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Analysis of laser angle-resolved photoemission spectra of Ba2Sr2CaCu2O8+δ in the superconducting
state: Angle-resolved self-energy and the fluctuation spectrum
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We analyze the ultrahigh-resolution laser angle-resolved photoemission spectroscopy intensity from the slightly
underdoped Bi2Sr2CaCu2O8+δ in the superconductive (SC) state. The momentum distribution curves were fitted
at each energy ω employing the SC Green’s function along several cuts perpendicular to the Fermi surface with
the tilt angle θ with respect to the nodal cut. The clear observation of particle-hole mixing was utilized such
that the complex self-energy as a function of ω is directly obtained from the fitting. The obtained angle-resolved
self-energy is then used to deduce the Eliashberg function α2F (+)(θ,ω) in the diagonal channel by inverting the
d-wave Eliashberg equation using the maximum entropy method. Besides a broad featureless spectrum up to the
cutoff energy ωc, the deduced α2F exhibits two peaks around 0.05 and 0.015 eV. The former and the broad feature
are already present in the normal state, while the latter emerges only below Tc. Both peaks become enhanced as
T is lowered or the angle θ moves away from the nodal direction. The implication of these findings is discussed.
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I. INTRODUCTION

The recent observation of the particle-hole mixing in the
superconductive (SC) state of the cuprates by high-resolution
angle-resolved photoemission spectroscopy (ARPES) has
opened up a new window to probe the fundamental physics
of high-temperature superconductivity.1,2 In particular, an
analysis of the spectra in the SC state, using the Eliashberg
formalism for d-wave superconductivity, provides the fluctu-
ation spectrum responsible for pairing. This is an extension
of the tunneling experiments and analysis with which it was
definitively established that the pairing in metals like Pb is
through exchange of phonons.3 It should be remembered
that to get reliable information, it was necessary to have
measurements of conductance at different temperatures and
range of voltages of the order of the cutoff energy in
the phonon spectrum to an accuracy of 0.2%. The particle-hole
mixing in cuprate superconductors was first observed some
15 years ago in ARPES.4 Those experiments had much worse
momentum and energy resolutions. Since the cutoff is an
order of magnitude higher for the cuprates than Pb and the
angle dependence of the spectra is crucial, the demands on
the quality of the data are only being recently met through
ultrahigh resolution and stability of laser based ARPES.

The ARPES provided an early evidence for the dx2−y2

pairing state of the cuprates.5 The measured leading edge
shift of the energy distribution curve (EDC) of ARPES as
a function of the tilt angle showed that the superconducting
gap is consistent with the d-wave pairing gap. It ushered in

more debates and experiments, which eventually led to the
establishment of the d-wave pairing symmetry for the cuprate
superconductors.6 The ARPES contains more information
than the leading edge shift, which may be utilized, for example,
to extract the Eliashberg functions and track their evolution as
the temperature is lowered below Tc. By properly extending the
normal-state analysis of extracting the self-energy, one should
be able to deduce information about superconductivity of the
cuprates such as the angle-resolved diagonal and off-diagonal
self-energies, and the pertinent Eliashberg functions. This is
precisely what we wish to present in this paper.

For this, we fitted the ARPES momentum distribution
curves (MDCs) at each energy ω employing the SC Green’s
function along several cuts perpendicular to the Fermi surface
with the tilt angle θ from the nodal cut with respect to the (π,π )
in the Brillouin zone. The clear observation of particle-hole
mixing was utilized such that the complex self-energy as a
function of ω is directly obtained from fitting the ARPES data.
Thus obtained angle-resolved diagonal self-energy �(θ,ω) is
then used to deduce the Eliashberg function α2F (+)(θ,ω), i.e.,
the bosonic fluctuation spectrum multiplied by the coupling
constant squared, in the diagonal channel by inverting the d-
wave Eliashberg equation using the maximum entropy method
(MEM). The diagonal self-energy evolves smoothly into the
normal-state self-energy as the temperature is raised above Tc.
The evolution of the Eliashberg function as the temperature or
tilt angle is varied will reveal a useful information about the
nature of superconductivity in the cuprates.
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On the other hand, the angle-resolved off-diagonal self-
energy φ(θ,ω), or, the density of states N (θ,ω) given by Eq. (6)
below, can be used for d-wave superconductors to extract the
Eliashberg function in the off-diagonal (i.e., pairing) channel,7

