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Nonadiabatic effects in the braiding of non-Abelian anyons in topological superconductors

Meng Cheng, Victor Galitski, and S. Das Sarma
Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 15 June 2011; revised manuscript received 19 August 2011; published 30 September 2011)

Qubits in topological quantum computation are built from non-Abelian anyons. Adiabatic braiding of anyons
is exploited as topologically protected logical gate operations. Thus, the adiabaticity upon which the notion
of quantum statistics is defined plays a fundamental role in defining the non-Abelian anyons. We study the
nonadiabatic effects in braidings of Ising-type anyons, namely, Majorana fermions in topological superconductors,
using the formalism of time-dependent Bogoliubov-de Gennes equations. Using this formalism, we consider
nonadiabatic corrections to non-Abelian statistics from (1) tunneling splitting of anyons imposing an additional
dynamical phase to the transformation of ground states and (2) transitions to excited states that are potentially
destructive to non-Abelian statistics since the nonlocal fermion occupation can be spoiled by such processes.
However, if the bound states are localized and being braided together with the anyons, non-Abelian statistics
can be recovered once the definition of Majorana operators is appropriately generalized taking into account the
fermion parity in these states. On the other hand, if the excited states are extended over the whole system and
form a continuum, the notion of local fermion parity no longer holds. We then quantitatively characterize the
errors introduced in this situation.
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I. INTRODUCTION

Fragility of quantum coherence against external pertur-
bations is one of the main obstacles in building a quantum
computer. Maintaining coherence in the presence of environ-
ment is thus among the very first challenges in the realization
of quantum computation. Topological quantum computation
(TQC)1,2 provides an elegant solution to the problem: Quantum
information is encoded and manipulated in a nonlocal way
such that weak local perturbation has essentially no influence
on the computation procedure so the decoherence is eliminated
at the hardware level. To achieve this goal, qubits are
built out of non-Abelian anyons, which are exotic particles
obeying non-Abelian statistics, and adiabatic braidings of
the anyons generate quantum gates. The intrinsic protection
of quantum coherence against environmental noise makes
TQC a very appealing scheme for quantum computation.
It is thus very desirable to understand the properties of
non-Abelian anyons as well as to search for quantum phases
of matter that host them, known as non-Abelian topological
phases.

Quantum statistics describes how many-body wave func-
tions transform under the exchange of any pair of particles.
The unitary transformations form representations of the braid
group.3 In (2 + 1)-dimensions, non-Abelian statistics happens
when there are degenerate ground states, and braidings (pair-
wise exchanges) result in unitary rotations in the ground-state
subspace, corresponding to higher-dimensional representation
of the braid group in two dimensions. These braiding op-
erations form the basic set of topologically protected gates
to perform quantum computation. The simplest of such
anyons, and probably the only one that can be potentially
realized, is the so-called Ising-type anyons. It has a natural
interpretation as Majorana fermions that are self-conjugate
neutral fermionic excitations. Such excitations are found
to exist in some topological superconducting systems such
as two-dimensional spinless chiral p-wave superconductors.
They are in one-to-one correspondence with nondegenerate

zero-energy states in superconductors that exist in vortices
in two dimensions4–8 or domain walls in one dimension.9

Non-Abelian statistics of Majorana fermions in both cases
have been demonstrated explicitly7,10 and are also supported by
rather general arguments based on the conservation of fermion
parity.11 For experimental realizations, it has long been
conjectured that quasiholes in ν = 5/2 fractional quantum
Hall state are Ising anyons,12–14 and subsequently candidate
materials such as Sr2RuO4 for chiral p-wave superconduc-
tivity were also discovered.15 However, recent theoretical
advances have provided a variety of different heterostructure
systems, where spin-orbit coupled semiconductors16–19 or
the surfaces of three-dimensional topological insulators20

combined with proximity-induced s-wave pairing are shown
to successfully engineer spinless px + ipy superconductivity
with non-Abelian Majorana anyons.

Mathematical definition of quantum statistics necessarily
builds upon the concept of Berry phase of many-body wave
functions. This implies that the adiabaticity of braiding is
an essential ingredient for non-Abelian statistics, since the
quantum state has to stay in the ground-state manifold
during the entire process of the braiding.21,22 In the real
world, however, braidings are necessarily performed within
a finite time interval; i.e., they are always nonadiabatic.
As known from the adiabatic perturbation theory, Berry
phase is the leading-order term in the adiabatic perturbative
expansion.23–25 Given the fundamental role played by adiabatic
braiding in TQC, it is therefore important to understand quanti-
tatively the higher-order corrections arising from nonadiabatic
evolution.

In this paper, we present a systematic study of the nonadi-
abatic corrections to the braiding of non-Abelian anyons and
develop formalism to describe their dynamical aspects. In our
treatment, braidings are considered as dynamical evolutions of
the many-body system, essentially using the time-dependent
Schrödinger equation of the Bardeen-Cooper-Schrieffer (BCS)
condensate whose solutions are derived from time-dependent
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Bogoliubov-de Gennes (BdG) equation. Generally, adiabatic-
ity may break down in three different ways: (a) tunneling of
non-Abelian anyons when there are multiples of them, which
splits the degenerate ground-state manifold and therefore
introduces additional dynamical phases in the evolution; (b)
transitions to excited bound states outside the Hilbert space
of zero-energy states, and in this case topologically protected
braidings have to be defined within an enlarged Hilbert space;
(c) transitions to the continuum of extended states that render
the fermion parity in the low-energy Hilbert space ill-defined.
These nonadiabatic effects are possible sources of errors for
quantum gates in TQC. The main goal of this paper is to
quantitatively address these effects and their implications on
quantum computation.

Our work is the first systematic attempt to study nona-
diabaticity in the anyonic braiding of non-Abelian quantum
systems. Given that the braiding of non-Abelian anyons is the
unitary gate operation26 in topological quantum computation,2

understanding the dynamics of braiding as developed in this
work is one of the keys to understanding possible errors in
topological quantum computation. The other possible source
of error in topological quantum computation is the lifting of the
ground-state anyonic degeneracy due to inter-anyon tunneling,
which we have studied elsewhere.27,28 Although we study the
braiding nonadiabaticity in the specific context of the topo-
logical chiral p-wave superconductors using the dynamical
BdG equatons within the BCS theory, our work should be of
general validity to all known topological quantum computation
platforms, since all currently known non-Abelian anyonic
platforms in nature are based on the SU (2)2 conformal field
theory of Ising anyons, which are all isomorphic to the chiral
p-wave topological superconductors.2 As such, our work,
with perhaps some minor modifications in the details, should
apply to the fractional quantum Hall non-Abelian qubits,26

real p-wave superconducting systems based on solids29

and quantum gases,30 topological insulator-superconductor
heterostructures,20 and semiconductor-superconductor sand-
wich structures16 and nanowires.18,31 Our results are quite
general and are independent, in principle, of the detailed
methods for the anyonic braiding, which could vary from
system to system in details. However, it is worthy to point
out that the susceptibility of the systems to the nonadiabatic
effects is sensitive to the microscopic details, such as the size of
the bulk gap and the overlap between the various eigenstates,
which will become further clarified later.

