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Magnetic-field-induced nonlocal effects on the vortex interactions in twin-free YBa2Cu3O7
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The vortex lattice (VL) in the high-κ superconductor YBa2Cu3O7, at 2 K and with the magnetic field parallel
to the crystal c axis, undergoes a sequence of transitions between different structures as a function of applied
magnetic field. However, from structural studies alone, it is not possible to determine precisely the system
anisotropy that governs the transitions between different structures. To address this question, here we report new
small-angle neutron scattering measurements of both the VL structure at higher temperatures and the field and
temperature dependence of the VL form factor. Our measurements demonstrate how the influence of anisotropy
on the VL, which in theory can be parameterized as nonlocal corrections, becomes progressively important
with increasing magnetic field, and suppressed by increasing the temperature toward Tc. The data indicate that
nonlocality due to different anisotropies plays an important role in determining the VL properties.
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I. INTRODUCTION

In an applied magnetic field, type-II superconductors can
be investigated directly via studies of the magnetic vortex
lattice (VL). One of the most direct experimental probes of
the VL is small-angle neutron scattering (SANS). Being a
bulk-sensitive technique, SANS continues to play a pivotal role
in clarifying the details of the mixed state in various classes of
superconductors.1–11 Typically, in SANS studies it is reported
how the VL structure and coordination vary as functions of
both magnetic field and temperature (T ). The results are often
used to provide evidence as to the sources of anisotropy that
might cause the VL structure to deviate from the perfectly
hexagonal coordination predicted for an isotropic material.12

By increasing the applied magnetic field, these anisotropies
become increasingly influential on the intervortex interaction,
and can cause transitions between different VL structures.

The simplest theoretical models that can be used to predict
the occurrence of VL structure transitions are those based on
local electrodynamic theory (“London” theory) extended with
nonlocal correction terms.13 These correction terms provide
a direct coupling between a system anisotropy and the VL
properties. The size of the correction terms scales according
to κ−2, where κ is the Ginzburg-Landau parameter. Hence
for high-κ materials such as cuprates, nonlocal corrections
are often neglected and local theory is deemed sufficient to
understand observation. However, VL studies of reasonably
high-κ materials, such as borocarbides1,2 and s-wave V3Si,4

show that in these materials it is necessary to consider
nonlocal effects associated with a Fermi surface anisotropy
in order to understand the field-dependent VL structure.14–17

Furthermore, in high-κ materials that exhibit a d-wave gap
anisotropy, nonlocal corrections cannot be neglected because

the nonlocal length scale ξ0 is momentum-dependent ξ0(k) ∝
1/�k and hence will be divergent at the nodes. As a direct
consequence of these “d-wave” nonlocal effects, unconven-
tional VL structures are predicted.18–20 More sophisticated
models can also account for the effects due to anisotropy
suggested by the aforementioned nonlocal theories. Within
quasiclassical Eilenberger theory, both the Fermi surface and
superconducting gap anisotropies can be considered in equal
measure when evaluating the VL free energy, and again
unconventional VL structures are expected as functions of both
field and T .17,21–23 Therefore, while nonlocal effects are often
neglected in high-κ materials, there is substantial evidence to
suggest that they play a decisive role in determining the VL
properties.

Our subject high-κ superconductor is YBa2Cu3O7−δ , the
mixed state of which has been under scrutiny more than twenty
years.24–40 SANS studies in particular have made important
contributions toward understanding the mixed state in this
material,30–40 with the motivation to understand the physics
of both the VL and the pairing state within an anisotropic host
material that has a nodal gap symmetry. YBa2Cu3O7−δ exhibits
an orthorhombic crystal symmetry and is composed of stacked
two-dimensional CuO2 plane layers and one-dimensional CuO
chain layers. For optimally- and over-doped compositions,
the CuO chains display both long-range order along the
crystal b axis, and metallic behavior.41 As a consequence it is
expected that, in addition to CuO2 plane states, electronic states
primarily associated with the chains are also superconducting
below Tc. This picture is supported by reported values of
the in-plane penetration depth ratio, γλ(=λa/λb ∝ √

m∗
a/m∗

b),
lying in the range 1.2–1.5.29,37,40,42–44 While the physical origin
of the chain pairing interaction remains to be definitively
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explained, current evidence suggests that it may originate
from a proximity effect coupling between chain and plane
states.45–47 A further consequence of the crystal orthorhom-
bicity is that the predominantly dx2−y2 order parameter
must contain an additional and finite s-wave admixture.48

Evidence for this admixture is provided by phase-sensitive,49

tunneling,50 and μSR51 studies.
The striking result of earlier SANS studies on fully doped,

albeit crystallographically twinned, YBa2Cu3O7 was the ob-
servation that with increasing magnetic field, the VL structure
evolves continuously from a low-field hexagonal structure
toward an almost square structure by 11 T.37,39 The physical
origin of this transition was suggested to be due to the increased
importance of the d-wave order parameter anisotropy as vortex
cores move closer together at high field.17,22,23 However, it
was also acknowledged that such a transition may also be
driven by nonlocal effects associated with a band structure
anisotropy.37,39 More recently, we reported a SANS study
of the VL in a sample of twin-free and fully oxygenated
YBa2Cu3O7.40 In this sample the pinning effects on the VL
due to twin boundaries, a characteristic feature of all previous
SANS studies,31–39 are almost entirely suppressed. For the
first time, this allowed a clear observation of the intrinsic
VL structure, and we reported an entirely new sequence
of field-dependent VL structures and structure transitions at
2 K, with all of the structure phases separated by first-order
transitions.40

In this paper, we extend our previous SANS study of
twin-free YBa2Cu3O7 with new measurements of both the
T -dependent VL structure and the field and T dependence of
the VL form factor. Measurements of the form factor have
proved to be remarkably useful in characterizing the mixed
state of other superconductors,8,11,52–55 and are often used in
conjunction with simple theories in order to extract measures
of the penetration depth and coherence length. The results
reported here represent the first detailed investigation of the
VL form factor in YBa2Cu3O7.

II. EXPERIMENTAL METHOD

The SANS investigations reported in this study have been
carried out using the SANS-I and SANS-II instruments at
the Paul Scherrer Institut, Villigen, Switzerland, the D11
instrument at Institut Laue-Langevin, Grenoble, France, and
the SANS-NG3 instrument at the NIST Center for Neutron
Research, Gaithersburg, USA. For all experiments, neutrons
of a mean wavelength between 6 and 10 Å were selected
with a 10% FWHM spread in wavelength. The neutrons were
collimated over distances between 6 and 14 m before the
sample position, and the diffracted neutrons were collected
by a position-adjustable two-dimensional multidetector.

All of the SANS measurements were performed using the
same twin-free sample of YBa2Cu3O7 that was also used in
Ref. 40. A mosaic of six single crystals was assembled with a
total mass of ∼30 mg. Each single crystal was grown from flux
within homemade BaZrO3 crucibles.56 The as-grown crystals
were individually detwinned under uniaxial stress at elevated
T ,57,58 and subsequently oxygenated under a high-pressure
oxygen atmosphere to achieve the overdoped O7 phase.59 The
zero-field Tc of the largest of the six crystals was measured

using a SQUID magnetometer. The midpoint of the transition
was found to be 89.0(5) K which is consistent with the
sample being maximally doped.60 The sample mosaic was
assembled on a 1 mm thick Al plate with the crystal c faces
flat and co-aligned about the c axis. X-ray Laue measurements
showed the mosaicity of the co-alignment to be �1.5◦. The
detwinning ratio of the mounted sample was determined from
single-crystal neutron diffraction measurements of the (100)
and (010) nuclear peak intensities. No signal attributable to
a minority domain was detectable within the sensitivity of
the measurement, limiting the minority domain population
to <1%.

The sample mosaic was loaded into the variable-
temperature insert of a horizontal-field cryomagnet with the
a axis vertical, and such that the c axis was parallel to the
field direction and also approximately parallel to the neutron
beam. In our previous report,40 we described two different
techniques for the preparation of the VL in the sample. The
first is the standard field-cool (FC) procedure. In this case,
the VL is prepared by applying the field above Tc and then
field cooling through Tc to the measurement T . The second
is the oscillation field-cooling (OFC) procedure. In this case,
the field cool through Tc is carried out in a field oscillating
around the target value B, with an amplitude of typically 0.1%
to 0.2% of B, and with an oscillation frequency of ≈ 2 min−1.
We identified40 the role of the OFC procedure as that which
equilibrates the VL structure into the preferred structural free
energy minimum F , that exists for an effective T which is
lower than the irreversibility temperature (Tirr) exhibited when
using a standard field cool. The OFC procedure is observed
to be most effective at low fields, where the stabilization of
the intrinsic VL structure is further accompanied by significant
improvements in VL quality. For these reasons, in this paper we
only report SANS measurements of the optimized VL prepared
by the OFC procedure.