as the ordinary tunneling conductance was used by McMillan
and Rowell to extract the spectrum of fluctuations for s-wave
superconductors.3 While the Eliashberg functions along the
diagonal and off-diagonal channels are assumed to be the same
for the s-wave pairing, they are in general different for d-
wave superconductors. The current approach has the unique
advantage in that it can disentangle the Eliashberg functions
in the diagonal and off-diagonal channels, α2F (+)(θ,ω) and
α2F (−)(θ,ω), respectively.

In the following Sec. II, we will present the formulation of
the MDC analysis of the ARPES intensity in the superconduct-
ing state using the full momentum and energy dependence of
the SC Green’s function. It is an extension of the ARPES
analysis in the normal state.8 The results for the diagonal
self-energy �(θ,ω) from slightly underdoped Bi2212 will
be presented in Sec. III at temperatures above and below Tc

and along several cuts of the tilt angle θ with respect to the
(0,0) − (π,π ) nodal cut. As in the normal state, the extracted
self-energy may be used as an input to deduce the Eliashberg
function α2F (+)(θ,ω). The obtained Eliashberg functions are
presented in Sec. IV. Recall that α2F (+)(θ,ω) along different
cuts collapse onto a single curve with a peak near 0.05 eV
below the angle-dependent cutoff ωc(θ ) in the normal state.8

In the SC state the peak around 0.05 eV gets enhanced and an
additional peak emerges around 0.015 eV below Tc. Both peaks
become enhanced as T is lowered or the tilt angle is increased.
We will conclude the paper by making some remarks and
outlooks in the Sec. V.

II. FORMALISM

The ARPES intensity, within the sudden approximation, is
given by

I (k,ω) = |M(k,ν)|2f (ω)[A(k,ω) + B(k,ω)], (1)

where M(k,ν) is the matrix element, ν is the energy of incident
photon, f (ω) is the Fermi distribution function, A(k,ω) is
the quasiparticle (qp) spectral function, and B(k,ω) is the
background from the scattering of the photoelectrons. We
write the in-plane momentum k with the distance from the
(π,π ) point k⊥ and the tilt angle measured from the nodal
cut θ as shown in Fig. 1. The self-energy has a much weaker
dependence on k⊥ than θ or ω, as will be discussed below.
Assuming this, the spectral function is written as

A(k,ω) = − 1

π
ImG(k,ω),

(2)

G(k,ω) = W (θ,ω) + Y (k,ω)

W 2(θ,ω) − Y 2(k,ω) − φ2(θ,ω)
,

where G(k,ω) is the retarded Green’s function in the super-
conductive state. The following notations were used:

W (θ,ω) = ωZ(θ,ω) = ω − �(θ,ω),

Y (k,ω) = ξ (k) + X(θ,ω), (3)

φ(θ,ω) = Z(θ,ω)�(θ,ω),

FIG. 1. (Color online) The Fermi surface of Bi2212 in the
Brillouin zone. The blue solid curves centered around the � point
represent the FS from Eq. (8) and the solid dots are the experimentally
determined FS at θ = 0◦,5◦,10◦,15◦,20◦,25◦. k⊥ is the distance from
the (π,π ) point. The yellow thick curves along each cut indicate the
actual momentum paths at ω = 0 of the experimentally measured
ARPES MDC data.

where Z(θ,ω) is the renormalization function, X(θ,ω) is the
shift of the qp dispersion, and �(θ,ω) and φ(θ,ω) represent
the qp diagonal self-energy and the off-diagonal self-energy,
respectively. The equation that connects �(θ,ω), X(θ,ω),
and φ(θ,ω) with the effective interaction in the charge and
spin channels is the Eliashberg equation.9 It is presented in
Sec. IV below in connection with extraction of the Eliashberg
functions.

