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Synchronization in a one-dimensional array of point Josephson junctions coupled to a common load
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We study the synchronization in a one-dimensional array of point Josephson junctions coupled to a common
capacitor, which establishes a long-range interaction between junctions and synchronizes them. The stability
diagram of synchronization in a noise-free system is obtained. The current when junctions transform from
resistive state into zero-voltage state is then calculated and its dependence on the shunt parameters and the
dissipation of junctions is revealed. In the presence of thermal noise, the synchronized oscillations are destroyed
at a critical temperature and the system undergoes a continuous phase transition of desynchronization. A possible
stability diagram of the synchronized oscillations with respect to thermal noise, current, dissipations, and shunt
capacitance is then constructed. Finally we investigate the dynamic relaxation from random oscillations into a
synchronized state. The relaxation time increases with the system size and temperature, but is reduced by the
shunt capacitor.
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I. INTRODUCTION

Josephson junctions are building elements of many elec-
tronic and electromagnetic devices as well as a candidate for
quantum computers.1 In practical applications, one usually
integrates large arrays of junctions on a chip to enhance the
performance; thus coherent operations in these junctions are
crucial. The synchronization between junctions can be realized
by coupling them to a common resonator, most frequently
through electromagnetic coupling. The common resonator
establishes long-range interaction between junctions, which
then synchronizes them under appropriate condition. The junc-
tion arrays have become an extremely important playground
to understand the synchronization mechanism for a large
population of nonlinear oscillators, partially because of the
relatively easy experimental realization.2–10

The successful observations of coherent emission
from cuprate superconductors renew the interests in un-
derstanding the synchronization of arrays of Joseph-
son junctions.11–17 Cuprate superconductors, such as
Bi2Sr2CaCu2O8+δ (BSCCO), are a natural realization of a
stack of Josephson junctions of atomic thickness,18,19 known
as intrinsic Josephson junctions (IJJs). Because of the large
supercoducting energy gap, these built-in Josephson junctions
can be operated at frequencies in the terahertz region, where
the electromagnetic waves have wide applications.20,21

Radiation from IJJs occurs in the resistive state. Such a
state is reached by increasing the bias current above the
Josephson critical current and then diminishing it down to
the voltage V corresponding to the target frequency according
to the Josephson relation ω = 2eV/h̄. The resistive state is
preserved down to the retrapping current below which the
system undergoes transition into the zero-voltage state. Such a
procedure is possible because the resistivity of IJJs is very
large; i.e., junctions are strongly underdamped. Thus the
hysteretic behavior allows us, in principle, to reach a quite low
voltage of the order of that corresponding to the Josephson
frequency (∼0.1 THz for BSCCO). In the resistive state, the
Josephson plasma of composite oscillations of Cooper pairs
and electromagnetic waves is excited. If the plasma oscillations

are in-phase, then the total radiation power is proportional to
the number of junctions squared. Below a threshold current
called the retrapping current, the resistive state becomes
unstable and the system switches into a zero-voltage one.
Important questions to be addressed are the following:

(1) What is the retrapping current in the array of point
junctions and how does a shunt affect it?

(2) In what parameter region of junction and shunt do
oscillations of junctions remain synchronized in the resistive
state?

The stability of synchronized oscillations depends crucially
on interaction between junctions. The junctions in cuprate
superconductors interact with each other through nearest
neighbor coupling, either inductive or capacitive. These short-
range interactions, however, are insufficient to establish a
global phase coherence.22,23 There are two methods to achieve
global synchronization by coupling all junctions to a common
resonator.

In the first approach, the cavity formed by the supercon-
ductor’s single crystal plays the role of the resonator.12,13 The
synchronization is realized by the excitation of the cavity mode
in the crystal.24,25 Alternatively, the synchronization can be
achieved by the radiation fields26 and/or by a shunted circuit.27

The synchronization by a shunted circuit attracts considerable
interest, because it can be implemented easily.

Real junctions involve thermal noise, especially for those in
high-Tc superconductors. Generally, one expects thermal noise
to broaden the linewidth of the oscillating spectrum, or even
destroy the coherence. It is preferable to have robust coherent
oscillation against noise. To this end, it is important to know
how thermal fluctuations destroy the synchronization.