When at the desired measurement T , the OFC procedure
is halted and the field is held constant at the target value.
The subsequent diffraction measurements are carried out
by rotating the sample and cryomagnet together about the
horizontal and vertical axes to angles that satisfy the Bragg
condition for a certain Bragg spot on the detector. In all
cases, background measurements were taken at T > Tc, and
subtracted from low-T foregrounds to leave just the VL signal.
Data visualization and analysis was performed using the GRASP

analysis package.61

III. RESULTS AND DISCUSSION

A. Vortex lattice structure at 2 K

1. Field dependence at 2 K

To set the stage for the new results in this paper, we begin
by reviewing our previous study.40 At 2 K, and within the
field range up to 10.8 T, we observe a sequence of first-order
VL structure transitions between the two orientations of
the VL primitive cell permitted by the orthorhombic crystal
symmetry.62 Both of these orientations are shown in the new
SANS diffraction patterns presented in Fig. 1. Figure 1(a)
shows a diffraction pattern obtained in an applied field of 0.5 T.
The overlaid hexagonal pattern indicates that the VL structure
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FIG. 1. (Color online) VL diffraction patterns obtained at 2 K, and in fields applied parallel to the crystal c axis, of (a) 0.5 T, (b) 5.0 T, and
(c) 7.5 T. The axes indicated in (a) apply to all figures. In each image, dashed line patterns indicate the VL structures. Solid lines represent
the basis vectors of the primitive cell, with the primitive cell opening angle of (a) φ, (b) ρ, and (c) ν. The images are constructed by summing
together the diffraction patterns obtained at a series of angles about the horizontal and vertical axes. This allows the presentation of all the
Bragg spots in a single picture. Statistical noise at the center of the patterns has been masked, and the data smoothed with a Gaussian envelope
smaller than the instrument resolution. The VL in real space can be visualized by rotating the reciprocal VL by 90◦ and adding an additional
vortex at the origin.

is composed of a single distorted hexagonal domain aligned
with the underlying atomic lattice. We refer to this structure
type as the low-field structure (LFS). The shape of the VL
unit cell may be described by the angle φ which lies between
the two basis vectors indicated in Fig. 1(a). On increasing the
field, the VL structure undergoes a first-order 90◦ reorientation
transition into another single domain distorted hexagonal
structure. Figure 1(b) shows an example of this structure type
in a diffraction pattern obtained at 5.0 T. We refer to this
structure type as the intermediate-field structure (IFS). The
sign of the distortion of the IFS remains consistent with that
of the LFS; both structures are stretched from an isotropic
hexagonal coordination along the a∗ direction. The overlaid
pattern in Fig. 1(b) indicates how we describe the primitive
cell of the VL with a different characteristic angle ρ. On
further increase of the field, we observe another first-order
transition in the VL structure, this time between the IFS and
a high-field structure (HFS) that is dominated by a rhombic
shape composed of four intense Bragg spots. This rhombic
shape is highlighted in Fig. 1(c) which shows an example
diffraction pattern obtained from the HFS in an applied field
of 7.5 T. Since the primitive cell of the HFS is of the same
orientation as that for the LFS, in order to distinguish between
them we use the symbol ν to label the opening angle of the
HFS primitive cell.

An interesting detail of the diffraction pattern shown in
Fig. 1(b), and characteristic of the IFS phase, is that the
horizontal spots with q parallel to the b∗ axis (q ‖ b∗) are
weaker in intensity than the other four spots. This is converse
to the general expectation that weaker spots appear at larger
q than more intense spots and are consequently considered
to be higher order spots of the reciprocal VL. In the HFS
phase, the more usual situation is realized; the weaker spots
with q parallel to the a∗ axis (q ‖ a∗) exhibit a larger q than
the four strong spots that make up the rhombic structure, and
thus may be considered as higher order spots. According to
this description, we see that the rhombic shape is distorted
away from an isotropic square lattice by a stretching along

the b∗ direction. Such a distortion is of opposite sign to that
observed for the hexagonal structures; a possible physical
reason for this is discussed later. Alternatively, the HFS may
also be considered as a distorted hexagonal structure of the
same orientation as the LFS phase, and the same direction
of distortion as the LFS and IFS phases. While there is no
formal method to distinguish between such descriptions of the
VL structure, other data presented later will show that with
increasing field, the spots of the rhombic structure become
further dominant in intensity over the weak spots with q ‖ a∗.

In Fig. 2, we show a quantitative analysis of the VL structure
and plot the field dependence of the primitive cell opening
angle at 2 K. At 2.1(4) T and 6.7(2) T we observe clear
discontinuities in the overall field dependence, confirming the
first-order nature of the VL transitions. The widths in field
of the regions of structure coexistence are estimated to be
0.75(5) T for the low-field transition and 0.45(5) T for the
high-field transition. The finite width of these coexistence
regions may arise from slight differences between the various
crystals of the sample mosaic or from hysteresis within them,
though the broader LFS-IFS transition also indicates that the
LFS and IFS types are closer in free energy than the IFS and
HFS phases. Figure 2 also shows that the primitive cell angle
of the HFS is still evolving with field until the highest fields
available. While at no field do we observe a perfectly square
coordination with a primitive cell angle of 90◦, we stress that
in orthorhombic YBa2Cu3O7 there is no particular symmetry
reason for the VL to stabilize into a perfectly square structure
at high fields.

Next we examine the distortion of the VL structure in the
LFS and IFS phases. The stretching of the diffraction patterns
along a∗ is consistent with that expected due to chain-enhanced
superconductivity along the b direction. This anisotropy is
incorporated into local London theory by inserting a second-
rank effective mass tensor into the expression for the London
free energy.63–65 For the uniaxial case where m∗

a = m∗
b, γλ =√

m∗
a/m∗

b = 1, the VL structure is undistorted and perfectly
hexagonal. In such a case, the spot distribution can be overlaid
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FIG. 2. (Color online) The field dependence at 2 K of the primitive
cell opening angle for the various VL structures. Inset schematics
indicate the reciprocal VL primitive cell for each phase. The dashed
line at 90◦ indicates the opening angle of a perfectly square VL. The
dashed-dotted line at 60◦ indicates the opening angle of an isotropic
hexagonal VL. The (dark) gray shaded portions indicate the field
regions over which we observe first-order VL structure transitions.
The error bars are sufficiently small to be masked by the data symbols.
Some of these data were first presented in Ref. 40.

by a circle. For the biaxial case m∗
a �= m∗

b, the VL structure
in reciprocal space is scaled by γ

1/2
λ along a∗ and by γ

−1/2
λ

along b∗, resulting in an elliptical spot distribution.64,65 In the
anisotropic London limit, the axial ratio of the ellipse, which
we call η, gives directly the value of the anisotropy parameter
γλ. Geometry shows that for the LFS, η can be determined
directly from the defined opening angle φ according to ηLFS =√

3/tan[90◦ − (φ/2)]. For the IFS, η can be found from the
angle ρ according to ηIFS = [

√
3tan(ρ/2)]−1. Figure 3 shows

the field dependence at 2 K of η obtained within both the LFS
and IFS phases. For the LFS phase, the value of η remains
essentially field independent. The mean value taken across
this phase is η = 1.28(1), a value similar to those found in
previous studies,29,37,42,44 some of which were performed on
YBa2Cu3O7−δ samples of slightly different composition. On
moving between the LFS and IFS phases, the first-order change
in the VL structure is accompanied by a discontinuity in η.
Within local London theory, this would imply a similarly sharp
discontinuity in the value of γλ which is not expected. This
suggests that nonlocal effects are becoming important. On
further increase of the field, the value of η is observed to fall
monotonically, which similarly within the local theory would
indicate a suppression of the in-plane anisotropy. However,
results in the following sections will show that such a simple
picture may be inappropriate, and that a more detailed theory
is required in order to explain the observations.

2. Discussion

Within the literature, a broad range of theoretical work
attempts to describe the field-dependent behavior of the low-T
VL structure in high-κ materials. In our case, the simplest
model is the anisotropic London theory. This is a purely
local theory that is valid for κ 
 1 and for fields B �

H (T)μ0
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FIG. 3. (Color online) The field dependence at 2 K of the
parameter η determined for both the LFS and IFS. The (dark) gray
shaded portion indicates the field region over which we observe
a first-order transition between the LFS and IFS phases. The line
corresponds to a linear fit of the data obtained in the IFS phase. Error
bars not visible can be considered of order the size of the symbol.
Some of these data were first presented in Ref. 40.

Bc2, a regime deemed suitable for experiments on high-Tc

materials.63–65 According to local theory, the preferred VL
structure is expected to be hexagonal in coordination, but with
no preferred structural orientation. Since this orientational
degeneracy is expected within local theory, even an extremely
weak interaction may lead to a preferred orientation. Therefore
local theory may still be dominant at low fields, even though
preferred orientations are seen. Since no field-driven VL
structure transitions are expected from the predictions of local
theory, this demonstrates that the local approach neglects
important details, even if the theory is able to describe the
VL distortion in high-κ materials.