The reminder of the paper is organized as follows: In Sec. II
we review Majorana fermions in non-Abelian topological
superconductors and their quantum statistics defined in terms
of adiabatic evolution. In Sec. III we generalize BdG equation
to describe time evolution of BCS superconductors under a
parametrically time-dependent Hamiltonian. Then we study
the three main nonadiabatic effects as outlined above using
the approach of the time-dependent BdG equation.

II. QUANTUM STATISTICS OF MAJORANA FERMIONS

A. Quantum statistics and adiabatic evolution

We first briefly review how quantum statistics is formu-
lated mathematically in terms of the adiabatic evolution of

many-body wave functions, following a recent exposition
in Ref. 14. Consider the general many-body Hamiltonian
Ĥ[R1(t), . . . ,Rn(t)] where parameters {Ri} represent posi-
tions of quasiparticles. We assume the existence of well-
defined, localized excitations that we call quasiparticles.
At each moment t , there exists a subspace of instanta-
neous eigenstates of Ĥ[R1(t), . . . ,Rn(t)] with degenerate
energy eigenvalues. Instantaneous eigenstates in the sub-
space are labeled as |α(t)〉 ≡ |α({Ri(t)})〉. We constraint our
discussion in the ground-state subspace with zero energy
eigenvalue.

The adiabatic exchange of any two particles can be
mathematically implemented by adiabatically changing the
positions of two particles, say, Ri and Rj , in such a way that
in the end they are interchanged. This means that

Ri(T ) = Rj (0), Rj (T ) = Ri(0). (1)

According to the adiabatic theorem,32 it results in a unitary
transformation within the subspace: If the system is initially
in state |ψ(0)〉, then |ψ(T )〉 = Û |ψ(0)〉. To determine Û , we
first consider initial states |ψ(0)〉 = |α({Ri(0)})〉. Under this
evolution the final state can be written as

|ψα(T )〉 = Û0|α(T )〉. (2)

Here the matrix Û0 is the non-Abelian Berry phase:23,33,34

Û0 = P exp

[
i

∫ T

0
dt M̂(t)

]
, (3)

where P denotes path ordering, and the matrix element of the
Berry’s connection M̂ is given by

M̂αβ (t) = i〈α(t)|β̇(t)〉. (4)

Although the exchange defines a cyclic trajectory in
the parameter space of Hamiltonian, the final basis states
can be different from the initial ones (e.g., |α({Ri})〉 can
be multivalued functions of Ri , which is allowed if we
are considering quasiparticles being collective excitations
of many-body systems). The only requirement we impose
is that the instantaneous eigenstates {α(t)} are continu-
ous in t . Therefore, we have another matrix B̂ defined
as B̂αβ ≡ 〈α(0)|β(T )〉, relating {α(T )} to {α(0)}: |α(T )〉 =
B̂αβ |β(0)〉. Combining with (2), we now have the expression
for Û :

|ψ(T )〉 = Û0B̂|ψ(0)〉. (5)

Therefore

Û = Û0B̂ = P exp

[
i

∫ T

0
dt M̂(t)

]
B̂. (6)

In fact, the factorization of Û into Û0 and B̂ is somewhat
arbitrary and gauge dependent. However, their combination
Û is gauge independent provided that the time evolution is
cyclic in parameter space (positions of particles). The unitary
transformation Û defines the statistics of quasiparticles.
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B. Non-Abelian Majorana fermions

We now specialize to the non-Abelian statistics of Majorana
fermions in topological superconductors, carefully treating
the effect of Berry phases. We mainly use spinless super-
conducting fermions as examples of topological supercon-
ductors in both one and two dimensions since all known
topological superconducting systems supporting non-Abelian
excitations essentially stem from spinless chiral p-wave
superconductors.6,17,20

In the BCS mean-field description of superconductors,
the Hamiltonian is particle-hole symmetric due to U (1)
symmetry breaking. In terms of Nambu spinor �̂(r) =
(ψ̂(r),ψ̂†(r))T , the BCS Hamiltonian is expressed as ĤBCS =
1
2

∫
d2r�̂†(r)HBdG�̂(r). The Bogoliubov-de Gennes Hamil-

tonian HBdG takes the following form:6,35

HBdG =
(

h �

�† −hT

)
, (7)

where h is the single-particle Hamiltonian [for spinless
fermions it is simply h = (− 1

2m
∂2

r − μ)δ(r − r′)] and � is
the gap operator. The BCS Hamiltonian can be diagonalized
by Bogoliubov transformation:

γ̂ † =
∫

d2r [u(r)ψ̂†(r) + v(r)ψ̂(r)]. (8)

Here the wave functions u(r) and v(r) satisfy BdG
equations:

HBdG

(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
. (9)

Throughout this work, we adopt the convention that operators
that are hatted are those acting on many-body Fock states while
bold ones denote matrices in “lattice” space.

The single-particle excitations γ̂ , known as Bogoliubov
quasiparticles, are coherent superpositions of particles and
holes. The particle-hole symmetry implies that the quasi-
particle with eigenenergy E and that with eigenenergy −E

are related by γ̂−E = γ̂
†
E . Therefore, E = 0 state corresponds

to a Majorana fermion γ̂0 = γ̂
†
0 .8 The existence of such

zero-energy excitations also implies a nontrivial degeneracy
of ground states: When there are 2N such Majorana fermions,
they combine pair-wisely into N Dirac fermionic modes,
which can be either occupied or unoccupied, leading to 2N -fold
degenerate ground states. The degeneracy is further reduced
to 2N−1 by fermion parity.2 Since these fermionic modes are
intrinsically nonlocal, any local perturbation cannot affect the
nonlocal occupancy, and thus the ground-state degeneracy is
topologically protected. This nonlocality lies at the heart of
the idea of topological qubits.