It is informative to make the following decomposition of
the SC Green’s function:

Y + W

Y 2 − (W 2 − φ2)
= 1/2 + N/2

Y − P
+ 1/2 − N/2

Y + P
, (4)

where

P (θ,ω) =
√

W 2(θ,ω) − φ2(θ,ω), (5)

N (θ,ω) = W (θ,ω)√
W 2(θ,ω) − φ2(θ,ω)

. (6)

We note that the qp dispersion shift X(θ,ω) vanishes in the
particle-hole symmetric band. Although the symmetry does
not hold for the realistic tight-binding dispersion, it holds to
a good degree over the small energy scale of SC and the
renormalization is neglected in the present work. The ARPES
intensity divided by the Fermi distribution function is then
given by

I (θ,k⊥,ω)

f (ω)
= C(θ,ω)Im

[
1 + N (θ,ω)

ξ (k) − P (θ,ω)

+ 1 − N (θ,ω)

ξ (k) + P (θ,ω)

]
+ B(θ,ω), (7)

where C(θ,ω) is the weight of the spectral function of the
ARPES intensity. We then have the six-parameter fit in SC
state: C, B, the real and imaginary parts of P and N as a
function of binding energy ω, while the normal-state fitting
required four parameters. Note that the dependence on k⊥
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comes in through the bare dispersion ξ (k) only. It is therefore
important to take appropriate dispersion.

As in the normal state, we used the tight-binding (TB)
dispersion and the linear dispersion (LD) for the MDC
analysis. The TB dispersion ξ (k) is given by

ξ (kx,ky) = −2t(cos kxa + cos kya) + 4t ′ cos kxa cos kya

− 2t ′′(cos 2kxa + cos 2kya) − μ, (8)

where a = 3.82 Å is the lattice constant and μ is the chemical
potential. We took t = 0.395, t ′ = 0.084, t ′′ = 0.042, and
μ = −0.43 eV. The linear dispersion was determined by
linearization of the TB at FS of the six tilt angles θ ,

ξ (θ,k⊥) = vF (θ )[k⊥ − kF (θ )], (9)

where vF (θ ) and kF (θ ) are Fermi velocity and Fermi mo-
mentum, respectively. The experimentally determined FS in
comparison with that from Eq. (8) is shown in Fig. 1. The six
cuts with the tilt angles θ with respect to the (π,π ) are also
shown with the solid lines.

Note that the first and the second terms in Eq. (7) give
the intensity due to the “particle” and the “hole” parts of the
Bogoliubov particles, respectively. P (θ,ω) and N (θ,ω) are
directly extracted from fitting the ARPES MDC data. Then,

�(θ,ω) = ω − P (θ,ω)N (θ,ω), (10)

φ2(θ,ω) = P 2(θ,ω)[N2(θ,ω) − 1] (11)

gives �(θ,ω) and φ(θ,ω). Since the density of states N (θ,ω) =
1 in the normal state, the off-diagonal self-energy φ(θ,ω) can
only be extracted from the difference of the spectra between
the normal and SC states. These differences are very small
at energies above a few times Tc. So the requirements on
the ARPES data to reliably extract φ at higher energies are
considerably more stringent than those to extract �. We defer
this to future work and show here that considerable information
on the fluctuation spectrum can be extracted from the diagonal
self-energy alone.

III. MDC ANALYSIS

The ultrahigh-resolution laser ARPES data were collected
from slightly underdoped Bi2212 of SC critical temperature
Tc = 89 K and pseudogap temperature T ∗ ≈ 160 K. The data
were took along the cuts of the tilt angle θ = 0 (nodal cut), 5◦,
10◦, 15◦, 20◦, and 25◦ with respect to the nodal direction and
at temperatures T = 107, 97 above Tc and 80, 70, and 16 K
below Tc. The photon energy of hν = 6.994 eV was used in the
laser ARPES. Refer to Ref. 8 for a more detailed description
of the experimental setup and the technical details.