An orientational F can be found at every field and T after
extending the local London theory with nonlocal corrections
that take the form of higher order terms in the expression for
the London free energy. These higher order terms provide
a coupling of the VL both to the anisotropy of the band
structure14–17,19 and, in general, to an anisotropy of the
gap.18–20 In each case, numerical evaluations of the free energy
are able to reproduce field-driven and first-order reorientation
transitions between hexagonal VL structures that are anal-
ogous to our observed LFS-IFS transition. However, nearly
all model predictions are made using an idealized fourfold
symmetric system, and predictions for twofold symmetric
systems are comparatively few.15,16,66 Seemingly the most
suitable predictions for twofold symmetric systems such as
YBa2Cu3O7 are provided by the nonlocal theory of Kogan
et al.15,16 However, before we discuss the application of
the theory to our results,15,16 we next discuss the theory in
more detail, because we have discovered it to possess some
previously unreported properties.

Kogan’s nonlocal theory15 accounts for the effects of
Fermi-surface anisotropy, but not gap anisotropy, on the VL
structure (although we expect that a d-wave gap anisotropy will
have similar effects19). The theory is formulated by developing
the lowest order nonlocal corrections to the local London
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relationship between supercurrent density j and magnetic
vector potential a. Kogan et al. showed that by including these
corrections the general form of the nonlocal London equation
becomes14–16

μ0ji = −λ−2
(
m−1

ij − λ2nijlmGlGm

)
aj , (1)

where mij is a normalized effective mass tensor and λ is
the geometrically averaged penetration depth = (λxλyλz)−1/3.
Nonlocality is captured by the term dependent on both the
reciprocal VL vector G and the fourth-rank tensor nijlm. This
tensor provides a coupling between the VL supercurrents and
the microscopic properties of the Fermi surface, and is depen-
dent on the fourth moment of the Fermi velocity according to
nijlm ∝ 〈vivj vlvm〉.14–16 Without the term dependent on nijlm,
Eq. (1) is the local anisotropic London equation.

The free energy density F̃ of a certain VL coordination is
computed numerically by summing the contributions due to the
various Fourier components of the field distribution described
by Eq. (1). At each field, the preferred VL coordination is
that which minimizes F̃ . For fields applied along a fourfold
symmetric z axis, the x and y directions are equivalent, and F̃

is evaluated by performing the sum:15

F̃ = B2

2μ0

∑
G

1

1 + λ2G2 + λ4
(
n2G4 + dG2

xG
2
y

) ,

(2)

d = 2n1 − 6n2,

where n1 ∝ 〈v4
x〉 ≡ 〈v4

y〉 and n2 ∝ 〈v2
xv

2
y〉. When evaluating F̃ ,

the logarithmic infinity in the magnetic field at a vortex core
given by London theory has to be regularized. This is done by
inserting a “core-correction” term of the form exp(−G2ξ 2) into
the numerator of Eq. (2), and may itself be anisotropic due to
effective mass anisotropy. Since effective mass is represented
by a second-rank tensor, for the fourfold case, the effective
mass of the carriers is isotropic in the basal plane and the
effects of the core corrections15,16 are thus taken to be isotropic
too. Similarly the local limit for the value of the penetration
depth is also isotropic since it too depends on the effective
mass. Therefore, the nonlocal effects are the only cause of
anisotropy.

For fields applied along a twofold symmetric z axis
(appropriate for the case of μ0H ‖ c in YBa2Cu3O7) the
effective mass is anisotropic (the x and y directions are
inequivalent) so both the value of penetration depth and the
core correction are modified to take this into account.15 Kogan
et al. showed that the general expression for F̃ becomes15

F̃ = B2

2μ0

∑
G

1

1 + λ2K2 + λ4
(
n4K4 + bG2

xG
2
y

) ,

K2 = (
mxG

2
x + myG

2
y

)
, (3)

b = n3m
2
y + n1m

2
x − 6n4mxmy,

where mi is the effective mass in the ith direction, and the
tensors n3 ∝ 〈v4

x〉, n1 ∝ 〈v4
y〉, and n4 ∝ 〈v2

xv
2
y〉.

By using Eqs. (2) and (3), Kogan et al. calculated the field
evolution of the VL structures for both the fourfold and twofold
symmetric cases.15 Their reported predictions are shown in
Fig. 4. For the fourfold case, the hexagonal VLs predicted in the
low- and mid-field ranges break the fourfold crystal symmetry.

FIG. 4. The predicted field dependencies of the VL opening angle
β for both the fourfold symmetric case (down-pointing triangles and
diamonds) and the twofold symmetric case (up-pointing triangles).
Figure taken from Ref. 15.

Hence at any field where hexagonal VLs are expected, there
are two degenerate VLs rotated 90◦ to one other. The lowest
field hexagonal VLs are predicted to be oriented at 45◦ to the
mid-field hexagonal VLs, and change from one to the other
via a first-order transition. The mid-field VLs then distort with
increasing field before locking via a second-order transition
into a single square VL of definite orientation relative to the
crystal axes.

For the twofold symmetric case no low-field hexagonal VL
expected, and the analog of the mid-field hexagonal VL is
present in only one orientation, aligned with one of the crystal
axes. This VL is predicted to distort as the field is increased and
to lock-in via a second-order transition to a non-square high-
field VL with field-independent shape, and again in a definite
orientation relative to the crystal axes. Whereas the fourfold
symmetric version of the theory gives reasonable agreement
with observations in superconductors with appropriate field
directions,2,4,16 it does not agree with those obtained with the
field along a twofold symmetric axis.67

We have therefore reconsidered the twofold symmetric
version of the theory, and discovered that it has some previ-
ously unreported properties. Starting in the twofold symmetric
case, we can make a scale transformation of the x and y

components of the spatial variation of the magnetic field:
mx(Gx)2 → (G′

x)2 and my(Gy)2 → (G′
y)2, and thus remove

the effective mass anisotropy from the theory. Now all the
local and nonlocal contributions to the penetration depth
become identical in form to the fourfold symmetric case
(with coefficients derived from the twofold parameters also
rescaled). This k-space scaling is also exactly that required to
make the core corrections in the theory isotropic. Hence, the
twofold symmetric version of the theory has exactly the same
structure as the fourfold symmetric version, except that the
scale transformation distorts the shape of the predicted VLs
and rescales the value of the field.

Using Eq. (3), we have made a numerical implementation
of the theory for the twofold case in order to study the conse-
quences of the isomorphism of the twofold and fourfold theo-
ries. First, we find that in the mid-field region, two degenerate
hexagonal VLs are expected (Fig. 5), instead of just the single
hexagonal VL (at low β) that was identified previously.15 This
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FIG. 5. (Color online) Numerical evaluations of the free energy
carried out using the Kogan nonlocal theory in the mid-field region
and for the twofold symmetric case (Ref. 15). Inset diagrams
show the degenerate reciprocal VLs. Filled symbols denote the
primitive cell, and empty symbols represent the additional spots
required to complete the hexagonal structure. Dashed lines indicate
horizontal and vertical symmetry planes. The parameters used for the
calculations are the same as those in Ref. 15.

degeneracy may be expected for the twofold case since for
the fourfold symmetric case, two identical (but rotated by 90◦)
distorted hexagonal VLs have the same free energy. Second,
we find that the minimum free energy at the lowest fields cor-
responds to VLs in orientations that are rotated approximately
45◦ from the mid-field VLs as shown in Fig. 6.68 After scaling
to go from the fourfold to the twofold symmetric case, these
lowest field VLs are in unsymmetrical orientations relative to
the crystal axes, and so were not searched for in the earlier
work. Again, in agreement with the fourfold symmetric case,
the low- and mid-field VL structures are separated by a first-
order reorientation transition of the primitive cell. In the high-
field region, the expected single non-square VL solution corre-
sponds to a fourfold square VL distorted by the scaling factors.

We also observe that there is no change of symmetry
expected at the transition between the mid-field hexagonal VL
and the high-field non-square VL (Figs. 4 and 6). This is of
concern since in a real twofold symmetric system there cannot
be a second-order transition between such VLs: It is only
predicted in the twofold case because of its “hidden fourfold
symmetry.” This symmetry is a property of the theory and not
a necessary property of the system being described. Hence, in
practice, any property of the system not contained within the
theory will remove the sharp transition in the twofold case,
and replace it with a smooth crossover. We can remove this
hidden symmetry easily by putting a different effective mass
anisotropy into the core correction from that in the penetration
depth. This maintains the twofold crystal symmetry, but
removes the isomorphism of the twofold and fourfold theories.
Once this is done, we find both that the high-field second-order
transition is removed and that the degeneracy between the
two mid-field hexagonal VLs is removed so that only one
orientation is expected.

