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We investigate the effect of Cooper pair injection in shifting the biexciton energy level of low-symmetry (C2v)
quantum dots (QDs) exhibiting nontrivial fine structure splitting. Coupling QDs to the superconducting coherent
state forms extra fine structures by intermixing the ground and biexcitonic states where spectroscopic separation
of neutral exciton and biexciton can be diminished, yielding a system to be utilized in the time reordering scheme.
The separability of exciton and biexciton energy levels is ascribed to the corresponding direct, exchange, and
correlation energies calculated here through the configuration interaction method. We demonstrate the possibility
of enhancing photon entanglement concurrence via providing an energy coincidence for biexciton-exciton
(XX → X) and exciton-ground (X → 0) emissions within the weak coupling regime.
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I. INTRODUCTION

On-demand sources of entangled photons are one of the
fundamental building blocks for quantum computing purposes,
quantum cryptography, and quantum communication.1,2 In
this context, the biexciton-exciton cascade recombination
process in semiconductor QDs has already been proposed
for generating polarized-entangled photons.3 However, the
intrinsic fine-structure splitting particularly exhibited by self-
organized QDs, owing to predominant long-range electron-
hole exchange interaction,4 degrades the indistinguishability
between decay paths and, hence, entanglement of emitted twin
photons. Since this exchange interaction is a direct conse-
quence of lateral anisotropy in electron-hole localizations, it
can be vanished via symmetrizing the QD carrier confinement5

or manipulating strain and, hence, the built-in piezoelectric
fields.6 Several methods have been exploited to suppress the
destructive effect of fine structure splitting (FSS), including
perturbation-induced approaches like the dc and ac Stark
effects,7 magnetic field Zeeman effect,8 and cavity coupling,9

or postgrowth techniques, such as thermal10 and laser11 local
annealing, in order to restore group symmetries equal to C4v

or D2d .12 An alternative route is growing III-V nanowire-
QDs along [001] or [111] crystallographic orientation to
principally prevent the atomistic asymmetries distorting QD
confinement.13 Furthermore, the so-called “which path” infor-
mation can be erased through spectral filtering approaches,14

or the destructive phase developed as a consequence of FSS
can be compensated yielding higher fidelities.15

One recently proposed method removing any substantial
restriction on bright-state splitting (BS) is the time reordering
scheme,16 which demands for biexciton binding energy,

δbi = EX1 + EX2 − EXX, (1)

to be zero [see Fig. 1(a)]. In this equation, δbi stands for the
biexciton binding energy, EX1 and EX2 are the energies of
intermediate excitonic states, and EXX refers to the energy
of the biexciton level. Figure 1(a) shows the diagram of the
biexciton-exciton cascade process in a typical QD, where δbi

is responsible for energy spacing between biexcitonic and
excitonic transitions, and δbs represents bright-state splitting.
The ideal level arrangement for the time reordering scheme
is, however, illustrated in Fig. 1(b), having the biexciton
energy level tuned equal to the sum of the bright-state
energies. Accordingly, the first photon in each path is
polarized-entangled to the second photon in the other path
having identical energies. In this framework, QD structural
properties, including material and geometrical parameters as
well as strain field can be manipulated in order to erase δbi

either for binding or antibinding biexcitons.17 As a result,
the carriers’ direct and exchange Coulomb interactions
slightly vary inside the QD and give rise to a nominal shift
in excitonic levels. Practically, this method requires a precise
control over QD dimensions and carrier confinement. An
alternative solution is to exert lateral electric fields to manage
the interplay between single-particle Coulomb interactions
and shift the biexciton level upward or downward.

Here, we propose applying a trivial perturbation to the orig-
inal few-particle states by coupling the QD into the coherent
state of a low-band-gap material, such as a superconductor.
From the macroscopic point of view, the proximity effect
adjacent to the QD region diminishes the superconductor
intrinsic gap � and, therefore, is capable of providing an
energy adjustment ranging from QD’s BS (<150 μeV) to
biexciton binding energy (a few meVs). In contrast to the
previously mentioned methods, here the biexcitonic level is
displaced while fourfold excitonic fine structure essentially
remains isolated of any change.

This paper is organized as follows. In Sec. II, we describe
the intermixing between the QD excitonic states as a conse-
quence of being coupled to the superconductor coherent state.
In Sec. III, we briefly explain how the Coulomb interactions
in an exemplary QD are calculated. The full description of
theoretical modelings can be found in the references addressed
within the text. We emphasize that the method of calculation is
quite general and could be applied to any QD of the same type.
In Sec. IV, we explain the possibility of regulating the newly
induced fine structure under external voltage bias. In Sec. V,
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FIG. 1. (Color online) (a) Biexciton-exciton cascade recombination process emitting two photons with identical rectilinear polarization,
but dissimilar energies within each path (|H〉 and |V〉 stand for photon polarization states in linear representation). Here, δbs and δbi denote the
bright-state splitting and biexciton binding energy of QD, respectively. (b) In the time reordering scheme where δbi is removed, photons having
orthogonal (for circular polarization: parallel) polarization states are entangled so that properly erase the “which path” information. (c) Cascade
recombination in perturbed QD coupled to superconducting leads. QD ground state biexcitonic singlet is split into four levels as a result of
being coupled to the BCS coherent state. Depending on the Cooper pair tunneling ratio through QD island, four levels redshift or blueshift and
become closely degenerate under special circumstances, eventually developing a new tunable fine structure.

the approximate concurrence of entanglement is calculated,
and in Sec. VI, a summary of our results is provided.

