution for the structure considered
in Fig. 2 with 10% missing scatterers in the maximally shuffled
lattice (� = 0.3). The structure is 100 × 100 cells.The field intensity
is given in respective units. Only the central part of the structure is
shown, approximately 40 × 38 cells. The inset shows the frequency
dependence of the PLDOS for such a structure; the arrow points to
the frequency of the depicted field.
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field profile corresponding to the center frequency of such a
peak. An example is shown in Fig. 4. Here, the delocalization
occurs due to occasional closeness of missing rods. The field
concentrates in the regions of low permittivity. So, the chain
of cavities is formed and the field can leak through this chain
toward the edge of the structure. When the percentage of the
missing rods increases, one has higher chances for formations
of such a cavity chain. Notice that for a larger structure (for
example, 100 × 100 shown in Fig. 4, see also the inset),
peaks corresponding to the leaky modes arising in the gap
are narrower than for smaller structures.

To summarize, we have shown that even maximally possible
shuffling disorder occurring in the otherwise periodic lossless
dielectric structures does not break band gaps arising due
to collective interference effects, whereas usual uncorrelated
positional disorder washes them out completely. We have
demonstrated this effect on examples of 1D and 2D structures

by calculating the localization length in the 1D case and
the PLDOS for the 2D case. The shuffled-lattice structure is
hyperuniform and is preserving the long-range order required
for band-gap formation. This long-range order is not broken
if some of the scatterers are missing; so, the band gap can
survive even if some high-index layers or rods are randomly
missing. It is interesting that for the shuffled lattice, the region
of the field localization is not much larger than for the ideal
unperturbed structure. However, the profile of the localized
field can differ rather strongly for different realizations of the
structure. Such a random cavity effect might find applications
in nanophotonics and QED.
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