The dynamical process of building up the synchroniza-
tion is also important for both applications and theoretical
understandings. For an initial condition that is very close to
the fully synchronized state, the relaxation to a synchronized
state can be analyzed based on the standard local stability
analysis.26,28,29 However, for a complete random initial state,
the dynamic process is highly nontrivial. The system may
even not relax into the synchronized state. Two questions
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naturally arise: How does one reach the synchronized state
in a controlled way, and what is the relaxation time?

In this paper, we consider a one-dimensional array of point
Josephson junctions coupled to a common circuit. First we
provide analytical and numerical study on the stability of the
synchronized state and map out the stability phase diagram.
Based on the diagram, we derive the dependence of the
retrapping current on the shunt circuit. Then we introduce
thermal noise into the system and describe the effect on the
synchronization. Mean-field critical behaviors are identified
at the desynchronization transition, i.e., the transition from
the the synchronized state to the state with random or partially
random oscillations. We reveal the dependence of the transition
temperature on the shunt circuit and bias current. Based on
these results, a possible stability diagram of the synchronized
oscillations is constructed taking thermal noise into account.
Finally, we study the relaxation dynamics starting from a
disordered state, where junctions oscillate randomly.

The remaining part of the paper is organized as follows. In
Sec. II, we introduce the model. In Sec. III, we perform stability
analysis of the synchronized oscillations both numerically
and analytically. In Sec. IV, we study the desynchronization
transition of the coherent state and obtain the corresponding
transition temperature. In Sec. V, we study the dynamic
relaxation from a disordered initial state into the synchronized
state. The paper is concluded by a short summary.

II. MODEL

Arrays of Josephson junctions coupled to a common
load were extensively studied decades ago,3,6,9 not only for
their importance for the application in electronic device,
but also as a fruitful platform to understand the underlying
synchronization mechanism. These models, although less
transparent than the well-known Kuramoto model,30 can
be realized experimentally31,32 much more easily than the
Kuramoto model. The latter has been realized experimentally
only very recently,33 long after its proposal. Some specific
configuration of the array, such as a one-dimensional array of
Josephson junctions shunted by a serial RLC circuit, can be
mapped onto the Kuramoto model.4

We consider a stack of IJJs with lateral sizes of order
of several micrometers. This geometry of junctions is an
alternative route to strong emissions26 and has attracted a lot of
attention recently. In this case, the variation of superconductiv-
ity phase in the lateral direction is small and the junction can be
approximated as a point junction. The inductive coupling34–36

between junctions then vanishes under this approximation.
Meanwhile, the capacitive coupling37,38 between junctions is
weak and short-range; thus it can be neglected in comparison
with the long-range interaction mediated by the shunt circuit.
Under these simplifications, a stack of IJJs reduces to a serial
array of point junctions.

We study a serial array of point Josephson junctions shunted
by a lumped C circuit, which is shown schematically in Fig. 1.
Each junction is modeled as a resistively and capacitively
shunted circuit. The total current across the junction is

IJ = Icsinφk + h̄

2eRJ

φ̇k + h̄

2e
CJ φ̈k, (1)

FIG. 1. (Color online) (a) Schematic view of an array of
Josephson junctions shunted with a capacitor. The junctions are biased
by a dc current IB . (b) The Josephson junction is modeled as a shunt
circuit of a capacitor, a resistor, and a nonlinear Josephson current.

where V = h̄
2e

φ̇k is the voltage of the junction according to
the ac Josephson relation. Here φk is the gauge-invariant
superconductivity phase difference of the kth junction, and
RJ , CJ , and Ic are the resistance, capacitance, and critical
current of the junction, respectively. Using Kirchhoff’s loop
law, we obtain the equation of motion

IB = Q̇ + Icsinφk + h̄

2eRJ

φ̇k + h̄

2e
CJ φ̈k + I n

k , (2)

V = h̄

2e

N∑
k

φ̇k = Q

Cs

, (3)

where Q is the charge on the shunted capacitance, Cs is the
shunted capacitance, and IB is the bias dc current. We have
introduced the Nyquist noise (white noise) current I n

k ,
〈
I n
k

〉 = 0,
〈
I n
k (t)I n

k′(t ′)
〉 = (4kBT /RJ )δ(t − t ′)δ(k − k′),

(4)

where kB is the Boltzmann constant and T is the temperature.
We have also assumed that junctions are identical. In the
presence of the common circuit, a small spread in the junction’s
parameters will not destroy the coherent oscillations.