Typical results of the ARPES analysis in the SC state are
given in Fig. 2 for the tilt angle θ = 20◦. The first column
shows the results in the normal state at T = 97 K as a function
of the magnitude of the in-plane momentum k⊥ from the (π,π )
point at energies ω = −0.0005, − 0.0205, and −0.1005 eV.
The three energies represent the cases of ω � �, ω ≈ �,
and ω � �, where � is the gap amplitude at θ = 20◦ and
T = 16 K,

� = φ(θ,�)

Z(θ,�)
. (12)

FIG. 2. (Color online) The representative MDC as a function
of the momentum along the tilt angle θ = 20◦. The dots are the
experimental data and the solid red lines are the fitting. The first and
second columns show the fittings in the normal state and in the SC
state, respectively. The last column is the MDC ratios of SC to normal
states.

The symbols are the data and the red solid lines are the fitting
results. The agreements are almost perfect, which justifies the
neglect of the k⊥ dependence of the self-energy. The second
column is the corresponding results deep in the SC state at
T = 16 K. The green solid (blue dashed) lines are the particle
(hole) branch of the fitting, the first (second) term of Eq. (7).

The important point is that the hole branch represented by
the blue curves exhibits a peak as a consequence of the particle-
hole mixing of the pairing. This can be most spectacularly seen
near ω ≈ � presented in the middle row. In addition to the
main peak near k⊥a/π ≈ 0.91 from the original qp branch,
there exists the secondary peak at k⊥a/π ≈ 0.87. This is a
direct observation of the particle-hole mixing deep in the SC
state. The details of observations are presented separately.1

The particle-hole mixing was previously reported in the EDC
by observing the bending back of the spectral peaks.4 Both
branches of the Bogoliubov dispersion due to the particle-hole
mixing were also reported by the EDC in the intermediate
temperature regime2 because in the low-temperature limit the
Fermi function cuts the hole branch off and close to Tc the
pairing feature is very weak. The mixing is observed in the
low-temperature regime here and will be utilized to obtain
information about superconductivity in the cuprates. The last
row shows the case of ω � �. As the energy increases above
�, the hole branch contribution vanishes as the bottom plots
show. The last column is the ratio of the MDCs at 16 to 97 K,
which show the hole branch more clearly.

We now show the real part of the extracted self-energy
along the tilt angle θ = 0 and θ = 20◦ in Figs. 3(a) and 3(b),
respectively, and that at T = 16 K in the Fig. 3(c). Figures 3(a)
and 3(b) demonstrate that the feature around 0.05–0.07 eV
is already present in the normal state and is enhanced as the
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FIG. 3. (Color online) The real part of the extracted self-energy.
Plots (a) and (b) are along the nodal cut and θ = 20◦, respectively,
and plot (c) is at temperature T = 16 K.

temperature is lowered, while the broad feature continues from
the normal to SC state with no discernible change within the
accuracy of the experiment. The 0–0.02 eV feature emerges
only along off-nodal cuts below Tc as can be seen from plots
(a) and (b), and its energy scale increases as the tilt angle is
increased as can be seen from plot (c). This is consistent with
the d-wave pairing gap and implies that the 0–0.02 eV feature
is induced by superconductivity.

IV. ELIASHBERG FUNCTION

The extracted diagonal and off-diagonal self-energies may
be used as experimental inputs to deduce the Eliashberg
functions α2F (+)(θ,ω) and α2F (−)(θ,ω) by inverting the
Eliashberg equation. The d-wave Eliashberg equation may be
written as

�(θ,ω) =
∫ ∞

−∞
dε

∫ ∞

−∞
dε′S(ω,ε,ε′)N1(ε)α2F (+)(θ,ε′), (13)

φ(ω) = −
∫ ∞

−∞
dε

∫ ∞

−∞
dε′S(ω,ε,ε′)D1(ε)α2F (−)(ε′), (14)

S(ω,ε,ε′) = f (ε) + n(−ε′)
ε + ε′ − ω − iδ

, (15)

where f and n represent the Fermi and Bose distribution
functions, respectively.