II. INTERMIXING OF QD STATES

Hybrid superconductor-QD devices have already been
realized presenting Cooper pair tunneling through QD in
three different regimes.18 Defining � as the level broadening
of the successive tunneling intermediate state, J as the
average Coulomb interaction of single particles, and � as the
superconducting intrinsic gap, these regimes are categorized
as: (1) strong coupling (� � J, � � �), in which the
negligible Coulomb blockade cannot prohibit the Cooper pair
tunneling of electrons and holes, thus supercurrent can flow
through the device analogous to the single-particle current;
(2) intermediate coupling, where the energy scales are in the
same range, i.e. � ∼ J, � ∼ �. � ∼ J indicates that coupling
is adequate so that considerable supercurrent appears even
when the Fermi level of leads and QD energy levels are off
resonance. Furthermore, � ∼ � ensures that, under Fermi
level alignment, a significant supercurrent can flow even in the
presence of high Coulomb interactions; (3) weak coupling (�
� J, � � �): in the limit of weak coupling, the resonant
tunneling of Cooper pairs is predominantly prohibited by
Coulomb blockade giving rise to, for example, quasiparticle
fourth-order cotunneling mechanisms; however, the device
still exhibits Josephson junction behavior with critical current
Ic ∼ (2e/h̄)�2/�.19 Nevertheless, supercurrent can transfer
through the QD via higher-order quantum coherent tunneling
processes.20 The effective Hamiltonian of the superconductor-
coupled QD for the isolated electrons (neglecting the presence
of hole particles) reads21,22

Ĥe =
∑
σe

Eeĉ
†
σe

ĉσe
+ Jeen̂↑n̂↓ + �̃eĉ

†
↑ĉ

†
↓ + �̃∗

e ĉ↑ĉ↓, (2)

where ĉ†σe
(ĉσe

) creates (annihilates) an electron possessing
spin σe ∈ {1/2, − 1/2}, and n̂σe

stands for the number
operator of the same particle. Here, Ee and Jee are the
single electron kinetic energy and electron-electron on-site

Coulomb repulsion, respectively. The collective motion of
Cooper pairs experiences a suppression of superconductiv-
ity when approaching the QD, known as proximity effect,
where the intrinsic gap begins to diminish and an effective
superconducting gap �̃e is defined. Here, �̃e depends on the
Coulombic interactions and level broadening, thus needs to be
renormalized when QD energy levels change.20 An exactly
analogous Hamiltonian governs the dynamics of isolated
holes, and Eq. (2) is valid when energies are redefined for
hole particles and ĉ†σe

, ĉσe
, and n̂σe

are replaced with ĥσh
,

ĥ†
σh

, and n̂σh
. The only difference lies in the pseudospin of

holes: valence subbands of III–V materials in zinc blende or
wurtzite phase are categorized into three families near �8

or �7 valleys, including heavy-hole (HH), light-hole (LH)
and spin-orbit split-off (SO). Depending on the position of
the QD level in the energy space, it has contribution from
all these subbands with different weights as a consequence
of band mixing. However, the predominant contribution to
the valence band (VB) ground state (the topmost energy
level) comes from the HH band, where the z projection of
total angular momentum or equivalently the hole’s pseu-
dospin is σh ∈ {3/2, − 3/2}. The second contribution asso-
ciated with the closest LH band is trivial, especially when
the QD height is small and vertical confinement becomes
strong.

In order to determine the realistic energy levels of the
coupled electron-hole system, their direct and exchange
Coulomb interactions must be considered. Diagonalizing the
Hamiltonian in Eq. (2) leads to one unperturbed doublet having
energies ξ↑D = ξ↓D = ξD (hereinafter, energies are indicated
with respect to the superconductor chemical potential, i.e.
ξD = Ee − μe), and two singlets with energies ξS0,S1 =
ξD + Jee/2 ± [(ξD + Jee/2)2 + |�̃e|2]1/2 being mixed of the
ground and one-pair excited states:21

|e0;e〉S = −e−iϕe |ue||Ge〉 + |ve||�e〉, (3a)

|e1;e〉S = e−iϕe |ve||Ge〉 + |ue||�e〉. (3b)

where |Ge〉 corresponds to BCS ground state, and |�e〉
represents the situation where one Cooper pair of electrons
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is transferred into the QD (|�e〉 = ĉ
†
↑ĉ

