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First-principles calculation of the structural stability of 6d transition metals
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The phase stability of the 6d transition metals (elements 103–111) is investigated using first-principles
electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence
trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the
lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity
and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial
charge density and, thus, in the structural energy difference.
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One of the characteristic properties of solid materials is the
crystal structure. The thermodynamically most stable structure
for a given solid has been predicted with good accuracy over
the years by using different density functional theory (DFT)1,2

schemes. The common procedure used is to calculate the
equation of state of different competing crystal structures,
and then the most stable state at ambient pressure is the one
that possesses the lowest total energy. Nonmagnetic transition
metals crystallize in three kinds of close-packed structures:
hexagonal-close-packed (hcp) structures, face-centered-cubic
(fcc) structures, and body-centered-cubic (bcc) structures, and
they follow the general hcp-bcc-hcp-fcc structural sequence as
one progresses from group 3 toward group 11. In magnetic 3d

metals, magnetism leads to decoupling of bands of different
spin, which in turn, dictates a different structural variety.3

The conventional explanation for the normal structural se-
quence can be found by considering the d-electron occupation
and the shape of the density of states (DOS).4 In transition
metals, the valence part of the DOS can be separated into
two parts, one narrow d part superimposed on a relatively
broad part from the sp-like states. The shape of the d part, in
general, can be explained from the so-called canonical band
theory, which only takes the structure into consideration but
not the atomic type. From this picture, the lattice stability of
a transition metal can be thought of as a competition between
the kinetic (one-electron) energy, which favors structures with
low DOS near the Fermi level and the electrostatic (Madelung)
interaction favoring the high-symmetry structures.5

In recent years, electronic-structure calculations have been
performed for elements heavier than the actinides.6–8 Even if
these elements have never been synthesized in macroscopic
samples big enough for experimental probing of crystal
structure, it is only natural to ask if the accepted theories
still hold for the heavier transition metals. One particularly
important question is the role of relativistic terms. In heavy
elements, relativistic effects could have a large impact, since
their strength increases with increasing nuclear charge. In
common electronic-structure studies, the effect of relativity
is taken into account within the so-called scalar-relativistic
(SR) approximation. According to that, the mass-velocity term
and the Darwin term are treated properly while the more

complicated spin-orbit (SO) term is neglected. If the SO term
is to be considered, it can be treated either as a perturbation
or by solving the four-component Dirac equation. The latter is
usually referred to as the fully relativistic (FR) treatment.

This Brief Report aims to investigate the structural sequence
in the case of the 6d transition metals (Table I), taking the rel-
ativistic effects into particular consideration. The calculations
were performed using DFT implemented within the exact-
muffin-tin-orbitals (EMTO) method10–13 and the local-density
approximation (LDA).14 The reason for this choice is that,
according to previous studies on the equilibrium properties
of transition metals,11,15 the LDA performs somewhat better
for the heavy transition metals compared to the common
gradient level approximations. For the bcc, fcc, and hcp lattices
285, 240, and 539, respectively, uniformly distributed k-points
were used in the irreducible Brillouin zone. For the muffin-tin
orbitals, an spdf basis (�max = 3) was adopted. Increasing the
basis set to spdfgh (�max = 5) gave a change in total energy of
1 mRy and a decrease in the Wigner-Seitz radius of 0.02 Bohr.
Accordingly, we set out error bars at 1 mRy in the structural
energy difference and at 0.02 Bohr in the Wigner-Seitz radius.
The Green’s function was calculated on a semicircular contour
using complex energy points distributed exponentially. For the
slope matrix, we employed the two-center Taylor expansion.16

The contour integration depth ranged from 2.5 Ry (below the
Fermi level) for the early 6d metals (Lr, Rf, and Db) to 1.0
Ry for Sg and 1.5 Ry for the latter metals (Bh, Hs, Mt, Ds,
and Rg). For the 2.5-Ry contours, 36 energy points were used,
while 21 points were used for the remaining contours. For
elements 103–105, the 5f, 6p, 6d, and 7s states and, for the
rest of the elements, the 6d and 7s states were treated as
valence states. To be able to discern the effect of relativity, the
EMTO method was applied using a SR and a nonrelativistic
(NR) approximation as well as a FR calculation (solving the
four-component Dirac equation). In all these three cases, the
core states were treated as FR and were relaxed during
the self-consistent iterations.