We see that the predictions of the Kogan nonlocal theory
depend sensitively on the relationship between the anisotropy
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FIG. 6. (Color online) The field dependence of the primitive cell
opening angle β as calculated using the Kogan theory for the twofold
symmetric case. In the mid-field region, we plot only the small-β
solution in order to compare with Fig. 4. The reciprocal VL structures
are defined by the inset diagrams. The short- and long-dashed lines
indicate the crystal symmetry planes for the fourfold case. For the
twofold case, only the short-dashed line symmetry planes remain. The
parameters used for the calculations are the same as those in Ref. 15.

of the cores and that of the penetration depth. In YBa2Cu3O7,
we may expect the coherence length of the carriers localized
in the CuO chains to be quite different in value and degree
of anisotropy from the properties of the carriers in the CuO2

planes. In addition, Kogan’s theory contains no gap anisotropy,
and the VL core structure in YBa2Cu3O7 must be affected
by the positions of the gap nodes, which will also introduce
a nonlocal anisotropy.17,19 We can be fairly sure that these
effects will remove the degeneracy between the two different
orientations of distorted hexagonal VL that are predicted at
each field for the twofold symmetric case. Our experimental
results show that these two different orientations exist at fields
above and below ∼2.1 T (Fig. 2); it is possible that a field
dependence of the core anisotropy could lead to the observed
field-dependent transition between them. Nevertheless, in
order to apply the twofold symmetric form of Kogan’s nonlocal
theory to observations of real materials, further extensions,
perhaps in the form of additional higher order anisotropy terms,
are required. This conclusion is strengthened by the fact that
we do not observe the very low field ∼45◦ rotated VL (which
is apparently expected for all values of anisotropy17). Also
the transition to our high-field phase is first order, again in
disagreement with simple nonlocal theory.69

Despite the noted shortcomings of the Kogan theory in
its current form, we nevertheless emphasize certain details
within the predictions that may be compatible with our data.
First, we have revealed that both a low-field and first-order
VL reorientation transition may be expected for the twofold
symmetric case. After appropriate modification of the theory,
it may be turn out that this transition will involve a 90◦, and not
a ∼45◦, reorientation of the primitive cell, and thus be more
directly analogous to our observed transition between the LFS
and IFS phases. Second, we find that the high-field VL is
expected to evolve toward a distorted squarelike structure that
is analogous to the behavior observed in the HFS phase. While
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FIG. 7. (Color online) The zero field in-plane anisotropies of
superconducting YBa2Cu3O7 that are expected to influence the VL
properties. (a) A schematic of the irreducible quadrant of the first
Brillouin zone showing the main Fermi surfaces at kz = 0 (Refs. 70
and 71). (b) The predominantly dx2−y2 order parameter combined with
the s-wave admixture suggested by phase-sensitive measurements
(Ref. 49).

we have clarified that in a real twofold symmetric system the
predicted high-field second-order transition cannot occur, the
important detail is that at high field the vortex nearest neighbors
are expected to approach directions parallel to minima in
the Fermi velocity.15 This observation is compatible with
calculations of the zero-field Fermi surface of YBa2Cu3O7

(Refs. 70 and 71) shown schematically in Fig. 7(a). The
dominant bands are large squarelike contours associated with
the CuO2 planes that are distorted so that the Fermi velocity
is larger along kx and ky than along the {110} directions.
This suggests that the structural orientation of the HFS may
be determined by the anisotropy of these Fermi surface
sheets.14–16

On the other hand, it may be expected that the strong order
parameter anisotropy is more important at high fields than
Fermi surface anisotropy. Since the Kogan nonlocal theory
does not account for any superconducting gap anisotropy,
we now consider how this anisotropy may influence the VL
structure. Both the high-field transition and the tendency
toward a square VL structure may be interpreted as caused
by the increasing importance with field of the predominantly
d-wave superconducting gap. This is a common prediction
made using other nonlocal models18,19,72–74 and more detailed
microscopic theories.17,22,23 According to the predictions of
microscopic theory,17,22,23 the F of the high-field square
structure is determined by the fourfold vortex core anisotropy
arising from the d-wave order parameter. The common
prediction of all theories is that the vortex nearest neighbors of
the square VL are expected to lie parallel to the nodal direction
of the order parameter.17–19,22,23,72–75 For YBa2Cu3O7 at zero
field, phase-sensitive measurements show that the nodes are
not at 45◦ to the crystal axes (as expected for a pure dx2−y2

superconductor), but at ±50◦ to the b axis49 as shown in
Fig. 7(b). The smooth variation of the angle ν in the HFS
phase toward the square value of 90◦ could reflect a field-driven
change in the nodal positions of the gap function. For the case
of YBa2Cu3O7, this might indicate a change of the admixture
which causes the deviation of the gap symmetry from pure
dx2−y2 . This hypothesis could be tested via high-field STM
measurements.

While we may make qualitative comparisons between
our structural data and the available theoretical work, a

full understanding of our observations requires inclusion of
the orthorhombic system symmetry, and disentangling the
expected effects due to the anisotropies of both the band
structure and the nodal gap. This is possible in materials
where both the band structure and gap anisotropies are
expected to yield VL structures of different orientations, e.g.
in La1.83Sr0.17CuO4+δ .6,23 In YBa2Cu3O7 however, these two
anisotropies are expected theoretically to yield similar VL
structures.17,23 A more complete understanding of the new
structural data presented here calls for extensions to the cur-
rently available theoretical work. In particular, our discussion
of the Kogan nonlocal theory15,16 indicates that instead of
relying on approximate approaches, a better proposition is to
attempt full first-principles numerical calculations.

B. Vortex lattice form factor at 2 K

1. Field dependence of the form factor

Within the mixed state, the local field is expressed as
a sum over its spatial Fourier components at the various
different scattering vectors q belonging to the two-dimensional
reciprocal lattice of the VL. The form factor at a wave vector q

is the magnitude of the Fourier component F (q), and its value
is obtained from the integrated intensity Iq of a VL Bragg
reflection as the VL is rotated through the diffraction condition.
Iq is related to the modulus squared of the form factor, |F (q)|2,
by76

Iq = 2πV φ

(
γ

4

)2
λ2

n

�2
0 q

|F (q)|2. (4)

Here, V is the illuminated sample volume, φ is the incident
neutron flux density, λn is the neutron wavelength, γ is
the magnetic moment of the neutron in nuclear magnetons
(=1.91), and �0 = h/2e is the flux quantum. Equation (4)
shows that the modulus form factor, |F (q)|, for a specific Bragg
spot is obtained from both Iq and the magnitude q, with all
other variables constant. In order to record Iq experimentally,
the sample and cryomagnet are rotated together through an
angular range that moves a reciprocal lattice vector through the
Bragg condition at the detector. Figure 8 shows representative
scans of the angular dependence of the diffracted intensity
(rocking curves) for the top and bottom spots with q ‖ a∗
that form part of the diffraction pattern shown in Fig. 1(a).
The quantity Iq is obtained by integrating the area underneath
the line shape that is used to fit the rocking curve. When
appropriate, Iq is corrected by the cosine of the angle between
the scan direction and q (the Lorentz factor).77

In Fig. 9, we show our measurements at 2 K of the VL
form factor across the entire field range up to 10.8 T. At
each field, we distinguish between form factor values obtained
from different types of Bragg spots, and each value represents
a mean taken over equivalent spots. Close to the first-order
VL structure transitions, the form factor values are noticeably
lower than those expected from an extrapolation of “pure
phase” data recorded away from these field regions. This is
owing to the strong field dependence of the occupation fraction
of each of the two relevant structures close to the transitions
and is an effect not accounted for by Eq. (4). For the low-field
transition, one sees reduced form factor values only at fields
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of 1.75 T and 2.5 T. For fields within this range, we were
unable to measure reliably the integrated intensities for the
Bragg spots due to a disordering of the VL. For the high-field
transition, reduced form factor values are seen at 6.5 T and
7 T. In this case, the two structures coexist cleanly and it is
possible to account for all of the diffracted intensity. However,
when modeling our form factor data, we only include data
obtained at fields where there is just one VL structure type in
the sample.