†
↓|Ge〉); ve and ue are

coherence factors denoting the probability of a state being
occupied by Cooper pairs |ve|2 or quasiparticles |ue|2.23 Here,
ϕe stands for the superconducting condensate phase, and sub-
script S ascribes these eigenfunctions to singlet mixed states.
The doublet is the bare QD single particle state experiencing
no energy variation under the above circumstance; however, it
gives rise to the possible odd parity cycles and is of importance
when trionic optical transitions, X+ and X− are included in
the model.21,24 These odd cycles seem to be a principal issue
in the weak coupling limit where the number of quasiparticles
entering the QD is sizable in comparison with Cooper pairs:
in the case that quasiparticle tunneling is the superior injection
mechanism, negatively X− or positively X+ charged excitons
are expected to inevitably contribute to the spectrum, although
their spectral sharp-lines can be filtered out. Nevertheless,
to simplify the model, we neglect odd cycles in this work.
A similar treatment is applicable to the hole side again by
replacing |Gh〉 and |�h〉 in Eq. (2), where |�h〉 = ĥ

†
↑ĥ

†
↓|Gh〉.

Expanding the total Hamiltonian

Ĥtot = Ĥe + Ĥh +
∑
eh

J d,ex,corrn̂
e
n̂

h
(4)

on mixed subspace {|e〉 ⊗ |h〉} =
{|e0,h0〉,|e1,h0〉,|e0,h1〉,|e1,h1〉}, i.e. Hmn =
〈h,e|nHtot|e,h〉m, induces fourfold fine structures in the
vicinity of both ground and biexcitonic states. This induced
fine structure is schematically illustrated in Fig. 1(c). In the
expression above, J d , J ex , and J corr are the QD ground
state direct, exchange, and correlation energies. The energy
regulation of extra sublevels then depends on two parameters:
chemical potential of the leads μl , and the tunneling rate
which is already preserved in �̃ (we assume that the
superconducting effective gap is equal for both electron
and hole sides). It is convenient to go to the number state
representation by performing a unitary transformation τ with
matrix elements depending on μl , �̃, and superconducting
phase ϕe,h, i.e. {|Ge,Gh〉,|�e,Gh〉,|Ge,�h〉,|�e,�h〉} =
τ (ve,h,ue,h,φe,h){|e〉 ⊗ |h〉}. As the QD bright states are
essentially fixed, |Ge, Gh〉 and |�e, �h〉 energy levels can
be finely tuned to effectively remove the biexciton binding
energy. Henceforth, we label the energy of the four induced
states as follows: E0 = E|e0,h0〉, E1 = E|e1,h0〉, E2 = E|e0,h1〉,
and E3 = E|e1,h1〉.

III. QD FEW-PARTICLE INTERACTIONS

Here, we explain the proposed method by giving a relevant
specific example. The approach of calculations given here,
consisting of the k.p model and configuration interaction (CI)
method, is, however, quite general for III–V materials in
zinc blende phase.25 In the case where the QD emitter is
made of wurtzite-structured material, the appropriate single-
particle k.p Hamiltonian must be replaced.25 Necessity of
calculating the on-site Coulomb interactions relies on these
facts: first, it confirms the ordering of �, J, and �, thus
the regime of device operation. Secondly, it is a commonly
used experimental method to tune the QD energy levels and
also its electron and hole Coulomb interactions by applying

an appropriate gate voltage. This gate voltage induces an
electric field mostly along the lateral directions of the QD,
thus separating electron and hole probability densities leading
to lower electron-hole interactions, together with a reduction in
excitonic oscillator strength, which is not favorable in photon
emission applications. However, as long as the oscillator
strength is not drastically suppressed, gate manipulation is
a practical solution for tuning the Coulombic interactions of
the QD. In the following, we show that for conventional QDs
working as single photon sources in the infrared wavelength
range, the Coulombic interactions are adequately large that
energy ordering of �, J, and � dictates the device operation to
be in the weak coupling regime.