For comparison, in addition to the 6d transition metals, we
also calculated the bulk properties of 4d metals. The theoretical
equilibrium Wigner-Seitz radii (w) and bulk moduli (B) are
shown in Fig. 1 as a function of the periodic-table group. Good
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FIG. 1. Equilibrium bulk properties of 4d and 6d transition
metals calculated for the ground-state crystal structures. (Main figure)
Wigner-Seitz radii of 4d and 6d transition metals. (Inset) Bulk
moduli for the 4d and 6d transition metals. For the 4d metals, the
experimental data17 are also shown (stars).

correspondence between the calculated and the measured17

bulk properties of 4d metals confirms the accuracy of our
calculations. The small underestimation of the equilibrium
volume for some of the 4d metals is due to the LDA employed
in the present Brief Report.15 We observe that the bulk
parameters of the 6d metals follow a similar trend as those
of the 4d metals: The lowest equilibrium volume (largest bulk
modulus) corresponds to Hs (Ru). The early 6d metals possess
rather similar Wigner-Seitz radii and bulk moduli as the early
4d metals, whereas, the middle and late 6d metals have about a
10% (20%) larger Wigner-Seitz radius (bulk modulus) than the
corresponding 4d elements. The nearly parabolic Wigner-Seitz
radius (bulk modulus) versus the d occupation obtained for the
6d series can be understood from the Friedel model of cohesion
in transition metals.18 According to this model, the maximum
of the cohesion energy is realized for the half-filled d band,
and this is reflected by the maximum of the bulk modulus and
the minimum of the equilibrium volume.

The structural energy differences for the 4d and 6d

metals are plotted in Fig. 2 using the fcc total energy as
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FIG. 2. (Main figure) Total energies of the bcc (closed symbols)
and hcp (open symbols) structures relative to that of the fcc structure
for the 6d metals. (Inset) Energy differences for the 4d metals. For
both series, the SR approximation was used.

the reference level. For the 4d metals (inset), the expected
hcp-bcc-hcp-fcc sequence is correctly predicted by the theory.
The characteristic double-peak behavior of the bcc curve can
also be noted. The two bcc metals (Nb and Mo) are clearly
more stable in the bcc phase than in the fcc or hcp phases.
On the other hand, the last two fcc metals (Pd and Ag) turn
out barely to be stable in the fcc phase: the corresponding
bcc-fcc (hcp-fcc) structural energy differences being less than
2 mRy (1 mRy) for Ag. We would like to point out the good
parallelism between the present results for the 4d metals and
those obtained by the linear muffin-tin orbitals method.4 The
topology of the structural energy difference curves for the 6d

metals is the same as that for the 4d metals. However, there
is a striking difference, namely, that the last two 6d elements
(Ds and Rg) are predicted to be stable in the bcc structure
rather than in the fcc structure, as happens for the lighter late
transition metals. That is, the noble 6d metals turn out to have
the bcc crystallographic phase.

To find a reason for the above anomalous behavior at end
of the 6d series, we perform additional calculations using the
NR limit. For roentgenium, this gives an energy difference
of Ebcc − Efcc = +1 mRy, compared to −21 mRy obtained

TABLE I. The 6d transition metals. Shown are the atomic number, the chemical symbol, the electronic
configuration, the half-life, and the name. The electronic configuration is given with the initial [Rn]5f 14

suppressed. The half-lives are taken from Ref. 9.

Chemical symbol Electronic configuration Half-life Name

103Lr 6d17s2 3.6 h Lawrencium
104Rf 6d27s2 75.5 s Rutherfordium
105Db 6d47s1 16 h Dubnium
106Sg 6d57s1 21 s Seaborgium
107Bh 6d67s1 17 s Bohrium
108Hs 6d77s1 14 s Hassium
109Mt 6d87s1 0.72 s Meitnerium
110Ds 6d97s1 7.6 s Darmstadtium
111Rg 6d97s2 3.6 s Roentgenium
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FIG. 3. (Color online) (Upper panel) DOS for silver in the bcc
structure. (Lower panel) DOS for roentgenium in the bcc structure.
NR (solid line) and SR (dashed line) approximations were used. s

DOS (red, dark gray), p DOS (green, light gray), and d DOS (black)
are shown.

in the SR approximation (Fig. 2). Thus, in the NR limit, the
fcc lattice is predicted to be the most stable of the two cubic
structures, in agreement with the other noble metals in group
11. We mention that the bcc-fcc structural energy difference
for Ag changes in the sub-mRy level when switching off
the SR terms. For a qualitative explanation for the disclosed
large impact of the mass-velocity and Darwin terms, we
investigate the DOS (Fig. 3, lower panel) calculated at the
equilibrium volume of bcc roentgenium, using both the NR
and the SR limits. The most prominent difference between
the two electronic structures is that the d DOS crosses the
Fermi level EF when the SR terms are included. This gives an
increase in the DOS at the Fermi level, from D(EF )NR = 5.9
to D(EF )SR = 11.8. The DOS increase is accompanied by a
substantial increase in the interstitial electron density. To get
an estimate of the charge density in the interstitial region, we

TABLE II. Number of d and s states at the Fermi level and
multipole moment Q40.