We are mostly interested in Majorana zero-energy states
that are bound states at certain point defects (e.g., vortices
in two dimensions, domain walls in one). In fact, Majorana
bound states are naturally hosted by defects because that zero-
energy states appear only when the gap vanishes. Defects can
be moved along with the Majorana fermions bound to them.
Braidings of such Majorana fermions realize very nontrivial
non-Abelian statistics.

We now apply the general theory of quantum statistics
as previously discussed in Sec. II A to the case of Majorana

fermions in topological superconductors. The simplest setting
where nontrivial statistics can be seen is the adiabatic braiding
of two spatially separated Majorana fermions γ̂1 and γ̂2. We
denote the two bound-state solutions of the BdG equation by
�01 and �02. When R1 and R2 vary with time they become
instantaneous zero-energy eigenstates of BdG Hamiltonian.
We choose their phases in such a way that the explicit analytical
continuation of BdG wave function leads to the following basis
transformation under exchange:7,36

�01(T ) = s�02(0), �02(T ) = −s�01(0), (10)

where s = ±1. The value of s depends on the choice of
wave functions, and we choose the convention that s = 1
throughout this work. In the case of Majorana fermions in
vortices, the additional minus sign originates from branch
cuts introduced to define the phase of wave functions. This
transformation actually gives the B̂ matrix in the general
theory. Equivalently in terms of a quasiparticle operator, we
have

γ̂1 → γ̂2, γ̂2 → −γ̂1. (11)

If we define the nonlocal fermionic mode d̂† = 1√
2
(γ̂1 +

iγ̂2), the states with even and odd fermion parity are given
by |g〉 and d̂†|g〉. Due to the conservation of fermion parity,
the two states are never coupled. However, the non-Abelian
statistics still manifest itself in the phase factor acquired by
the two states after an adiabatic exchange. To see this, first
we notice that under exchange, the analytical continuation(or
basis transformation) gives the following transformation of the
two states:

|g〉 → eiϕ |g〉, d̂†|g〉 → ei π
2 eiϕd̂†|g〉. (12)

Here the π
2 phase difference is reminiscence of non-Abelian

statistics.
So far we have obtained the basis transformation matrix

B̂. To know the full quantum statistics we also need to
calculate the adiabatic evolution Û0. We now show by explicit
calculation that Û0 ∝ 1̂ up to exponentially small corrections.
This requires knowledge of the Berry connection accompa-
nying adiabatic evolutions of BCS states. Fortunately, for a
BCS superconductor the calculation of a many-body Berry
phase can be done analytically.37 The ground state |g〉 has
the defining property that it is annihilated by all quasiparticle
operators γn. All other states can be obtained by populating
Bogoliubov quasiparticles on the ground state |g〉. Let us
consider a state with M quasiparticles |n1,n2, . . . ,nM〉 =
γ̂
†
n1 γ̂

†
n2 · · · γ̂ †

nM
|g〉. The Berry connection of this state then

reads37

〈n1, . . . ,nM |∂|n1, . . . ,nM〉 = 〈g|∂|g〉+
M∑
i=1

(
u∗

ni
,v∗

ni

)
∂

(
uni

vni

)
.

(13)

So the difference between the Berry phase of a state with
quasiparticles and the ground state is simply the sum of
“Berry phase” of the corresponding BdG wave functions. Since
the Berry phase of ground state |g〉 can be eliminated by a
global U (1) transformation, only the difference has physical
meaning.
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According to (13), the relevant term to be evaluated is

(u∗
01 − iu∗

02,v
∗
01 − iv∗

02)∂

(
u01 + iu02

v01 + iv02

)
= 2Re(u∗

1∂u1 + u∗
2∂u2) + 2iRe(u∗

1∂u2 − u∗
2∂u1), (14)

where we have made use of the Majorana condition v = u∗.
The first term in (14) vanishes because

∫
u∗∂u must be purely

imaginary. The second term has a nonvanishing contribution
to the total Berry phase. However, due to the localized nature
of the zero-energy state, the overlap between u1 and u2 is
exponentially small:

∫ T

0
dt Re(u∗

1∂tu2 − u∗
2∂tu1) ∼ e−|R1−R2|/ξ . (15)

Therefore the Berry phase can be neglected in the limit of large
separation R. This completes our discussion of non-Abelian
statistics. The above calculation can be easily generalized to
the case of many anyons.

III. TIME-DEPENDENT BOGOLIUBOV-DE
GENNES EQUATION

In this section we derive the formalism to track time
evolution of BCS condensate within mean-field theory. For
BCS superconductivity arising from interactions, the pair-
ing order parameter has to be determined self-consistently,
which makes the mathematical problem highly nonlinear.
In the situations that we are interested in, it is not critical
where the pairing comes from. In some systems that are
believed to be experimentally accessible, e.g., semiconductor-
superconductor heterostructure, superconductivity is induced
by proximity effect,16,20 and there is no need to keep
track of the self-consistency. We will take the perspective
that order parameter is simply an external field in the
Hamiltonian.

The time-dependent BdG equation38,39 has been widely
used to describe dynamical phenomena in BCS superconduc-
tors. To be self-contained here we present a derivation of the
time-dependent BdG equation highlighting its connection to
quasiparticle operators. It can also be derived by methods of the
Heisenberg equation of motion or Green’s function. Suppose
we have a time-dependent BdG Hamiltonian HBdG(t). The
unitary time evolution of the many-body system is formally
given by

Û (t) = T exp

[
− i

∫ t

0
dt ′ ĤBCS(t ′)

]
. (16)

To obtain an explicit form of Û (t), we define the time-
dependent Bogoliubov quasiparticle operator as

γ̂n(t) = Û (t)γ̂nÛ
†(t), (17)

where γ̂n is the quasiparticle operator for ĤBCS(0) and the
corresponding BdG wave function is un(r),vn(r). We adopt

the normalization condition∫
d2r |un(r)|2 + |vn(r)|2 = 1, (18)

which means {γ̂n,γ̂
†
n } = 1.

Here γ̂n(t) by definition satisfies the following equation of
motion

i
dγ̂n(t)

dt
= [ĤBCS(t),γ̂n(t)]. (19)

In fact, by direct calculation one can show that the equation
of motion is solved by

γ̂ †
n (t) =

∫
dr [un(r,t)ψ̂(r) + vn(r,t)ψ̂(r)], (20)

where the wave functions un(r,t) and vn(r,t) are solutions of
the time-dependent BdG equation:

i
d

dt

(
un(r,t)
vn(r,t)

)
= HBdG(t)

(
un(r,t)
vn(r,t)

)
(21)

together with an initial condition [another way of saying
γ̂n(0) = γ̂n]:

un(r,0) = un(r), vn(r,0) = vn(r). (22)

As long as the solutions of the time-dependent BdG equa-
tion (21) are obtained, we can construct the operators
{γ̂n(t)}.