Our setup consists of a typical single self-assembled
InAs/GaAs quantum dot grown along [001] direction on top of
a 2-ML InAs wetting layer capped by GaAs as the local barrier
and connected laterally to superconducting electrodes.19 The
biexciton binding energy, which is defined with respect to
the recombination energy of the exciton ground state, δbi =
h̄ω|X〉D→|G〉D − h̄ω|XX〉D→|X〉D , reads26

δbi = −2J d
eh − J d

ee − J d
hh + 2J corr

|X〉D

− J corr
|XX〉D

+ 2J ex
|X〉D

− J ex
|XX〉D

, (5)

where subscript D stands for the excitonic levels of a bare
dot. The direct terms, J d

ee, J d
hh, and J d

eh, along with exchange
terms, J ex

|X〉D and J ex
|XX〉D , contributing to the expression above

are primarily determined by taking only wave functions of QD
ground state into account: the single particle wave functions of
carriers trapped inside the QD is composed of two components,
the Bloch spinor and its associated envelope function. For
instance, in the simplest case, the total wave function of an
electron in the S orbital of a conduction band (CB) can be
represented by ψe

σe0
= φe

0|SCB ; σe0〉, and similarly the total
wave function of a hole in the P orbital of a valence heavy-
hole band is given by ψh

σh0
= φh

0 |PHH ; σh0〉. However, there
are some coupling coefficients between the conduction and
valence wave functions, included in the k.p model, originating
from the QD asymmetries. These coupling terms are also
responsible for the nonzero long-range exchange interaction
which gives rise to the splitting of bright states. As long as the
QD confinement maintains laterally symmetric, the coupling
remains trivial. On the other hand, as mentioned above, the
QD valence ground state is usually an admixture of HH and
LH bands, commonly with larger weight from the HH part.
The mixing coefficient between these two subbands depends
on the QD geometry, especially its vertical anisotropy: the
large amount of anisotropy in the vertical orientation (growth
direction) of the QD leads to higher mixing orders between HH
and LH. Consequently, nearly flat QDs keep the VB ground
state relatively HH-type in character. Figure 2(c) shows the
density of Coulomb interaction matrix elements4

ρp0q0,σσ ′ = ψ
q0
σ ′

q0

∗
ψ

p0
σ ′

p0

∗
C(r1,r2)ψp0

σp0
ψq0

σq0
(6a)

H|X〉D
p0q0;σσ ′ = 〈

ψ
p0
σ ′

p0
ψ

q0
σ ′

q0

∣∣C(r1,r2)
∣∣ψp0

σp0
ψq0

σq0

〉
, (6b)

where C(r1,r2) = e2/4πε(r1,r2)|r1 − r2|. Here,
p0,q0ε{e0,h0} represent particle labels dwelling in the
ground states, and ε denotes the static dielectric constant. The
corresponding direct interactions can be then evaluated as
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FIG. 2. (Color online) (a) Biexciton |XX〉 and exciton, bright |b1〉, |b2〉 and dark |d1〉, |d2〉 singlets, energy levels of a 25-nm long, 5-nm high
[001]-oriented InAs/GaAs truncated pyramidal QD on a 2 ML InAs wetting layer before being coupled to superconducting leads. Biexciton is
antibinding with δbi ≈ −0.8 meV. (b) Electron and hole ground state probability densities, e0 and h0, slightly extended along [110] and [11̄0]
directions as a consequence of the existing piezoelectric polarization. QD flatness minimizes heavy-hole (HH) and light-hole (LH) intermixing
giving rise to significant isolation of the first HH band. As a result, the most contribution to h0 probability density is attributed to HH envelope
function. (c) Left panel: direct Coulomb interactions, Jee, Jhh, and Jeh, can be obtained by locating the charge density of one single particle in
the mean-field potential caused by the other single particle. Here, Ve0 and Vh0 are the electron- and hole-induced potentials, and e0 and h0 label
electron and hole probability densities. The normalized density of the CI matrix elements, ρp0q0,σσ ′, for the ground state direct interaction terms
are plotted on (001) plane 1 nm above the QD base. Each ψ

p|q
σ |σ ′ in Eq. (6) is symbolized by its associated spin and color: the electron spin and

the z projection of hole total angular momentum are distinguished by blue and red arrows, respectively. Subscript d stands for the normalized
density of direct matrix element. Right up panel: exchange interaction terms calculated by putting the electron-hole mixed charge densities
ψe

↑e

∗ ψh
↑h

or ψe
↓e

∗ ψh
↓h

in the potential, Ve0,h0 , formed by the other mixed charge density ψe
↑e

∗ ψh
↑h

. Right down panel: exchange interaction terms
when the electron-hole mixed charge densities ψe

↓e

∗ ψh
↑h

or ψe
↑e

∗ ψh
↓h

are located inside the potential formed by the other mixed charge density
ψe

↑e

∗ ψh
↓h

. Subscript ex means the normalized density of exchange matrix element, which is 400 times scaled up for the sake of clarity. Only
real parts are illustrated for 〈↑e↑h |C|↓e↓h〉ex and 〈↑e↓h |C|↓e↑h〉ex .