We took

φ(θ,ω) = φ(ω) sin(2θ ) (16)

because the pairing is d-wave, and use the notations

N1(ε) ≡
〈
Re

W (θ ′,ε)√
W 2(θ ′,ε) − φ2(ε) sin2(2θ ′)

〉
θ ′
, (17)

D1(ε) ≡
〈

1

vF (θ ′)
Re

φ(ε) sin2(2θ ′)√
W 2(θ ′,ε) − φ2(ε) sin2(2θ ′)

〉
θ ′
, (18)

α2F (+)(θ,ε′) ≡
〈
α2(θ,θ ′)
vF (θ ′)

F (+)(θ,θ ′,ε′)
〉
θ ′
, (19)

where vF (θ ′) is the angle-dependent Fermi velocity and the
bracket implies the angular average over θ ′.

As in the normal state, we invert the real part of the Eliash-
berg equation to deduce the Eliashberg function α2F (+)(θ,ε′)
using the real part of the extracted diagonal self-energy as an
input. As mentioned before, the requirement on the data and
numerical fitting are considerably more stringent to reliably
extract the off-diagonal self-energy than to extract the diagonal
self-energy. We will defer the deduction of α2F (−)(θ,ω) to
future work and focus on α2F (+)(θ,ω) here. The real part of
Eq. (13) may be written as

�1(θ,ω) =
∫ ∞

−∞
dω′K(ω,ω′)α2F (+)(θ,ω′),

(20)

K(ω,ω′) =
∫ ∞

−∞
dε P f (ε) + n(−ω′)

ε + ω′ − ω
N1(ε),

where P represents the principal value, and the subscripts 1
and 2 refer to the real and imaginary parts. The inversion was
performed using the maximum entropy method.8,10 Recall that
in the normal state the Eliashberg functions along different cuts
of the tilt angle θ all collapse onto a single curve, which has
a small peak at ≈0.05 eV, flattens above 0.1 eV, and vanishes
above the angle-dependent cutoff ωc(θ ). ωc(θ ) ≈ 0.35–0.4 eV
along the nodal direction and decreases as θ increases.8

Figure 4, showing the deduced α2F (+)(θ,ω), represents the
key results of the present paper. The deduced function is noisier
at larger angles. The noise somewhat depends on the multiplier
α of the maximum entropy method.11 We believe most of the
oscillatory behavior seen are artifacts of the MEM analysis and
we will focus only on the robust features whose variation is
continuous as a function of temperature and angles. The broad
feature above about 0.07 eV does not change with angle or
with temperature. It is a continuation of that required for the
marginal Fermi-liquid properties, which were derived recently
to arise from quantum criticality.12 It carries about 3/4 of the
total spectral weight.

Figure 4(a) is slightly below Tc at T = 80 K. The Eliashberg
function does not change much from the normal-state shape
except that the peak value at ω ≈ 0.05 eV increases to
approximately 0.4 for large tilt angles from 0.3 of the normal-
state value. In Fig. 4(b), α2F (+)(θ,ω) along the nodal cut is
shown as the temperature is varied. As might be expected
from above behavior, there is little change along the nodal cut,
although there is a sign of the lower energy peak at T = 16 K.
It seems that the change in �(θ = 0,ω) as T is varied as shown
in Fig. 3(a) is predominantly from the change in the density of
states that enters Eq. (20).

α2F (+)(θ,ω) deep in the SC state is shown in Fig. 4(c). Like
at T = 80 K, the peak at ω = 0.05 eV has its normal-state
value for small tilt angle and increases as the angle increases.
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FIG. 4. (Color online) Deduced Eliashberg function α2F (+)(θ,ω).
Plot (a) is at T = 80 K slightly below Tc, (b) is along the nodal cut,
(c) is at T = 16 K deep in the SC state, and (d) is along the off-nodal
cut of θ = 20◦.