We now derive an explicit formula of Û when the time
evolution is cyclic [i.e., ĤBCS(T ) = ĤBCS(0)]. In that case, it
is always possible to express γn(T ) as a linear combination of
γ̂n ≡ γ̂n(0) and γ̂

†
n . Since particle number is not conserved,

it is more convenient to work with Majorana operators.
We thus write γ̂n = ĉ2n−1 + iĉ2n, where cm are Majorana
operators. Suppose the BdG matrix has totally 2N eigen-
vectors so n = 1,2, . . . ,N . Assume that by solving a time-
dependent BdG equation we obtain the transformation of cm as
follows:

ĉk(T ) =
∑

l

V kl ĉl , (23)

where V ∈ SO(2N ) as required by unitarity and the conserva-
tion of fermion parity. The matrix V can be calculated once we
know the BdG wavefunctions. Then we can write an explicit
expression of Û (T ) in terms of ĉm:9

Û (T ) = exp

(
1

4

∑
mn

Dmnĉmĉn

)
, (24)

where the matrix D is defined by the relation e−D = V . Here
D is necessarily a real, skew-symmetric matrix. A proof of this
result is given in Appendix A. We notice that the usefulness of
(24) is actually not limited to cyclic evolution. In fact, (24) is
purely an algebraic identity that shows any SO(2N ) rotation
of 2N Majorana operators can be implemented by a unitary
transformation.

In the following we outline the method to solve the
time-dependent BdG equation. To make a connection with
the previous discussion of Berry phase, we work in the
“instantaneous” eigenbasis of a time-dependent Hamiltonian.
At each moment t , the BdG Hamiltonian HBdG(t) can be
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diagonalized yielding a set of orthonormal eigenfunctions
{�n(r,t)}. A remark is right in order: Because of particle-
hole symmetry, the spectrum of the BdG Hamiltonian is
symmetric with respect to zero energy, and the quasiparticles
corresponding to negative energy are really “holes” of positive
energy states. However, at the level of solving the BdG
equation mathematically, both positive and negative energy
eigenstates have to be retained to form a complete basis. The
most general form of the BdG wave function can be expanded
as

�(r,t) =
∑

n

cn(t)�n(r,t). (25)

Plugging into the time-dependent BdG equation, we
obtain

iċn +
∑
m

Mnm(t)cm = En(t)cn, (26)

where Mnm(t) = i〈�n(t)|∂t |�m(t)〉.
Assume that starting from initial condition cn(0) =

δmn( roughly the quasiparticle is in the �m state at t = 0),
we obtain the solutions of (26) at t = T denoted by cm

n (T ).
The transformation of basis states themselves is given by the
matrix B̂. Combining these two transformations we find

γ̂n →
∑
kl

cn
k B̂kl γ̂l , (27)

from which the linear transformation V can be directly read
off. Then by taking the matrix log of V̂ we can obtain the
evolution operator. This is the procedure that we will use to
solve the (cyclic) dynamics of BCS superconductors.

We will not be attempting to obtain the most general
solution, since it depends heavily on the microscopic details.
Instead, we focus on two major aspects of nonadiabaticity:
(a) finite splitting of ground-state degeneracy that becomes
appreciable only when the braiding time is comparable to
the “tunneling” time of Majorana fermions and (b) excited
states outside the ground-state subspace. In both cases, the
nonadiabaticity caused by the finite speed of transporting the
anyons enters through the Berry matrix M. The explicit forms
of the matrix M will be presented in the following analysis,
but several general remarks are in order. Since the matrix
element of M is given by Mnm = i〈�n|∂t |�m〉, and the time
dependence enters only in the parameters {Ri(t)} in the basis
eigenstates, we can rewrite it as

Mnm =
∑

i

Ṙi · i〈�n|∇Ri
|�m〉, (28)

where i〈�n|∇Ri
|�m〉 is time independent. Therefore, the

degree of the nonadiabaticity is characterized by |Ṙ| ∼ Rω

where R measures the average distance between the two
anyons that are braided and ω measures the instantaneous
angular velocity. In general, the speed of the anyons can vary
with time. But if we assume that the variation of the speed
is not significant, then it is reasonable to characterize the
nonadiabaticity by the average value of ω and neglect its
variation. We will make this approximation throughout our

work. In this sense, we can relate ω to the total time T of the
braiding operation by ω = 2π

T
.

The path {Ri(t)} can be arbitrary as long as they form
a braid. To illustrate the physics in the simplest setting, we
assume that the two vortices travel on a circle whenever we
have to specify the trajectory. Mathematically, the positions of
the two anyons are

R1(t) = −R2(t) = R[cos(ωt + θ0), sin(ωt + θ0)]. (29)

Here ω = 2π
T

. The choice of the path makes the Berry matrix
M independent of time, which simplifies our calculation.
In realistic situations, the Berry matrix may acquire time
dependence from the variation of the speed of the anyons which
varies with time, but we expect this level of complication has
only minor quantitative changes to our results.

A. Effect of tunneling splitting

The derivation of transformation rule (11) assumes that the
two Majorana bound states have vanishing energies, so there is
no dynamical phase accumulated. The assumption is true only
when tunneling splitting of zero-energy states is neglected. It
has been established that the finite separation between anyons
always leads to a nonzero splitting of zero-energy states,6,27,40

although the splitting is exponentially suppressed due to the
existence of bulk gap. As a result, the two ground states acquire
different dynamical phases during the time evolution. Here we
take into account all the nonuniversal microscopic physics
including dynamical phase induced by tunneling splitting and
non-Abelian Berry phase.

In the framework of time-dependent BdG equation, the two
basis states are �± = 1√

2
(�01 ± i�02). The energy splitting

between two zero-energy states in vortices in a spinless px +
ipy superconductor has been calculated in the limit of large
separation:27,28

E+ = −E− ≈
√

2

π
�0

cos(kF R + π/4)√
kF R

e−R/ξ , (30)

with �0 being the amplitude of the bulk superconducting gap,
kF the Fermi momentum, and ξ the coherence length. The
exponential decay of splitting is universal for all non-Abelian
topological phase and is in fact the manifestation of the
topological protection.