NR d s Q40 SR d s Q40

fcc Rg 9.656 0.689 0.028 fcc Rg 9.060 1.223 0.029
bcc Rg 9.650 0.693 0.030 bcc Rg 8.967 1.300 0.034
fcc Ds 8.794 0.584 0.033 fcc Ds 8.030 1.085 0.040
bcc Ds 8.807 0.583 0.036 bcc Ds 8.014 1.147 0.046
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FIG. 4. (Color online) DOS for darmstadtium in the bcc structure.
NR (solid line) and SR (dashed line) approximations were used. s

DOS (red, dark gray), p DOS (green, light gray), and d DOS (black)
are shown.

have tabulated the the first nonzero multipole moment Q40 of
the charge density n(r) in Table II, where Q�m is defined as

Q�m =
√

4π

2� + 1

∫ (
r

w

)�

n(r)Y�m(θ,φ)dr − Zδ0,0,

with integration performed over the Wigner-Seitz cell (Y�m

stand for the real harmonics, and Z stands for for the nuclear
charge). As can be seen, the interstitial density and, thus, the
multipole moment increase when the SR terms are switched on.
An explanation for the above trend can be found in the electron
transfer from the d states to the relativistically contracted s

states arising from the induced sd hybridization. As more
electrons are transferred into the s states, the interstitial density
is increased, since the s electrons have a larger spatial extent
than the d electrons. Larger interstitial density, in turn, leads
to larger Madelung interaction, which favors the bcc structure
against the fcc one. The d and s occupations for different
structures of Rg are listed in Table II. Indeed, it is found that the
SR terms induce the d-s charge transfer. In mercury, a similar
argument has been proposed to make the fcc lattice stable
compared to the hcp lattice, but there, the charge transfer is
from s to p states, favoring a more covalent type of bonding.19

As a comparison, in Fig. 3 (upper panel), we also show
the DOS for bcc silver, the corresponding 4d element in
group 11, in the NR and SR limits. In this case, the band
broadening caused by the SR effects is not enough to force
the d part of the DOS to cross the Fermi level, and silver has
its usual sp-conduction-electron behavior. For an assessment
of the relativistic effects on the DOS for the other group-11
metals using a full-potential local-orbitals method, the reader
is referred to Ref. 20.

Additional calculations were also performed for the group-
10 element darmstadtium, giving an energy difference of
Ebcc − Efcc = +1 mRy in the NR limit to be compared with
−3 mRy in the SR limit. Hence, in this case, the SR terms
stabilize the bcc structure as well. The DOS for darmstadtium
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in different relativistic limits can be found in Fig. 4. As seen,
the d-structured part crosses the Fermi level both in the NR and
in the SR limits, indicating that the d electrons are delocalized
and that electron transfer from d to s states is possible in the
same way as for roentgenium. Investigating the number of
states at the Fermi level for Ds (Table II), one can note that the
s occupation increases while the d states decrease as the SR
terms are taken into account.

To further gauge the effects of relativity, we also considered
the effect of SO coupling by making calculations in the
FR limit. The SO coupling has been predicted to alter the
structural stability in polonium,21 and thus, it might have a
marked effect for the 6d transition metals as well. The SO
term does not change the stability of the bcc phase, giving
an energy difference of Ebcc − Efcc = −20 mRy, compared
to −21 mRy obtained for SR. In the case of darmstadtium,
the energy difference changes from Ebcc − Efcc = −3 mRy in
the SR limit to +1 mRy in the FR treatment. Thus, within the
present error bar, the fcc and bcc phases of Ds have similar
total energies.

To conclude, we have investigated the structural stability
of the 6d transition metals, finding anomalous behavior in

the structure sequence, which was not expected from the
established theories. The reason is found to be the SR terms,
which provide a major change in the interstitial charge density.
In the case of elements 110 and 111, this change is enough to
make the Madelung interaction play a larger part than it does
in the lighter group-10 and group-11 metals, respectively. That
relativistic effects, such as SO coupling, can make a metal
favor one structure over another is not very common (one
example being the simple cubic polonium).21 On the other
hand, the fact that the SR terms can induce structural changes
in high-symmetry metals has to the authors knowledge not
been found anywhere else. Our findings suggest that further
studies on heavy elements could be an interesting endeavor to
perform, since results might be obtained that place established
theories under a new light.
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