Also a second peak at ≈0.015 eV emerges which, like the
ω ≈ 0.05-eV peak, increases from the normal-state value as
the angle is increased. In Fig. 4(d), the Eliashberg function
along the cut θ = 20◦ is shown. As the temperature is lowered
below Tc, the 0.05-eV peak is enhanced and the 0.015-eV
peak newly develops, as one can anticipate from the preceding
discussion. Both peaks are enhanced as T is lowered or the tilt
angle is increased.

There have been many investigations of the fluctuation
spectrum of the cuprate superconductors such as the infrared
conductivity, inelastic neutron scattering, Raman scattering,
scanning tunneling spectroscopy, and so on, which are less
direct in the information they provide for the source of
superconductivity than ARPES. Analysis of the frequency-
dependent conductivity by the McMaster group reported that a
single peak shows up in the Eliashberg function below 0.1 eV
for Bi2Sr2CaCu2O8+δ and other cuprate compounds, but a

double peak feature for La1.83Sr0.17CuO4 at low temperatures.
It exhibits a peak at ω ≈ 0.05 eV at high temperature T =
250 K, but as T is lowered to 30 K it showed two peaks
at 0.015 and 0.044 eV.13 The inelastic neutron scattering
(INS) experiment on La1.84Sr0.16CuO4 also reported the
two peak structure around 0.018 and 0.04–0.07 eV at the
antiferromagnetic wave vector.14 The Eliashberg analysis of
the break junction SIS conductance and scanning tunneling
spectra on overdoped Bi2Sr2CaCu2O8+δ reported a single peak
near ≈0.02 eV.15

No inelastic neutron-scattering results are available for
Bi2Sr2CaCu2O8+δ , so that we can only compare our results
with the detailed extraction of the spectral function of
the magnetic fluctuations χ (k,ω) for La1.84Sr0.16CuO4. The
positions of the two peaks around 0.018 and 0.04–0.07 eV are
consistent with the peak positions of the deduced α2F+(θ,ω).
To make comparison of the momentum dependence between
our α2F (+)(θ,ω) and INS results of χ2(q,ω), we compute
χ2(θ,ω) by taking the integral over θ ′ with both k and k′ on
the Fermi surface having the tilt angles θ and θ ′, respectively.
As with Eq. (19), we take

χ2(θ,ω) ≡ 〈χ2(k − k′,ω)〉θ ′ . (21)

The imaginary part of the spin susceptibility χ2(q,ω) was taken
from Vignolle et al. INS results.14 Figure 5(a) is the computed
χ2(θ,ω) from Vignolle and Fig. 5(b) is that with the correlation
length reduced to 1/10 of Fig. 5(a). Comparing with our results
in Fig. 4, the variation with angle compares better with the
reduced correlation length. The angle independence of the flat
part of α2F (+)(θ,ω) is consistent only with the fluctuation
spectrum, which has the short correlation length on the scale
of the lattice constant.

The origin of the ∼50-meV feature is often taken to be a
phonon16,17 but it may be the strong dispersionless magnetic
feature recently observed18,19 only in the pseudogap region
in the cuprates. One may be able to decide between the two
through ARPES analysis similar to that done here of overdoped
samples without the pseudogap.

FIG. 5. (Color online) The θ ′ averaged susceptibility χ2(θ,ω)
calculated from Vignolle to compare with α2F (+)(θ,ω). The plot
(a) is the χ2(θ,ω) from Vignolle and (b) is with the correlation length
reduced to 0.1 of (a).
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V. CONCLUDING REMARKS

We have presented the analysis of the ARPES intensity in
the superconductive state for the Eliashberg function along the
diagonal channel, α2F (+)(θ,ω). Beside the broad featureless
spectrum, a peak at 0.05 eV present in the normal state is
enhanced as T is lowered, and a second peak emerges around
0.015 eV in the SC state. The 0.015-eV peak is an interesting
new feature which needs further exploration. Since it appears
only below Tc, it cannot be responsible for Tc. We do not have
an answer at present to the question as to what kind of collective
modes of the superconducting state it represents. The origin of

the 50-meV feature generally observed is at the heart of current
debate. One may be able to answer through ARPES analysis
similar to that done here of overdoped samples without the
pseudogap.
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