The Berry matrix M can be evaluated, and it takes the
following form:

M = ω

(
0 α

α 0

)
, (31)

where α ≡ α(R) ∈ R is expressed as the overlap integral
of the two bound-state wave functions. The form of α is
not important apart from the fact that |α| ∼ e−R/ξ . For the
details of the calculation and the expression of α we refer to
Appendix C.

Since both α and E± are functions of R, they are
time independent. We now have to solve essentially the
textbook problem of the Schrödinger equation of a spin
1/2 in a magnetic field, the solution of which is well
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known:

(
c+(T )
c−(T )

)
=

(
cos ET − iE+

E sin ET iωα
E sin ET

iωα
E sin ET cos ET + iE+

E sin ET

)(
c+(0)
c−(0)

)
, E =

√
E2+ + ω2α2. (32)

We can translate the results into a transformation of
Majorana operators:

γ̂1 →
(

cos ET + iωα

E sin ET

)
γ̂2 − E+

E sin ET γ̂1,

(33)

γ̂2 → −E+
E sin ET γ̂2 −

(
cos ET + iωα

E sin ET

)
γ̂1.

Because E+ ∼ �0e
−R/ξ ,|α| ∼ e−R/ξ and ω � �0, by or-

der of magnitude we can safely assume |E+| � ω|α|. In the
limiting case ω → 0 we find

γ̂1 → cos ET γ̂2 − sin ET γ̂1,
(34)

γ̂2 → − sin ET γ̂2 − cos ET γ̂1,

which can be compactly written as γ̂i → Û γ̂iÛ
†

where

Û = exp

[(
π

4
− ET

2

)
γ̂2γ̂1

]
. (35)

Physically it simply means that the two ground states with
different fermion parity pick up different dynamical phases due
to the energy splitting. When ET becomes O(1), the dynamical
phase becomes appreciable, so a non-negligible error has been
introduced. Physically, this means that the braiding is carried
out so slowly that the two ground states cannot be considered
as being degenerate.

When we also take into account the terms containing ω,
the transformation matrix is no longer in SO(2). This implies
that the two-dimensional Hilbert space spanned by the two
Majorana zero-energy bound states is not sufficient to describe
the full time evolution. However, this contribution is small in
both ω and α compared to the dynamical phase correction and
can be safely neglected.

The above calculation is carried out for the case of two
vortices, where the two degenerate ground states belong to
different fermion parity sectors and can never mix. Four
vortices are needed to have two degenerate ground states
in the same fermion parity sector. But the applicability of
the result (33) and (35) is not limited to only two vortices.
We expect that due to the tunneling splitting, the ground
states with different fermion parities in each pair of vortices
acquires different dynamical phases, which interferes with the
non-Abelian transformation.

B. Effects of excited bound states

The concept of quantum statistics is built upon the adiabatic
theorem claiming that in an adiabatic limit, quantum states
evolve within the degenerate energy subspace. Going beyond
adiabatic approximation, we need to consider processes
that can cause transitions to states outside the subspace,
which violates the very fundamental assumption of adiabatic

theorem. In the case of the braiding of Majorana fermions
in superconductors, there are always extended excited states
in the spectrum that are separated from ground states by
roughly the superconducting gap. In addition, there may
be low-lying bound states within the bulk gap, such as
the CdGM states in vortices. We call them subgap states.
Extended states and subgap bound states apparently play
different roles in the braiding of Majorana fermions. To
single out their effects on the braiding we consider them
separately, and in this subsection we consider excited bound
states first. Since the energy scale involved here is the super-
conducting gap, we neglect the exponentially small energy
splitting whose effect has been considered in the previous
subsection.

The BdG wave functions of excited bound states in
each defect are denoted by �λi,i = 1,2 where i labels
the defects, with energy eigenvalues ελ. In Appendix B
we show the analytical forms of these wave functions for
bound states in vortices known as CdGM bound states. If
no other inhomogeneities are present, the wave functions
are all functions of r − Ri . Assuming |Ri − Rj | � ξ , we
have approximately 〈�λi |�λ′j 〉 = δij up to exponentially
small corrections. Therefore, the BdG equation decouples
for the two defects since the tunneling amplitudes between
them are all negligible. So it is sufficient to consider one
defect, and we will omit the defect label i in the following.
We write the solution to time-dependent BdG equation
as

�(t)=c0(t)�0(t) +
∑

λ

[cλ(t)�λ(t) + cλ(t)�λ(t)], (36)

where we have defined �λ as the particle-hole conjugate state
of �λ, with energy eigenvalue −ελ. We will focus on the
minimal case where only one extra excited state is taken into
account. Actually, in the case of bound states in vortices, due to
the conservation of angular momentum, a zero-energy state is
coupled only to one excited bound state (see Appendix B) and
to the leading order we can neglect the couplings of the zero-
energy states to other excited states as well as those between
excited states. The time-dependent BdG equation reduces
to

iċ0 = −βcλ + β∗cλ,

iċλ = (ελ − α)cλ − β∗c0, (37)

iċλ = −(ελ + α)cλ − βc0,

where we have defined the components of the Berry matrix
as

βλ = i〈�0|�̇λ〉, αλ = i〈�λ|�̇λ〉. (38)

Expressions of β and α are derived in Appendix B. In the
case of uniform circular motion of vortices given in (29),
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both are proportional to ω. The proportionality constants are
fully determined by the geometry of the trajectory and the
microscopic parameters.

In the following we suppress the subscript λ and shift the
energy of excited level to eliminate αλ: ελ → ελ + αλ. The

quasiparticle operator corresponding to the excited level is
denoted by d̂ , as defined in (8). For technical convenience,
we write it as d̂ = 1√

2
(ξ̂ + iη̂) where ξ̂ and η̂ are both

Majorana operators. Solving the BdG equation (37), we
find

γ̂ →
(

1 − 4β2

E2
sin2 Et

2

)
γ̂ + 2

√
2βε sin2 Et

2

E2
ξ̂ −

√
2β sin Et

E
η̂,

ξ̂ → 2
√

2εβ sin2 Et
2

E2
γ̂ +

(
cos Et + 4β2 sin2 Et

2

E2

)
ξ̂ + ε sin Et

E
η̂, (39)

η̂ →
√

2β sin Et

E
γ̂ − ε sin Et

E
ξ̂ + cos Et η̂,

which should be followed up by the basis transformation B̂.
Here we have defined E =

√
ε2 + 4β2.