The data shown in Fig. 9 indicate that with increasing
field, an increasingly significant anisotropy emerges between
the form factors of the two types of Bragg spot. This is
explicitly shown in Fig. 10, where for each VL structure
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FIG. 10. (Color online) The field dependence at 2 K of the ratio
between on-axis and off-axis form factors. For the LFS and HFS
phases, the on-axis spots lie along a∗, while for the IFS phase, the
on-axis spots lie along b∗. The black dashed line indicates a ratio of
unity, which is expected in the anisotropic London limit.

type we present the field dependence of the form factor ratio
|F (q on-axis)|/|F (q off-axis)|. We see that this defined ratio
varies monotonically over much of the field range, even though
the primitive cell of the IFS phase is orthogonal to that of the
LFS and HFS phases. For the LFS phase, the data in Fig. 10
show that all the spots have the same form factor within the
experimental uncertainty, thus giving a form factor ratio close
to unity. This is as expected from London theory, even for
the case of an anisotropic VL. In moving from the isotropic
case to the anisotropic case appropriate for YBa2Cu3O7, F (q)
changes according to

F (q) = 〈B〉
1 + q2λ2

→ 〈B〉
1 + q2

xλ
2
a + q2

yλ
2
b

. (5)

Here, 〈B〉 is the average internal induction (which within
experimental error is always =μ0H due to the platelike
crystals and large κ) and λi is the penetration depth along
the directions i.78 The terms qx and qy represent the x and y

components of the q vector as viewed in the diffraction patterns
shown in this paper; thus qx is parallel to b∗, and qy parallel
to a∗. In this case, it may be shown65 that the a-b anisotropy
in the q vectors in this distorted hexagonal structure exactly
cancels the penetration depth anisotropy, giving the observed
result. Another prediction of London theory is that the form
factor is independent of field for B 
 Bc1 [where the 1 in the
denominators of Eq. (5) may be neglected]. The falloff shown
in Fig. 9 will be discussed in the following section. For the
IFS phase, the observed form factor anisotropy unusually has
|F (q ‖ b∗)| < |F (q off-axis)| giving a smaller value of |F (q)|
for the Bragg spot with the shorter q vector.

2. Modeling the field dependence of the VL form factor

The simplest analytic models that are most commonly used
to interpret form factor data are those based on applying
corrections to local electrodynamics suggested by Ginzburg-
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Landau (GL) theory.79–81 Although GL theory is only strictly
valid close to Tc, the results of more exact numerical
calculations22,82,83 show that such simple models79–81 provide
a reasonable description of the mixed state at lower T . In the
isotropic case, the model is

F (q) = 〈B〉exp(−cq2ξ 2)

1 + q2λ2
, (6)

which can be considered as a refined London model with
a Gaussian cutoff term that accounts for the finite size of
vortex cores. Here, ξ is the in-plane GL coherence length
and λ is the in-plane penetration depth. The constant c is a
parameter expected to have a value between 1/4 and 2.81 A
quantitative comparison between the predictions of the above
London model and those of numerical calculations carried
out within the Eilenberger formalism22,84 suggest that over
our field range, and at low T , an appropriate value for c is
0.44.85 We note that this value lies close to that of 1

2 , which
has been used in successful form factor analyses for other
superconductors.52,54

Other authors have used the Clem model,79 which is
obtained from a variational solution to the GL equations. The
model is

F (q) = 〈B〉 gK1(g)

1 + q2λ2
, g =

√
2ξGL(q2 + λ−2)1/2, (7)

where K1 is a modified Bessel function of the second kind.
This model appears advantageous in that there is no ill-defined
c factor within the core-correction term gK1(g) as there is in
Eq. (6), but it relies on the GL equations which are only valid
close to Tc. As we will show, this approach gives a much
poorer fit to our data than the refined London model described
by Eq. (6).

Both of these models can be extended in the same way in
order to account for the biaxial anisotropy of YBa2Cu3O7. For
example, the refined London model [Eq. (6)] can be re-written
in the convenient form

F (q) = 〈B〉exp
[−0.44

(
q2

x ξ
2
b + q2

y ξ
2
a

)]
q2

xλ
2
a + q2

yλ
2
b

. (8)

Here ξi represent the GL coherence lengths along the directions
i. According to the extended models, in general the form
factor is expected to depend on the four parameters λi and
ξi . However, the number of free parameters can be reduced by
fitting the model independently for certain types of spots. For
spots with q ‖ a∗, terms dependent on qx vanish, as do those
dependent on qy for spots with q ‖ b∗. Taking advantage of
this, we extract values for λi and ξi from our form factor data
using the following analysis procedure:
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FIG. 11. (Color online) A semilogarithmic graph showing the
field dependence of the VL form factor for Bragg spots with a q
vector lying off-axis. The fit of the data to the London model is
also shown. The inset shows the model fit of the form factor data
with q ‖ a∗.

Step 1. We fit the form factor data for Bragg spots with
q ‖ a∗ in order to obtain λb and ξa .

Step 2. The values of λb and ξa found in Step 1 are held
constant, and we fit the data for the spots with an off-axis q
vector in order to obtain ξa(0) and λb(0).
For both steps, the values of qx and qy at each field, and their
associated errors, are those determined experimentally. We
also see that the fit in each step is sensitive to just two fitting
parameters.

In Fig. 11 we show the fits of the form factor data to
the London model. The first step of the analysis procedure
is shown in the inset and yields parameters of λb = 107(1) nm
and ξa = 3.04(4) nm. The reasonable fit quality is indicated
by χ2 = 1.46. In the main panel we show the results of the
second fit, with the fitted parameters λa = 138(2) nm and
ξb = 3.54(11) nm, and χ2 = 1.96. As can be seen in Table I,
using the same analysis procedure with the Clem model
provides a poorer description of the data than the London
model. Attempts were made to fit the data using a version
of the Clem model that includes minor corrections considered
appropriate for high-Tc superconductors.80 However, these did
not generate an improvement of the fit.

We now discuss the results obtained on fitting the form
factor data to the London model [Eq. (8)]. The values
returned for λa and λb are in reasonable agreement with
those determined by previous SANS studies on optimally-

TABLE I. A summary of the returned parameters obtained after fitting the 2 K form factor data with both the London and Clem models
(see text for details of the fitting). The values of χ 2 are those obtained after each step of the analysis procedure.

Model λa (nm) λb (nm) ξa (nm) ξb (nm) χ 2 (Step 1) χ 2 (Step 2)

London 138(2) 107(1) 3.04(4) 3.54(11) 1.46 1.92
Clem 132(5) 103(1) 2.72(13) 2.49(36) 4.40 13.27
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and over-doped YBa2Cu3O7−δ ,36 though overall our values
are a little shorter. We find better agreement between our
values and those found in a recent μSR study on a clean
sample of close to optimally-doped YBa2Cu3O6.92.86 This
indicates the state of our sample to be of higher quality
and more completely oxygenated compared to the sample
studied previously by SANS.36 On the other hand, the values
returned for ξa and ξb are likely to be overestimates. Using
these values we can estimate the upper critical field to be of
order ∼30 T, which is clearly too low for YBa2Cu3O7. One
possibility for the overestimation of ξi is that VL disorder
may reduce the measured intensity in the form of a low-T
“static” Debye-Waller (DW) factor. Such a factor would enter
the numerator of Eq. (8) as exp(−q2〈u2〉/4), where 〈u2〉 is the
root-mean-square displacement of a vortex along the direction
of q. By inspection it is clear that this term has precisely the
same effect on the VL form factor as the Gaussian cutoff term
that accounts for the finite vortex core size, and that both of
these terms become increasingly important at larger q. As a
consequence of this, we are unable to disentangle the effects of
ξ or 〈u2〉. However, bearing in mind that in high-Tc materials
both the value of ξ is short and the vortices are “soft” (small
values of the shear modulus and the tilt modulus at small
distances87), it is unsurprising that disorder in the form of a
DW factor may become important. This is particularly the case
at higher fields where the VL spacing is just a few times the
value of ξi .

An alternative possibility is that any of ξi or λi exhibit
a significant field dependence over our field range. Previous
high-field μSR studies on YBa2Cu3O6.95 report both a strong
increase with field of the extracted in-plane penetration
depth27,28 attributed to nonlocal effects20,88 and also a strong
decrease with field of the vortex core size ξ attributed to
a field-induced quenching of chain superconductivity.46 It
should be noted that in the μSR analysis28 an undistorted
hexagonal VL was assumed, which we have shown is not the
case. Also, the Clem model was used in a T range where its
validity is questionable. Within the framework of our form
factor model, unconventional field dependences of λi and ξi

may offset one another to give alternative fits to the data.
However, we hesitate to fit for field-dependent length scales
as this amounts to inserting unknown free parameters.

In spite of our conclusion that the values for ξi are too large,
the returned values for λa = 138(2) nm and λb = 107(1) nm
are likely to represent the intrinsic bulk values. Within the
local London model described by Eq. (8), the values of λi

are determined by the form factor magnitude at lower fields,
and are hence rather insensitive to any exponential terms in
the numerator. From our analysis we find that γλ = λa/λb =
1.29(2), a value which is in good agreement with that obtained
directly from the measure of the distortion of the hexagonal
structure shown in Fig. 3. This strongly indicates that local
theory is at least able to describe the anisotropy of the low-field
VL. In addition, the evolution of the form factor anisotropy
with field (Fig. 10) could arise, at least in part, if the value
of γλ does not fall significantly with increasing field. In this
case, the form factor anisotropy emerges as a consequence of
the changes in VL structure and the associated changes in q,
rather than due to anisotropic field-induced variations in the
fundamental length scales.