J d
p0,q0

= 〈ψp0
σ ′ ψ

q0
σ ′ |C|ψp0

σ ψ
q0
σ 〉, where σσ ′ = ↑↓ if p0 = q0,

otherwise σσ ′ = ↑↑. Analogously, the ground-state exchange
terms J ex

p0,q0
, which originate the bright- and dark-state

splittings, are calculated by replacing |ψp0
σ (r1)ψq0

σ (r2)〉 by
|ψp0

σ (r2)ψq0
σ (r1)〉 in J d

p0,q0
. Above single-band treatment,

however, only covers the Fermi correlations. To account for
the Coulomb correlations arising in many-body systems,
higher energy levels shall be regarded: eight-band k.p
Hamiltonian25 was employed to solve for the single-particle
wave functions of a 25-nm long in base (bD = 25 nm), 5-nm
high (hD = 5 nm) zinc blende InAs/GaAs truncated pyramidal
QD. The vertical aspect ratio of hD/bD = 0.2 provides the
required separability between HH and LH bands, hence,
the pseudospin of holes in VB ground state is semipurely
± 3/2. Besides, our calculations show that for this vertical
aspect ratio, the electron-electron and hole-hole repulsive
interactions are both comparable to electron-hole attractive
interaction, yielding less biexciton binding energy. The
required material parameters, including k.p parameters and
elasticity constants, are taken from Refs. 13 and 23. Provided
the single-particle states by k.p method, CI approach was then
utilized to construct the true wave function of few-particle
multiexcitons and calculate the direct and exchange Coulomb
interactions along with the correlation energies:26 10 hole

and eight electron subbands were included to build up the
configuration set. The calculated exciton and biexciton energy
levels are depicted in Fig. 2(a). The negligible intrinsic BS
(<2 μeV) obtained here is a consequence of a laterally
symmetric and vertically flat QD.13 Particularly, the QD
flatness suppresses the role of strain-induced piezoelectric
polarization,27 which plays a destructive role on the C4v

symmetry of electron- and hole-envelope functions and,
hence, the degeneracy of QD bright states. Although the QD
studied here is potentially an ideal source of entangled photons
due to its small BS, the nondeterministic growth process
of QDs giving rise to possible geometrical imperfections
puts no guarantee on their lateral symmetry in practice.5

Therefore, in the present work, we focus on optimally
removing the biexciton binding energy, making cascade levels
appropriate for time reordering measurements, while the
conclusions given in the following are legitimate also for large
BS QDs.

From CI calculations, we exploited Jeh = J d
eh =

−12.54 meV, Jee = J d
ee = 12.97 meV, and Jhh = J d

hh =
13.2 meV, much larger than the intrinsic gap � of a typical
low Tc superconductor, like niobium (�Nb ≈ 1.5 meV
at T = 0). This indicates that: (1) in QDs having almost
vertical symmetry, where the electron and hole probability
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densities are similarly localized in space, direct Coulomb
interactions are comparable and relatively cancel out
each other in Eq. (5). The summation of the exchange
(
∑

|X〉D,|XX〉D J ex � �) and correlation (
∑

|X〉D,|XX〉D J corr)
energies then significantly participate in δbi determination.
(2) Having �̃e,h = �e,h exp(iϕe,h)/2,28 the condition J d >

� ensures that the device operates in the weak coupling
regime and |Ge, Gh〉 is the equilibrium quasistate since
the probability of being in quasistate |�e, �h〉 is given by
|�̃e,h|4/J d 4 � 1 in second-order perturbation.22 Hereinafter,
we assume that the chances of electrons passing into and
escaping from the QD states are equal, i.e. � = �e = �h.
This presumption is valid until the device is symmetric and
simplifies the model without loss of generality.

IV. MIXED STATES FINE TUNING

In order to activate the recombination process, quasistate
|�e, �h〉 must be pumped up by imposing a bias voltage into
the leads to separate their chemical potentials, μe

l and μh
l ,

close to the QD excitonic band gap. Meanwhile, by adjusting
the detuning �εe,h, defined as the energy spacing between
chemical potentials and single-particle energy levels, Ee and
Eh, |Ge, Gh〉 and |�e, �h〉 quasistates tend toward a selected
degeneracy point.22 Sequential injection of Cooper pairs of
electrons (holes) then fills up the intermediate |�e, Gh〉(|Ge,
�h〉) and finally |�e, �h〉 quasistates. Subsequently, |�e, �h〉
decays radiatively into the ground state |Ge, Gh〉 through
intermediate excitonic bright states and closes the cycle by
emitting polarized photons.

One technique to directly reduce |Ge, Gh〉 and |�e,
�h〉 energy level splitting δs is controlling over chemical
potential detuning, under the situation where Jee, Jhh, Jeh �
� and

∑
|X〉D,|XX〉D J corr + J ex ≶ �. The latter condition

is evidently determined by the type of superconductor and
also the geometry of the QD. For instance, the calculations
given by A. Schliwa et al. in Ref. 26 demonstrate that the
biexciton correlation energy can even reach half of the direct
interaction energies for large vertical aspect ratios. These
calculations also confirm that both exciton and biexciton
correlation energies are minimized for the vertical aspect
ratio we have chosen in our example (0.2). Our calculations
exhibit an acceptable consistency with their results in terms
of the evolution of exciton and biexciton correlation energies
versus vertical aspect ratio. In our case, the correlation terms
were estimated <2 meV, depending on the number of basis
regarded for the configuration space.