By using (24) we can work out explicitly how the ground-
state wave functions transform. Physically, the nonadiabatic
process causes transitions of quasiparticles residing on the
zero-energy level to the excited levels. Superficially these
transitions to excited states significantly affect the non-Abelian
statistics, since the parity of fermion occupation in the
ground-state subspaces is changed as well as the quantum
entanglement between various ground states.35,41 This can also
be directly seen from (39) since starting from |g〉 the final state
is a superposition of |g〉 and d̂

†
0 d̂

†
λ|g〉. So we might suspect that

errors are introduced to the gate operations.
However, noticing that the excited states are still localized,

they are always transported together with the zero-energy
Majorana states. Therefore the parity of the total fermion
occupation in the ground-state subspace and local excited
states are well conserved. This observation allows for a
redefinition of the Majorana operators to properly account for
the fermion occupation in local excited states, as being done
in Ref. 42. We therefore have to represent the fermion parity
in the following way:

P̂12 = −iγ̂1ξ̂1η̂1γ̂2ξ̂2η̂2 = iγ̂1γ̂2

∏
i=1,2

(1 − 2d̂
†
i d̂i) (40)

shared by defects 1 and 2. Accordingly, we define the
generalized Majorana operators �̂i = iγ̂i ξ̂i η̂i , i = 1,2. Since
the couplings between the two vortices are exponentially small,
we treat their dynamics independently. �̂i is invariant under
local unitary evolution, which can be checked explicitly using
(39). An even general proof proceeds as following: According
to (23), the three Majorana operators γ̂i ,ξ̂i ,η̂i must transform
by a SO(3) matrix V. Then it is straightforward algebra
to show that �̂i → det V · �̂i . Since V ∈ SO(3), det V = 1,

which means that �̂i is unchanged. Thus the effect of the
braiding comes only through the basis transformation matrix
B̂. As a result, the fermion parities, being the expectation
values of (40), transform exactly according to the Ivanov’s

rule under the braiding. This result can be easily generalized
to the case where many bound states exist in the vortex core.

From the perspective of measurement, to probe the status of
a topological qubit it is necessary and sufficient to measure the
fermion parity as defined in (40). It is practically impossible
(and unnecessary) to distinguish between the fermion occu-
pations in ground-state subspace and excited states as long as
they are both localized and can be considered as a composite
qubit.

To conclude, nonadiabatic population of fermions onto
the low-lying excited bound states has no effect on the
non-Abelian statistics due to the fact that the fermion parity
shared by a pair of vortices is not affected by such population.

C. Effects of excited extended states

We next consider the effect of excited states that are
extended in space. Usually such states form a continuum. The
scenario considered here may not be very relevant to Majorana
fermions in 2D px + ipy superconductor since bound states in
vortices often dominate at low energy. However, for Majorana
fermions in one-dimensional systems, a zero-energy state is
the only subgap state, and coupling between zero-energy state
and continuum of excited states may become important.

Again we write the time-dependent BdG equation in the
instantaneous eigenbasis:

iċ0,1 = −
∑

λ

(β1λcλ − β∗
1λcλ),

iċ0,2 = −
∑

λ

(β2λcλ − β∗
2λcλ),

(41)
iċλ = (ελ − αλ)cλ − β∗

1λc0,1 − β∗
2λc0,2,

iċλ = −(ελ − αλ)cλ + β1λc0,1 + β2λc0,2.

We still use λ to label the excited states. Here again βλ =
i〈�0|�̇λ〉 defines the coupling between the zero-energy state
and the excited state. This coupling β is always proportional
to ω, as discussed in the case of bound state. As in the
case of bound states, we ignore the coupling between excited
states since these only contribute higher-order terms to the
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dynamics of zero-energy states. In other words, we treat each
excited state individually, and in the end their contributions
are summed up.

To proceed we need to determine matrix elements β1λ and
β2λ. We will consider the spinless one-dimensional p-wave
superconductor as an example. The zero-energy states localize
at two ends of the one-dimensional system, which lie in
the interval [0,L]. We also assume reflection symmetry with
respect to x = L/2. Without worrying about the tunneling
splitting, we can consider the two ends near x = 0 and
x = L independently. Then we make use of the fact that BdG
equations near x = 0 and x = L are related by a combined
coordinate and gauge transformation x → L − x, �(x) →

−�(L − x). Therefore, the bound state and the local part of
the extended states near x = 0 and x = L are related by gauge
transformations. Based on these considerations, we should
have β1λ = β2λ ≡ βλ, up to exponentially small corrections.
Similar argument also applies to vortices in two-dimensional
px + ipy superconductors.

As mentioned above, we will make the approximation that
each excited state can be treated independently. So we consider
the effect of one of the excited states first and omit the label
λ temporarily. Again we write d̂ = 1√

2
(ξ̂ + iη̂). Without loss

of generality we also assume that β is real. We find from the
solution of time-dependent BdG equation that

γ̂1 → 4β2

E2
sin2 Et

2
γ̂1 +

(
1 − 4β2

E2
sin2 Et

2

)
γ̂2 + 2

√
2βε sin2 Et

2

E2
ξ̂ +

√
2β sin Et

E
η̂,

γ̂2 → −
(

1 − 4β2

E2
sin2 Et

2

)
γ̂1 − 4β2

E2
sin2 Et

2
γ̂2 + 2

√
2βε sin2 Et

2

E2
ξ̂ +

√
2β sin Et

E
η̂,

(42)

ξ̂ → 2
√

2βε sin2 Et
2

E2
(−γ̂1 + γ̂2) +

(
cos Et + 8β2 sin2 Et

2

E2

)
ξ̂ −

√
2ε sin Et

E
η̂,

η̂ → 2
√

2β sin2 Et
2

E
(−γ̂1 + γ̂2) + ε sin Et

E
ξ̂ + cos Et η̂.

Here again E =
√

ε2 + 4β2.
At first glance the physics here is very similar to what has

been discussed for local bound states: Nonadiabatic transitions
cause changes of fermion parity in the ground-state subspace.
The crucial difference between local bound states and a
continuum of extended states is that, in the former case,
local fermion parity is still conserved as long as we count
fermion occupation in the excited states, while in the latter,
it is impossible to keep track of the number of fermions
leaking into the continuum so the notion of local fermion parity
breaks down. These nonadiabatic effects may pose additional
constraints on manufacturing of topological qubits. Let us
consider to what extent the braiding statistics is affected. A
useful quantity to look at here is the expectation value of the
fermion parity operator in the ground-state subspace, namely,
〈P̂0〉 = 〈iγ̂1γ̂2〉.