We emphasize that conclusions drawn from form factor
analyses such as ours, and also those of μSR data, need to be
considered with great care and provide only an approximate
picture of the mixed state. A more thorough understanding of
our form factor data might be obtained by harnessing the power
of a microscopic theory,21,22,84 where additional effects such
as those due to nonlocality and order-parameter anisotropy are
included by default.

C. Measurements at higher temperatures

1. VL structure at higher temperature

Our T -dependent measurements were carried out by
warming from, or cooling into, an oscillation field-cooled
state. While the T was changing, the field was oscillated
using the OFC procedure. Upon reaching the desired T ,
the field was held stationary at the intended value before
starting the measurement. In Fig. 12 we present T -dependent
measurements of the VL structure opening angles defined in
Fig. 1 at various magnetic fields. We checked for hysteretic
behavior by performing both warming and cooling T scans
at 1.0 T [Fig. 12(a)] and 5.0 T [Fig. 12(b)]. At these two
fields, there is no discernible difference in the precise VL
structure between warming and cooling, thus showing that
hysteresis effects on the VL structure can be neglected in our
sample.

Figure 12(a) reveals that for fields within the LFS phase, the
VL structure remains essentially T independent. Only when
T → Tc is there any measurable variation in the opening angle
φ, though this variation remains small. Data obtained in the
IFS phase [Fig. 12(b)] indicate that this weak T dependence of
the VL structure persists until fields of up to 5.0 T. However,
more pronounced T dependencies emerge at higher fields. At
6.9 T, a field where the IFS and HFS phases coexist at 2 K,
there is clear T -induced reduction in the values of both ρ and
ν as T → Tc. At yet higher fields in the HFS phase, the data at
8.0 T show the high-T reduction of ν to become increasingly
pronounced. Remarkably, the data in Fig. 12 reveal that for
no field does adjusting the T cause a transition between
different VL structures. Even at 6.9 T, the data show that the
low-T coexistence of the IFS and HFS phases persists over the
entire T range. All of these observations suggest that the phase
boundaries between different structure types are unusually T

independent.
It also remains to be explained why any variation in the

VL structure occurs only at high T , and at relatively high
fields. The former observation suggests that in spite of utilizing
the OFC procedure, the VL structure is still “frozen-in” and
pinned at a relatively high Tirr of �50 K. If so, any variation
of the VL structure with T would only occur in the reversible
region, when the vortices are depinned and able to adopt the
equilibrium structure. For fields below � 5.0 T, there is little
variation of the structure at higher T , suggesting that there
will not be a significant difference between the precise VL
structure frozen-in at Tirr and that expected for low T . However,
at higher fields a larger difference emerges between the VL
structure frozen-in and that which may be expected at lower
T by extrapolating the high-T behavior.

104519-10



MAGNETIC-FIELD-INDUCED NONLOCAL EFFECTS ON . . . PHYSICAL REVIEW B 84, 104519 (2011)

0 10 20 30 40 50 60 70 80
70

72

74

76

78

80

82

84

86

T (K)

   
 , 

 D
eg

s.
φ
,ν

(a)

HFS Phase

LFS Phase

0.2T − Warming
1.0T − Cooling
1.0T − Warming
6.9T − Warming
8.0T − Warming

0 10 20 30 40 50 60 70
51.5

52

52.5

53

53.5

54

54.5

55

T (K)

   
 , 

 D
eg

s.
ρ

(b) IFS Phase 4.0T − Warming
5.0T − Cooling
5.0T − Warming
6.9T − Warming

FIG. 12. (Color online) The temperature dependence of the VL structure opening angles (a) φ and ν for the LFS and HFS phases respectively,
and (b) ρ for the IFS phase. The indicated angles correspond to those in Fig. 1. In both panels, the lines passing through for the data at each
field are guides to the eye. Data are shown only for temperatures where the spot position on the detector could be determined accurately. Error
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The high-T variation of the VL structure can be understood
within the framework of nonlocal theory,15,17,19 where the
nonlocality can arise either from Fermi surface anisotropy
or gap structure. A common prediction is for nonlocal effects
to become suppressed as T → Tc. This is most clear to see
at fields within the HFS phase, where on the approach to
Tc we observe the values of ν to approach those values
of φ observed in the LFS phase where we believe that
anisotropy due to local effects is dominant. Nonlocal effects
are also suppressed by T within the IFS phase, and the
high-T variation in ρ shows that the VL tends to become
slightly more anisotropic (larger value of η) close to Tc. In
this case, the suppression of nonlocality allows the VL to
adopt a hexagonal coordination that is more distorted. A
common interpretation of these data is that the high-T or
low-field anisotropy factor (∼1.29) just arises due to the band
mass anisotropy, and can be understood with local anisotropic
London theory.

We now consider the remarkable T independence of the
VL structure transition fields. It is expected that nonlocal
effects fall off with increasing T but not to zero.15,19 Clearly
at T = Tc(H ), these effects remain strong enough to control
the orientation of the VL primitive cell, and it appears that
the crossover fields remain essentially T independent below
this. However, in the IFS and HFS phases the shape of the
VL evolves away from square structures with increasing T .
This tendency is also consistent with that expected if the VL
structures are stabilized by the d-wave gap anisotropy.22,75

With increasing T , the influence of the order parameter
anisotropy on the VL structure is expected to be suppressed,
as quasiparticles that previously occupied states near the
nodal positions adopt a greater angular spread in reciprocal
space. However, if the d-wave gap anisotropy is responsible
for driving the VL structure transitions and controlling the
primitive cell orientation, the influence of this anisotropy must
persist to surprisingly high T .

2. VL form factor at higher temperatures

It seems that the precise VL structure is frozen-in on cooling
below Tirr; this provides the opportunity to record the T

dependence of the form factor at low fields without requiring
an excessive amount of neutron beam time. Typically, carrying
out these measurements is a lengthy process; at each T , full
rocking curves such as those shown in Fig. 8 should be
obtained for each Bragg spot. However, in our case where
the precise VL structure is weakly T dependent, the same
information can be obtained by counting solely at the peak
of the rocking curve. Knowing this peak intensity, along with
the FWHM of the rocking curve and the q vector, allows a
calculation of the form factor. This approach assumes that
the FWHM of the rocking curve remains T independent.
This assumption was checked within each T scan. While at
most temperatures, measurements were carried out solely at
the Bragg angle, at certain temperatures we carried out full
rocking curve measurements. These measurements provide
both a check of the assumed T independence of the rocking
curve FWHM, and also full measures of the form factor
to be compared with those obtained from the fixed angle
measurements.

In Fig. 13 we present the T dependence of the form factor
in applied fields of 0.2 T [Fig. 13(a)] and 5.0 T [Fig. 13(b)]. At
each field, and for each type of Bragg spot, we show both the
values obtained by measuring at fixed rotation angle and those
obtained with the usual full rocking curves. The full rocking
curve measurements allow us to plot the T dependence of
the FWHM of the rocking curve for each type of Bragg spot.
Both the insets to Figs. 13(a) and 13(b) show that there is no
clear systematic T variation. Therefore, we use a mean value
for the FWHM of each type of Bragg spot across the entire T

range. As seen in Figs. 13(a) and 13(b), the agreement between
the two techniques of obtaining the form factor is good, thus
providing confidence in our measurements obtained at fixed
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FIG. 13. (Color online) The temperature dependence of the form factor |F (q)| for the two types of Bragg spot in (a) the LFS at 0.2 T, and
(b) the IFS at 5.0 T. For each scan, we performed an OFC procedure down to base temperature, and then measured on heating the sample. In
(a), the solid and dashed lines show fits to the data made using both a minimal and local d-wave model. In (b), the solid and dashed lines show
fits to the data after extending the local d-wave model used in (a) with a nonlocal correction. Both models are described in the text. The inset
of each figure shows the temperature dependence of the rocking curve FWHM as obtained from the rocking curve measurements. The dashed
and dotted lines, respectively, indicate the mean value of the FWHM used to normalize the form factor values of the fixed angle data (see text
for details).

rotation angle. We also note that any T -induced variation in
the precise VL structure is small and does not extend beyond
the in-plane resolution of the instrument. Therefore, at these
fields, any change in the VL structure will have a negligible
influence on the values of intensity obtained at fixed angle.