We spanned detuning over the energy range −JXX
eh to

JXX
eh , the largest energy scale among Coulomb interactions

(JXX
eh = 4Jeh, since the total electron-hole interaction for

the biexciton is established between the four constituting
single particles of two excitons, and the change of spin
configurations between these excitons does not affect the direct
interactions), and plotted the eigenfunctions of the hybrid
system fine structure. The informative part of the plot is
shown in Figs. 3(a) and 3(b): the approximate hopping energy
for electron (hole) is presumed to be J d

ee/2 (J d
hh/2) without

loss of generality. Then by setting �εe0 = JXX
eh /2 + Jee/2 and

�εh0 = −JXX
eh /2 + Jhh/2, the quasistates |Ge, Gh〉, |�e, Gh〉,

and |�e, �h〉, or their equivalent mixed states, reside nearby at
one specific degeneracy point [see anticrossing in Fig. 3(a)]. At
the immediate vicinity of anticrossing, which never vanishes
as long as the superconducting gap exists, mixed states have
contribution from all above quasistates. Along the skew narrow
region, the induced ground |G〉 and biexciton |XX〉 states can be
estimated through |G〉 ≈ α1|Ge, Gh〉 + β1|�e, �h〉 and |XX〉 ≈
α2|Ge, Gh〉 + β2|�e, �h〉. Instead, |G〉 mixed state becomes a
combination of |Ge, Gh〉 and |�e, Gh〉 adjacent to the vertical
narrow region, and finally turns into a pure state elsewhere.
Figs. 3(a) and 3(b) depict αi and βi , i = {1, 2}, coefficients
of the ground and biexciton states for � = 0.5� and 1.5�,
where � is assumed to be equal to the superconducting gap of
niobium at T = 0, � ≈ �Nb = 1.52 meV. Changing the level
broadening � over the range ∼0.1� to ∼3� reproduces the
same patterns shown here, but the � value always regulates
the gap opened at anticrossing. Moving along the skew region,
which is shown to be the approximate degeneracy area of |Ge,
Gh〉 and |�e, �h〉 quasistates in Fig. 3(c), toward anticrossing,
βi decreases, giving rise to a transition into |Ge, Gh〉 state. For
initiating the sequential carrier-tunneling photon-generation
cycle, we need to set the operational point very close to the
anticrossing, where |Ge, Gh〉, |�e, �h〉, and their intermediate
level |�e, Gh〉 come to degeneracy. We name the respective
detunings leading to this degeneracy as �εe0 and �εh0. Such
an initialization is clarified in Fig. 3(c) for � = 0.5�Al, where
we replaced niobium with aluminum in our model to acquire
higher energy precision appropriate for fine-tuning the splitting
δs (�Al ∼ 165 μeV ∼ 0.1�Nb at T = 0): the bold blue
area shows the regions where the difference between ground
and biexciton energy levels, E3 and E0, is less than �Al.
Analogously, the pale blue area specifies where the ground
and |�e, Gh〉 intermediate quasistates separate less than �Al.

Although μe
l and μh

l could be modified to shift δs = E3

− E0 over a relatively large range, i.e. at least in the order of
�, they might not be able to explicitly minimize this splitting
for a certain value of �̃. We set detunings �εe and �εh on
the skew curve � = 0.5�Al, about 5�̃ = 1.25�Al away from
the exact degeneracy point yielding to ∼15 μeV splitting.
According to the expected BS exhibited by self-assembled
QDs (20−100 μeV),8,29 such a splitting energy implies no
advantage of the time reordering scheme over the regular
polarized-entangled photon generation method.3 This brings
us to the conclusion that, although chemical potentials can
provide a wide-sweep range for biexciton binding energy, an
effective suppression in δs and, hence, required energy resolu-
tion for entanglement purposes might not necessarily occur.