Suppose at t = 0 we start from the ground state |g〉 with
even fermion parity 〈g|P̂0|g〉 = 1 and the excited level is
unoccupied too. After the braiding at time T the expectation
value of P̂0 becomes

〈P̂0(T )〉 = 1 − 8β2

E2
sin2 ET

2
, (43)

where P̂0(T ) = Û †(T )P̂0Û (T ). This confirms that fermion
parity is not conserved anymore. For |β| � ε, the coupling
to excited state can be understood as a small perturbation.
〈P̂0〉 only slightly deviates from the nonperturbed value. In
the opposite limit |β| � ε, 〈P̂0〉 can oscillate between 1 and
−1, so basically fermion parity is no longer well defined.

Now we can sum up the contributions from each excited
state, and (43) is replaced by

〈P̂0(T )〉 = 1 −
∑

λ

8|βλ|2
E2

λ

sin2 EλT

2
. (44)

The sum over the continuum states can be replaced by an
integral over energy. We assume that the couplings βλ depend
only weakly on the energy ελ, so it can be factored out as
βλ ≈ β. Then we obtain

〈P̂0(T )〉 = 1 − 8|β|2
∫ ∞

�0

dε
ν(ε)

ε2 + 4|β|2 sin2 εT

2
. (45)

The density of states ν(ε) depends on the microscopic details
of the underlying superconducting phase. For simplicity we
take the typical BCS-type density of states:

ν(ε) = 2ν0ε√
ε2 − �2

0

�(ε − �0). (46)

Here ν0 is the normal-state density of states, and �0 is the
bulk superconducting gap. We consider the limit �0T � 1.
The long-time asymptotic behavior of the integral is given
by

〈P̂0(T )〉 ≈ 1 −
8ν0|β| sinh−1 2|β|

�0√
4|β|2 + �2

0

+ O

(
1√
�0T

)
. (47)

We note here that β ∝ ω, with the proportionality con-
stant totally given by wave-function overlap. Therefore, the
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nonadiabatic coupling to the excited continuum causes finite
depletion of the fermion parity in the zero-energy ground-state
subspace, which can be regarded as the dissipation of the
topological qubit. The depletion becomes comparable to 1
if ν0( |β|

�0
)2 ∼ 1, rendering the qubit undefined. We notice that

our calculation breaks down for large |β| since then the excited
states cannot be treated as being independent. They are coupled
through second-order virtual processes via the zero-energy
state, which is weighted by ( |β|

�0
)2 perturbatively. Thus our

results should be regarded as the leading-order correction in
the nonadiabatic perturbation theory.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have considered the braiding of non-
Abelian anyons as a dynamical process and calculated the
corrections to non-Abelian evolutions due to nonadiabatic
effects. We discuss several sources of nonadiabaticity: First,
tunneling between non-Abelian anyons results in splitting of
the degenerate ground states. The Abelian dynamical phase
accumulated in the process of braiding modifies Ivanov’s
rule of non-Abelian statistics. Since the bulk of the su-
perconductor is fully gapped such corrections are exponen-
tially small. In the context of TQC such deviations from
Ivanov’s rule are sources of errors in single-qubit quantum
gates.

Second, we consider dynamical transitions of Majorana
fermions in the zero-energy ground states to excited states.
The effects of such nonadiabatic transitions strongly rely on
whether these excited states are bound states with discrete
spectrum and localized at the same positions with the Majorana
bound states, or they extend through the whole bulk and form a
continuum. Generally speaking, nonadiabatic transitions mix
the zero-energy ground states with other excited states, and
it is questionable whether the quantum entanglement crucial
to non-Abelian statistics is still preserved. In the former case
where excited states are localized, we are still able to define
conserved fermion parity stored in these low-energy bound
states. Non-Abelian statistics can be generalized once we
enlarge the Hilbert space to include all local bound states. In
the latter case, the situation is dramatically different because
the notion of fermion parity in the low-energy Hilbert space
no longer makes sense once extended states above the bulk
gap are involved. We characterize the loss of fermion parity
in such nonadiabatic transitions by the expectation value of
the “local fermion parity” operator. This can be viewed as the
dissipation of topological qubit resulting from couplings to a
continuum of fermionic states. We have thus quantified the
expectation that a zero-energy Majorana mode will decay if
it is put in contact with a continuum of fermionic states (e.g.,
electrons).

Although the underlying technological motivation for topo-
logical quantum computation is that quantum error correction
against continuous decoherence is unnecessary as a matter
of principle in topological systems since decoherence due
to local coupling to the environment is eliminated; other
errors, such as nonadiabaticity considered in this work, would
invariably occur in all quantum systems in the presence
of time-dependent quantum gate operations. In addition,
braiding is the cornerstone of the strange quantum statistical

properties that distinguish non-Abelian anyons from ordinary
fermions and bosons. Our work, involving the nonadiabatic
corrections to anyonic braiding, is therefore relevant to all
current considerations in the subject of Ising anyons, whether it
is in the context of the observation of the non-Abelian statistics
or the implementation of topological quantum computation.
In particular, nonadiabaticity in the Majorana braiding in the
specific context of non-Abelian topological superconductors
as discussed in this paper may be relevant to various recently
proposed Majorana interferometry experiments involving vor-
tices in two dimensions.43–47

We now speculate about the physical sources of nonadia-
baticity of braidings. Throughout our work we have focused
on the intrinsic nonadiabaticity originating from the fact that
braidings are done during a finite interval of time. For such
effects to be appreciable, the time scale of braidings has to
be comparable to �t ∼ h̄

�E
where �E is the energy gap

protecting the anyonic Majorana modes. For the corrections
from the tunneling of Majorana fermions, �t is exponentially
large, so it is usually legitimate to neglect the tunneling effect.
On the other hand, if we are interested in corrections from
states above the gap, then the relevant time scale is h̄/�. Using
(44) one can estimate the nonadiabatic error rate in performing
gate operations.

These considerations also apply to other types of nona-
diabatic perturbations as long as they have nonzero matrix
elements between zero-energy states and excited states. In
particular, disorder scattering, which is unavoidable in solid
state systems, can be a source of nonadiabaticity.41 As the
non-Abelian anyons are moving, the disorder potential seen by
the anyons changes randomly with time, so it can be modeled
as a time-dependent noise term in the Hamiltonian, which may
cause dephasing. Other possible perturbations in solid-state
systems include collective excitations, such as phonons and
plasmons (or phase fluctuations). We leave the investigation
of these effects for future work. The formalism developed
in the current work can, in principle, be used to study these
dephasing errors.
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APPENDIX A: PROOF OF EQ. (24)

This result already appears in Ref. 9. To be self-
contained we give a proof here. Assume that D is not
singular. Then there exists a real orthogonal matrix O such
that

O DOT =

⎛
⎜⎜⎜⎜⎝

0 θ1

−θ1 0
. . .