In Fig. 13(a) we see that at 0.2 T the form factors for
the two types of Bragg spot exhibit a similar T depen-
dence. Interpreting these data requires a knowledge of the
T dependencies for both ξi(T ) and λi(T ), each of which
require a detailed knowledge of the band structure. While
ARPES studies89,90 and various calculations have established
the main band structure reasonably well,70,71 computing the
T dependence of the superfluid density in materials such
as YBa2Cu3O7 is not trivial since this requires a precise
knowledge of the momentum-resolved quasiparticle spectrum.
As this information is not readily available, we instead make
use of a “minimal model” for the Fermi surface sheets
arising from the CuO2 planes, and represent them by a
single two-dimensional quasicylindrical sheet, which has some
a-b anisotropy.70,71,89,90 While such an approach neglects a
possible contribution to the superfluid density due to chain
superconductivity, it is expected that the dominant contribution
will arise due to the large holelike sheets centered at the
Brillouin zone corner.

According to Eq. (8), the form factor F (q,T ) for a Bragg
spot will be temperature dependent according to

F (q,T ) = 〈B〉exp
{−0.44

[
q2

x ξ
2
b (T ) + q2

y ξ
2
a (T )

]}
q2

xλ
2
a(T ) + q2

yλ
2
b(T )

. (9)

In the local approximation, the T dependence of the
penetration depth can be calculated using the following
equation suitable for a two-dimensional and cylindrical Fermi

surface,91

1

λa/b(T )2
= ρs,a/b(T )

=1− 1

4πT

∫ 2π

0

∫ ∞

0
cosh−2

⎛
⎝

√
ε2+�2

k(T ,φ)

2kBT

⎞
⎠ dφ dε.

(10)

Here, φ is the azimuthal angle around the cylindrical Fermi
surface and

√
ε2 + �2

k(T ,φ) defines the excitation energy
spectrum. The gap function �k(T ,φ) is assumed separa-
ble into momentum- and T -dependent factors such that
�k(T ,φ) = �k(φ)�0(T ) where �k(φ) describes the angular-
dependent part of the gap function, and �0(T ) the T -dependent
part. The angular dependence for the gap function can be
expressed as �k(φ) = 1 for an s-wave gap, or �k(φ) =
cos(2φ) for a d-wave gap. The T dependence of the gap
is calculated using the following expression,92 �0(T ) =
�0(0)tanh(1.78

√
Tc/T − 1), where �0(0) is the maximum

magnitude of the gap at zero T . This gives a good approxima-
tion to the BCS weak-coupling T dependence, though �0 does
not need to have the BCS value. We also use this expression
for the gap to calculate the T dependence of ξa,b(T ),

ξa/b(T ) = ξa/b(0)[tanh
√

1.78(Tc/T − 1)]−1. (11)

By using the values of ξi and λi obtained from the 2 K form
factor analysis as the zero temperature values, the only fitting
parameter for a single-gap model is the zero temperature gap
magnitude �0(0).

By making use of a single d-wave gap function, Fig. 13(a)
shows that the minimal model is able to provide a good
description of the data at 0.2 T. The returned values for �0(0)
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are 25(2) meV for the Bragg spot with q ‖ a∗, and 26(2) meV
for the off-axis Bragg spots. These values are in reasonable
agreement with those found in μSR experiments on twin-free
YBa2Cu3O7−δ .51

On the other hand, and again drawing comparison between
our results and those in the aforementioned μSR study,51 we
do not observe a signature of an inflection point in |F (q,T )|
at low T . This inflection point, which is observed clearly in
directly comparable low-field measurements of the superfluid
density, is attributed to a contribution to the superfluid density
of a small s-wave gap that is quenched with increasing field.51

An absence of an inflection point in microwave studies has
previously been interpreted as possibly attributable to chain
disorder,46 which cannot be the case in our fully oxygenated
sample of YBa2Cu3O7. We also stress that even though the
VL is pinned at low T , an increase of the superfluid density
would be clearly visible in our measurements of the form
factor at 0.2 T.

In contrast to the data obtained at 0.2 T, in Fig. 13(b) we see
very different behavior at 5.0 T. For each spot type, the low-T
dependence of the form factor is much weaker, and the minimal
model is less able to provide a description of the data. To obtain
a better agreement we would need to invoke either a vortex
core contraction with increasing T , or a T dependence to the
superfluid density that is more reminiscent of fully gapped
behavior. Both of these scenarios are considered as unlikely.

An alternative route to resolving this issue is to realize
that a weak low-T dependence of the form factor is in better
agreement with that expected due to a strong nonlocal response
of a d-wave superconductor under an applied field.20,88,93 Amin
et al.20,88 have studied the effect of a field-induced nonlocal
response on the effective penetration depth in YBa2Cu3O6.95,
as observed by μSR.28 With increasing field, they find that
the usual linear low-T dependence of the superfluid density
crosses over to a T 3 dependence below a temperature T ∗ =
�0(ξ0/d) ∝ √

H , where d is the VL spacing. These results
suggest that the weak low-T dependence of |F (q,T )| we
observe may also be attributable to strong nonlocal effects.

Consistent with the theory of Amin et al.,20,88 a simple
expression that captures the expected behavior of the superfluid
density due to d-wave nonlocal effects is

1

λnl
a/b(T )2

= ns,a/b(T ) = 1 − [1 − ρs,a/b(T )]

×
(

Tc + T ∗

Tc

)(
T 2

T 2 + (T ∗)2

)
, (12)

where ρs,a/b is the superfluid density as calculated in the local
limit (Eq. (10)), and ns,a/b is the superfluid density when
accounting for the nonlocal effect. By combining Eqs. (9) and
(12), it is possible to calculate the temperature dependence of
the form factor with a nonlocal correction to the penetration
depth.

A fit to the data was most easily achieved by using
predetermined values for �0(0) and T ∗, and leaving all of
ξi and λi as free parameters. �0(0) was fixed to be 25.5 meV,
the mean value found for the 0.2 T data. The value of T ∗
was held at the temperature where linear extrapolations of the
low- and high-temperature portions of the data set intersect.
At 5.0 T, and for both spot types, this intersection temperature

is 51.4(5.0) K. Further analysis showed that the quality of the
fit is actually quite insensitive to T ∗, and as such its precise
value does not significantly affect the outcome.

Similar to the 2 K form factor analysis, the data were fitted
using a two-step analysis sequence:

Step 1. We fitted the data for the Bragg spot with q ‖ b∗ in
order to obtain values for ξb(0) and λa(0).

Step 2. The values of ξb(0) and λa(0) found in Step 1 are
held constant, and we then fit the off-axis data in order to
obtain the values of ξa(0) and λb(0).

Figure 13(b) shows the good fits of the nonlocal model to the
data at 5.0 T with the values obtained from the fitting procedure
being λa(0) = 170(4) nm, λb(0) = 121(3) nm, ξa(0) = 1.82(18)
nm, and ξb(0) = 1.55(15) nm. However, a good fit is only ob-
tained using the nonlocal model when all of ξi(0) and λi(0) are
left as free parameters. Other approaches were tried: using the
local model [Eq. (9)] with field-dependent length scales ξi(0)
and λi(0); or using the nonlocal model, but keeping the values
of ξi(0) and λi(0) fixed to those obtained from the 2 K form
factor analysis. Both of these gave significantly poorer fits.

By comparing the values of ξi(0) and λi(0) obtained from
the fit shown in Fig. 13(b) to the values obtained from the field-
dependent form factor analysis at 2 K, we might conclude that
λi(0) increases with field, while ξi(0) decreases with field. The
signs of these field-induced variations are consistent with those
reported by μSR studies on YBa2Cu3O6.95.27,28 The possible
physical reasons for these field dependencies were introduced
previously in our discussion of the field dependence of the
form factor at 2 K. As was also mentioned in that discussion,
before making firm statements on any field dependence for
either of ξi(0) or λi(0), the possible role that VL disorder may
play on our measurements should be considered. Since our
measurements of the rocking curve FWHM shown in the inset
of Fig. 13(b) do not exhibit a clear T dependence, particularly
below Tirr, we may conclude that a term in the form of the
static DW factor does not dominate the low-T dependence of
the VL form factor for wave vectors associated with fields of
up to 5.0 T. Nevertheless, more detailed measurements may
reveal a slight T dependence of the rocking curve FWHM, and
thus provide alternative descriptions of the data to those solely
based on field-dependent length scales. At 0.2 T, ignoring
disorder is more easily justifiable, because the DW factor is
closer to unity at the shorter wave vectors associated with low
fields. In principle, the role of VL disorder can be determined
from direct measurements of higher order spots of the VL
because these spots are more sensitive to disorder effects.
Unfortunately, due to the long value of λ in YBa2Cu3O7,
investigating higher order spots is experimentally challenging.
Indeed, within the IFS phase, we were unable to observe any
signal due to higher order spots of the hexagonal VL.