V. TUNNELING RATIO AND CONCURRENCE

The tunneling ratio of Cooper pairs suggests an extra
degree of freedom to the above system since it directly
determines the level broadening �(E) = �m|qm|2δ(Em −
E),20 where qm is the transmission probability to the mth QD
energy level. The underlying concept would be then similar
to pushing the system to an alternative skew region near the
fixed anticrossing point (�εe0, �εh0). Figures 3(d) and 3(e)
describe how δs variations might be connected to � in the
weak coupling limit (if we call the level broadening at which
the energy spacing between E3 and E0 is minimized as critical
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FIG. 3. (Color online) (a) and (b) |αi | and
|βi | coefficients of the coupled system ground
|G〉 and biexcitonic |XX〉 states against detunings
�εe and �εh for � = 0.5�Nb and 1.5�Nb. Sweep
window only includes areas near the anticrossing
for the sake of clarity. As demonstrated, along the
skew region, |Ge, Gh〉 and |�e, �h〉 components
contribute dominantly to |G〉 and |XX〉 wave
functions. (c) � = 0.5�Al, bold blue branch
R2 shows the regions where δs < �Al ∼ 0.16
meV: |G〉 and |XX〉 are almost degenerate. Pale
blue branch R1 shows the regions where |G〉
and |e1, h0〉 = α3|Ge, Gh〉 + β3|�e, Gh〉
become degenerate (δ|G〉,|e1,h0〉 < �Al). Dashed
red line passes exactly through the anticrossing.
P1 and P2 are selected points on the skew branch
separated 200 μeV from anticrossing. The last
two plots illustrate the ground and biexciton
energy levels varying versus level broadening.
Chemical potential of the electron side μe

l is
changed in 5 μeV steps starting from (d) P1 and
(e) P2 toward anticrossing while the hole side
chemical potential μh

l is kept fixed.

� labeled by �c, then the conditions �c ≈ 0.2�, 0.25�, and
�c � J d

ee,J
d
hh,J

d
eh confirm the operation in the weak coupling

regime), and manifests the capability of δs to be reduced below
radiative linewidth of exciton in typical self-assembled QDs
(e.g. ∼4 μeV).29,30 In these two plots, we first set the chemical
potentials on P1 and P2, then minimize δs at some point by
smoothly fluctuating one of the chemical potentials, here μe

l ,

around the initial point and sweeping over �. This mostly hap-
pens moving deeper into the weak coupling regime; however,
the least probability of pair tunneling must be consistently
satisfied.

It is noteworthy to mention that other than the amount
of δs , the distinguishability of photons generated in each
decay path also relies on the bare QD excitonic line
widths together with superconducting coherence factors,
i.e. (h̄ = 1)

R|XX〉→|Xλ〉 = γph|β2(ue,h,ve,h)|2γ|�e,�h〉→|Xλ〉 (7a)

R|Xλ〉→|G〉 = γph|α1(ue,h,ve,h)|2γ|Xλ〉→|Ge,Gh〉, (7b)

where |Xλ〉 is the excitonic intermediate state with polariza-
tion λ = {H, V}, γph denotes the photon line width, and
the excitonic transition rate reads γ|i〉→|f 〉 = |〈f ||Ĥem|i〉|2,
having

Ĥem =
∑
S;p;λ

gS
pλâ

†
pλb̂λ + H.c. (8)

In above equation, S = {|�e,�h〉 → |XH,V 〉,|XH,V 〉 →
|Ge,Gh〉}, b̂H = 1/

√
2(ĥ↓ĉ↑ + ĥ↑ĉ↓), b̂V =

i/
√

2(ĥ↓ĉ↑ − ĥ↑ĉ↓), â
†
p creates a photon in pth optical

mode, and gS
λ incorporates the oscillator strength in

each excitonic transition. According to Eqs. (7a) and
(7b), since the individual line widths of cross generated
photons are affected by |α1|, |β2| factors, the degree of
entanglement can be either ruined or improved in our
hybrid system. Assuming RXX = R|XX〉→|XV 〉 = R|XX〉→|XH 〉
and RX = R|XH 〉→|G〉 = R|XV 〉→|G〉, one can evaluate the
concurrence for the generated states of photons as a measure
of entanglement:16

C = 4ζXXζX

π2

∣∣∣∣
∫

Wopt(ωm,ωn)

|ωm + ωn − ωXX − iζXX|2(ωm − ω|XH 〉 + iζX)(ωm − ω|XV 〉 + iζX)
dωmdωn

∣∣∣∣ , (9)

where ωXX and ω|Xλ=H,V 〉 are the biexciton and exciton
frequencies, and the spectral half widths of exciton and
biexciton are represented by ζX and ζXX: ζX = RX/2γph and
ζXX = RXX/2γph. One can simply manipulate the additional
phase Wopt above in order to enhance the concurrence. The best
choice of Wopt is still under debate (see papers in Ref. 16);
however, in the simplest case one can introduce an optical
delay τ0 to add a linear phase, i.e. Wopt = exp[i(ωm − ωn)τ0].
Under the condition where color coincidence between the

biexciton and exciton is prepared, τ0 can be optimized to
provide the maximum concurrence. Pathak and Hughs have
shown that this time delay only depends on the exciton and
biexciton spectral half widths: τ0 = ln(1 + ζXX/2ζX)/ζXX.16

However, out of the color coincidence condition, this time
delay must be altered depending on the biexciton binding
energy in order to optimize the concurrence. Generally, two
parameters determine the amount of concurrence in the time
reordering scheme applied to the biexciton cascade process: (1)
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FIG. 4. (Color online) (a) Concurrence defined in Eq. (9) plotted
versus level broadening for � = �Al, assuming γ|XX〉→|XV 〉,|XH 〉 =
2γ|XV 〉,|XH 〉→|G〉 and γ|XV 〉,|XH 〉→|G〉 = 4μeV. In the three curves shown
here, C1, C2, and C3, chemical potential on the electron side
μe

l changes in 2 μeV steps starting from P2 (curve C1) toward
anticrossing, whereas hole-side chemical potential μh

l is held fixed.
(b) |αi | and |βi | coefficients corresponding to curve C3 from (a). The
maximum concurrence does not occur exactly where δs is minimized
due to the contribution from exciton linewidth ζX .