0 θN

−θN 0

⎞
⎟⎟⎟⎟⎠ ≡ θ , (A1)
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where θn > 0. We can find a new set of Majorana operators⎛
⎜⎜⎜⎜⎜⎝

b̂1

b̂′
1

...
b̂N

b̂′
N

⎞
⎟⎟⎟⎟⎟⎠ = O

⎛
⎜⎜⎜⎜⎝

ĉ1

ĉ2
...
ĉ2N−1

ĉ2N

⎞
⎟⎟⎟⎟⎠ , (A2)

which allow us to write ĉT B̂ĉ in a canonical form:∑
kl

ck Dklcl = 2
∑
m

θmb̂mb̂′
m. (A3)

Therefore we have

Û = exp

(
1

4
ĉT Dĉ

)
=

∏
m

(
cos

θm

2
+ sin

θm

2
b̂mb̂′

m

)
.

(A4)

The transformation of b̂n,b̂
′
n under Û can be easily worked

out:

Û b̂nÛ
† = cos θnbn − sin θnb

′
n,

(A5)
Û b̂′

nÛ
† = sin θnbn + cos θnb

′
n.

We write it in matrix form:

Û b̂Û † =

⎛
⎜⎜⎜⎜⎝

cos θ1 − sin θ1

sin θ1 cos θ1

. . .
cos θN − sin θN

sin θN cos θN

⎞
⎟⎟⎟⎟⎠ b̂.

(A6)

Notice that(
cos θn − sin θn

sin θn cos θn

)
= exp

[
−

(
0 θn

−θn 0

)]
, (A7)

so the big matrix is essentially e−θ̂ . Now the rest of the proof
is rather straightforward:

Û ĉÛ † = OT e−θ̂ b̂ = OT e−θ Oĉ = e−D ĉ. (A8)

Thus we have e−D = V .
Formula (24) gives the explicit form of unitary transfor-

mation corresponding to a cyclic time evolution. However,
analytically finding matrix D as the logarithm of the matrix
V is still quite difficult. In fact, for the purpose of calculating
the operator expectation values, it is not necessary to know
explicitly D. To illustrate this point, consider the ground-
state expectation value of Â = ĉi1 ĉi2 · · · ĉil before and after
braiding. We denote the starting ground state by |ψ〉. Then
the expectation value on the transformed ground state after
braiding is given by

〈ψ |Û †ÂÛ |ψ〉 = 〈ψ |Û †ĉi1Û · Û †ĉi2Û · · · Û †ĉil Û |ψ〉, (A9)

where Û † ĉÛ can be easily evaluated:

Û † ĉÛ = eD ĉ = V T ĉ. (A10)

APPENDIX B: BOUND STATES IN VORTICES

In this Appendix we present the analytical solu-
tions of CdGM bound states48 in spinless px + ipy

superconductors4,41,49 in the weak-coupling limit (� � EF ).
We model the px + ipy pairing by the following gap operator:

�̂(r) = − 1

kF

{�(r),∂x + i∂y}. (B1)

A vorticity 1 vortex sitting at the origin is represented by
the following order parameter:

�(r) = �(r)eiθ , (B2)

where (r,θ ) is the polar coordinate of the two-dimensional
plane.

The (unnormalized) wave function of bound states is given
by (

ul(r)
vl(r)

)
= eilθ

(
fl(k+r)

fl−2(k−r)e−2iθ

)
. (B3)

Here fl(k±r) is defined to be

fl(k±r) = Jl(k±r)e− 1
vF

∫ r

0 dr ′�(r ′)
, (B4)

where k± = kμ ± mεl/kμ and the corresponding energy
levels

εl = −(l − 1)ω0, ω0 ∼ �2
0

εF

. (B5)

In weak-coupling limit we neglect the difference between
μ and Fermi energy εF so k± ≈ kF .

A zero-energy state corresponds to l = 1. Written out
explicitly, it has the form

�0(r) =
(

ieiθ

−ie−iθ

)
J1(kF r)e− 1

vF

∫ r

0 dr ′�(r ′)
. (B6)

Notice that we have multiplied the wave function by i to satisfy
the Majorana condition: vl=1 = u∗

l=1. The first excited state has
l = 0: (

ul=0(r)
vl=0(r)

)
=

(
J0(kF r)
J2(kF r)e−2iθ

)
e
− 1

vF

∫ r

0 dr ′�(r ′)
. (B7)

Having all these analytical expressions, we can calculate
the Berry connections. We skip the algebra, and the result is
given by

i〈�l=1,i |�̇l,i〉 = −iπA[(vx − ivy)δl − (vx + ivy)δl−2], (B8)

where v = Ṙ and constant A is the following integral:

A =
∫ ∞

0
rdr f1(kF r)∂rf0(kF r)

−
∫ ∞

0
rdr f1(kF r)

(
∂r + 2

r

)
f2(kF r). (B9)

APPENDIX C: CALCULATION OF THE BERRY MATRIX M

In this section we provide the details of the calculation of
the Berry matrix (31) of the zero-energy states. The Berry
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matrix M is given by

M++ = M−− = i

2
(〈�1|�̇1〉 + 〈�2|�̇2〉),

(C1)

M+− = 1

2
(i〈�1|�̇1〉 − i〈�2|�̇2〉 + 〈�1|�̇2〉 − 〈�2|�̇1〉).

In the following we omit the subscript 0 for the zero-energy
states. So all �1,2 refer to the wave functions of the zero-energy
state.

From (B8) we have 〈�1|�̇1〉 = 〈�2|�̇2〉 = 0. So M only
has off-diagonal elements. Furthermore, we can show that

M+− must be a real number following the Majorana condition
�∗ = �. Write � = (u,u∗)T , we have

〈�1|�̇2〉 =
∫

d2r (u∗
1u̇2 + u1u̇

∗
2), (C2)

from which we can easily see 〈�1|�̇2〉 ∈ R. The same for
〈�2|�̇1〉.

The integral in M+− can be simplified:

M+− = ωα, α = 1

2

∫
d2r �†(r + R)�(r), (C3)

where R = R1 − R2.
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