Despite the ambiguity caused by possible VL disorder, a
term in the form of the DW factor cannot explain the emergence
of the low-T form factor anisotropy between the different
types of Bragg spot. Instead, this anisotropy is likely to arise
as a consequence of field-induced nonlocal effects on the VL
structure. This is further inferred by an examination of the T

dependence of the form factor ratio. Data for selected fields
are presented in Fig. 14 where, as for Fig. 10, at each T we plot
the form factor ratio between the on-axis and off-axis spots.
Within the LFS phase, the data at 0.2 T show the ratio to remain
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FIG. 14. (Color online) The temperature dependence of the form
factor ratio taken between the different types of Bragg spots at various
fields. For the fields of 0.2 T and 8.0 T, taken in the LFS and HFS
phases, respectively, the form factor ratio plotted at each temperature
is |F (q ‖ a∗)|/|F (q �‖ a∗)|. For the 5.0 T data taken in the IFS phase,
the ratio is |F (q ‖ b∗)|/|F (q �‖ b∗)|.

at unity over the entire T range, which is as expected for a VL
close to the local London regime. At 5.0 T the form factor
ratio, which is less than unity at low T , smoothly tends toward
unity on the approach to Tc. These results show that increasing
T suppresses the low-T form factor anisotropy that is induced
by nonlocal effects on the VL. The persistence of this behavior
to fields within the HFS phase is also tentatively supported by
our results obtained at 8.0 T. This indicates that it may be
possible to move between a squarelike phase with four strong
spots and two weaker spots [a VL like that shown in Fig. 1(c)]
toward a hexagonal-like structures with six spots of similar
intensity [like that shown in Fig. 1(a)] just by increasing T .
We expect future SANS measurements to shed light on the
validity of this suggestion.

3. Phase Diagram for μ0 H ‖ c

In this final section, we summarize the main results of
our study in the form of the μ0H ‖ c phase diagram shown
in Fig. 15. Data points were determined from measurements
of either the VL structure or the VL form factor. For the
LFS-IFS transition, our best estimate of the transition field
at 2 K using form factor data is 2.3(2) T, a field slightly
higher than that determined from the structural data alone. For
the IFS-HFS transition at 2 K, the transition field determined
by both structural and form factor measurements are in good
agreement, both being at 6.7(2) T. This phase diagram shows
more clearly how the phase boundary lines between different
VL structure phases remain essentially constant in field across
the entire T range, a result consistent with that inferred from
measurements of the T dependence of the VL structure. While
we cannot rule out any curvature in either phase boundary line
closer to Tc, the SANS measurements show no evidence for a
strong variation.

We also draw comparison between the phase diagram
shown in Fig. 15 and that obtained from SANS studies on
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FIG. 15. (Color online) The (μ0H ,T ) VL structure phase diagram
for fields applied parallel to the c axis. Circle data points were obtained
from measurements of the VL form factor, and correspond to the
point where each relevant VL structure is measured to occupy 50%
of the sample volume. Diamond data points correspond to estimates
of the transition points as determined from structural measurements.
The dotted and dashed lines are guides for the eye phase boundary
lines determined from the form factor data only. The melting line is
deduced from data presented in Ref. 94.

a lightly twinned sample of YBa2Cu3O7.39 The at best weakly
T -dependent phase boundaries observed in the twin-free
sample are in contrast to the single phase boundary line
observed in the twinned sample, which clearly curves upward
in field at higher T .39 Furthermore, as the structure phase
boundary for the twinned sample is continuous, we suggest
that its field and T phase diagram is determined by a complex
balance between the intrinsic F of the high-field VL and the
extrinsic F associated with the {110} pinning potential.

IV. SUMMARY AND CONCLUSIONS

In this study we have reported a small-angle neutron
scattering (SANS) study of the VL in a high-quality, and
twin-free, sample of YBa2Cu3O7. The absence of vortex
pinning to twin planes allows the intrinsic VL structure to
be imaged and provides the possibility to make more direct
comparisons between theoretical prediction and field- and
temperature-dependent observations than is otherwise possible
in twinned samples.

Our measurements of the VL structure at 2 K show that a
field-driven sequence of first-order structure transitions exists
in twin-free YBa2Cu3O7. The driving mechanisms behind
these transitions can be broadly described as caused by
the increasing importance with field of nonlocal effects on
the intervortex interaction. Theoretically, nonlocal effects are
catered for by the development of higher order correction terms
to local theories. These terms play the role of coupling the VL
to anisotropies of the host material. One source of anisotropy
expected to influence the VL properties is that due to the
band structure,14–17 with another source arising due to the
predominantly dx2−y2 -wave order parameter anisotropy.18,19
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Within the theoretical literature, we find that no model
is able to provide a full description of the field-dependent
sequence of VL structure transitions that we observe. The
simplest theory that seems most appropriate for making
predictions of the field-dependent VL structure in twofold
symmetric systems such as YBa2Cu3O7 is provided by Kogan
et al.15,16 This model accounts for nonlocal effects that arise
due to the band structure anisotropy, and not superconducting
gap anisotropy. Our close examination of the Kogan theory
has revealed some hitherto unreported properties which show
that in its current form, the model framework is oversim-
plified and unable to explain field-dependent observations
in real twofold systems. Nevertheless, in spite of the noted
shortcomings of the model, there are indications within our
data to suggest that nonlocal effects that originate from the
band structure anisotropy15,16 may be the cause of our low-
field transition between orthogonal hexagonal VL structures.
Similar arguments can be made to suggest that the high-field
transition between hexagonal and rhombic VL structures has
the same origin. However, this second transition can also
be understood as caused by the increasing influence of the
predominantly d-wave gap anisotropy, whether this tendency
is captured by a nonlocal theory18,19 or by detailed microscopic
calculations.17,22,23 Based on our structural data alone, it is
difficult to decide which of these two sources of anisotropy
causes the high-field squarelike structure to appear. The
available predictions lead us to expect a high-field squarelike
VL structure with an orientation consistent with that which
we observe, regardless of whether band structure or pairing
anisotropy is dominant. However, measurements at higher T

show each of the structure phase boundary lines to exhibit
the same weak T dependence, suggesting that a common
mechanism may lie behind both transitions.

In the lowest field VL structure phase, local anisotropic
London theory63–65 appears to provide an adequate description
for the VL distortion and form factor. While such a theory is
unable to explain the stabilization of a preferred orientation
(which must be due to weak nonlocal interactions), it does
provide a framework within which we can obtain a measure of
the in-plane anisotropy parameter γλ = λa/λb, either directly
from the measure of the distortion of the low-field hexagonal
structure, or from fitting parameters obtained in an analysis of
the field dependence of the form factor at 2 K.

An important finding is that a regime close to the local limit
ends abruptly on moving into the higher field structure phases.
While the strongest evidence for high-field nonlocal effects
is provided by our measurements of the VL structure, other
evidence is found on studying the field and T dependence

of the VL form factor. In particular, the emergence of a
form factor anisotropy that becomes increasingly significant
at larger fields, and which is quenched with increasing T ,
points toward the decisive role that nonlocal effects play on the
observed VL structure. Furthermore, within the intermediate
field phase at 5.0 T, we observe an unusually weak low-T
dependence of the VL form factor for both types of Bragg
spot. An analysis using a simple model that includes a nonlocal
correction suggests that this unusual behavior may arise due
to nonlocal effects induced by the anisotropy of the d-wave
order parameter.20,88 While such a d-wave nonlocal theory20,88

may explain the observed weak low-T dependence of the VL
form factor at 5.0 T, there is poor agreement between the
VL structures that we observe and those predicted within the
same theoretical framework.18–20 This is likely because these
models do not consider a vortex core anisotropy that will
arise due to anisotropies in either the band structure or the
gap function, and which other theoretical studies show can be
responsible for field-driven transitions between different VL
structures.17,22,23 Overall it seems that the precise field- and
T -dependent VL properties are sensitive to a delicate balance
between the field-dependent anisotropies in the system. The
high-quality data presented in this study should serve to inspire
theoretical interest in the precise properties of the VL in
high-Tc YBa2Cu3O7. Further progress in understanding these
results will also benefit from new SANS studies at yet higher
magnetic fields.
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X. Chaud, and A. Brûlet, Phys. Rev. B 70, 024502 (2004).

39J. S. White, S. P. Brown, E. M. Forgan, M. Laver, C. J. Bowell,
R. J. Lycett, D. Charalambous, V. Hinkov, A. Erb, and
J. Kohlbrecher, Phys. Rev. B 78, 174513 (2008).

40J. S. White, V. Hinkov, R. W. Heslop, R. J. Lycett, E. M. Forgan,
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65S. L. Thiemann, Z. Radović, and V. G. Kogan, Phys. Rev. B 39,

11406 (1989).
66M. Hiragi, K. M. Suzuki, M. Ichioka, and K. Machida, J. Phys. Soc.

Jpn. 79, 094709 (2010).
67M. R. Eskildsen, A. B. Abrahamsen, D. López, P. L. Gammel, D. J.
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