δb/ζX = (ωXX − ω|XH 〉 − ω|XV 〉)/ζX, where δb is the energy
separation of the existing biexciton level and the ideal one
when the color coincidence of excitonic and biexcitonic
transition occurs—in our model, δs is a good measure to
represent this energy spacing; (2) the ratio between the exciton
and biexciton lifetimes, or equivalently their spectral line
widths ζXX/ζX. Going back to Eqs. (7a) and (7b), this ratio
relies upon α1 and β2 in addition to bare QD transition rates,
γ|�e,�h〉→|XH,V 〉 and γ|XH,V 〉→|Ge,Ge〉. Near anticrossing shown
in Fig. 3(a), where |α1|, |β2| < 1, concurrence C comprises
δs , α1, and β2 information as a consequence of intermixing.
This reflects that by tuning �εe, �εh, and � in order to
minimize δs , the potentially maximum concurrence might not
necessarily be achieved. However, by controlling over Wopt

reaching the optimum limit is feasible when realistic values
of excitonic broadenings, γ|�e,�h〉→|Xλ〉 and γ|Xλ〉→|Ge,Gh〉, are
known.

We examined the evolution of concurrence C given in
Eq. (9) versus � in the same sense accomplished for δs [see
Fig. 4(a)]. We biased the model exactly at P2 [see Fig. 3(c)]
by setting the appropriate chemical potentials μe

l and μh
l ,

then changed the level broadening � over a relatively large
scale (curve C1). For smaller values of �, the concurrence
is merely a function of δs/ζX, since both |α1| and |β2| are
almost equal [see Fig. 4(b)] and the ζXX/ζX ratio remains
constant. In contrast, for larger values of �, |α1|2/|β2|2 is
increased as can be deduced from Fig 4(b), giving rise
to smaller ζXX/ζX ratios and a local rise in concurrence.
We also changed μe

l by 2 μeV steps toward anticrossing
to show how concurrence might be improved for smaller
δs values; see curves C2 and C3 in Fig 4(a). In Ref. 16,
Avron et al. demonstrated that for a fixed amount of ζXX/ζX,
the concurrence is enhanced when the δb/ζX approaches

zero. However, in our model both δs and ζX undergo a
significant change, moving deeper into the weak coupling
regime (e.g. � < 0.4�), where the interplay between their
variations leads to a local maximum of concurrence next to the
anticrossing.

We note that here the cascade process is presumed to be
isolated of cross-dephasing between |XH 〉 and |XV 〉, which
indeed lowers the concurrence in practice and is a fundamental
issue when intermediate exciton states are not identical nor
symmetrically coupled.30 Notice also that throughout the
analysis we restricted the operation regime into the weak
coupling limit where the hybridization factor |�̃|, as the key
property of setup, was represented by �/2, whereas in practice
the relative measure of �̃ and � is not fully restrained.21,22

Reminding the fact that the intermixing phenomenon explicitly
depends on the effective superconducting gap, there is a
possibility to reduce it for the sake of energy resolution
without suppressing tunneling probability. A simple procedure
for dynamical modification of effective gap might be the
application of a small magnetic field which leaves the QD
features unaffected. Another option would be exploiting a back
gate to manage the charging and, hence, Coulomb interactions
inside QD, and eventually impose required changes on � and
�̃.31 However, in the latter case, losing a part of oscillator
strength seems inevitable.

VI. SUMMARY

In conclusion, by providing a relevant example, we studied
the applicability of superconductor-coupled QDs in enhancing
the degree of entanglement via suppressing the biexciton
binding energy under the time reordering scheme. This method
allows for tuning biexciton binding energy over a relatively
large energy range, in contrast to the setups utilizing lateral
strain17 or local electric filed,32 by forming extra fine structures
near ground and biexcitonic energy levels and, hence, results
in the observation of well-defined entangled photon pair state.
The reason is that here the new energy levels commute
somehow independent of the QD confinement and its original
fine structure, but rather are linked to the characteristics of
superconducting contacts such as � and �. We believe that
appropriate contacting of large BS QDs, rendering weak
coupling, can optimize the concurrence even in a laser-
or cavity-free setup and without requiring any postgrowth
manipulation of QDs.
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