We will use dimensionless quantities in the following
calculations. The time is in units of Josephson plasma fre-
quency ωp = √

2eIc/h̄CJ , current in units of Ic, capacitance
in units of CJ , resistance in units of RJ . We then arrive at the
dimensionless version of Eqs. (2), (3), and (4):

IB = Q̇ + sinφk + βφ̇k + φ̈k + I n
k , (5)

V =
N∑
k

φ̇k = Q

Cs

, (6)

〈
I n
k (t)I n

k′(t ′)
〉 = 2βT δ(t − t ′)δ(k − k′), (7)
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where 1/β2 with β = √
h̄/(RJ

√
2eIcCJ ) is the McCumber

number which determines the hysteretic behavior of junctions.
Upon increasing the bias current, the system remains zero
voltage until the bias current exceeds the critical current. Then
the junctions switch into the resistive state. The system keeps
resistive even when the bias current is reduced below the
critical current for a junction with small β.39 In the resistive
state, the superconductivity phase φk is rotating accompanied
by small oscillations. The angular velocity of the rotation for
φk is the same for all junctions determined by the voltage,
but the phase φk may vary from junction to junction. We will
consider the synchronization of the phase of the junction arrays
in the following.

In this model, all junctions are coupled to the capacitor Cs ,
which establishes mutual interaction among all junctions. Thus
the effective dimensionality of the system is infinite, which is
crucial for the synchronization.22,23 Another consequence of
this mean-field behavior is the permutation symmetry; i.e., all
junctions are biased by the same external current and the cur-
rent in the shunt circuit. The exchange of any pair of junctions
in the circuit does not change the topology of the circuit. If
configuration (φ1,φ2, . . . ,φi, . . . ,φj , . . . ,φN ) is a solution to
Eqs. (5), (6), and (7), then (φ1,φ2, . . . ,φj , . . . ,φi, . . . ,φN ) is
also a solution. This symmetry greatly simplifies the stability
analysis as will be shown below.

Apparently, Eqs. (5), (6), and (7) always have a trivial
solution that all junctions oscillate out of phase, and the
dynamics of each junction is independent because the current
in the shunt circuit vanishes. However, suppose at some
instance, a small population of junctions oscillates with the
same phase, then the capacitance Cs acquires energy, which
is proportional to the number of in-phase junctions squared.
Now the capacitance is able to attract more junctions to
oscillate at its phase and in turn its energy increases further.
This is a positive feedback process with explosive increases
of energy in the capacitance and an avalanche of junctions
oscillating coherently. Therefore we expect that in a certain
parameter space, the out-of-phase oscillations lose stability
and synchronization sets in. The qualitative picture will be
elaborated in subsequent sections.

III. STABILITY OF THE SYNCHRONIZED STATE

In this section, we analyze the local stability of the
coherent oscillations of all junctions in the absence of thermal
fluctuations, T = 0. The local stability is determined by the
dynamics of the system in the vicinity of the trajectory of
the uniform solution. We consider the uniform oscillations
φk = φ0, where

(NCs + 1)φ̈0 + βφ̇0 + sin φ0 = IB, (8)

with N being the number of junctions. The junction coupling
strength is enhanced by a factor of N , in accordance with
the typical behavior in the mean-field theory. We then add
small perturbations δk to the uniform solution and determine
the time evolution of the perturbations. The equations for the

perturbations read

δ̈k + βδ̇k + cos(φ0)δk + Cs

N∑
i=1

δ̈i = 0. (9)

The permutation symmetry between junctions allows us to
decouple Eqs. (9) by introducing the quantities �k = δk+1 −
δk and σ = 1

N

∑N
i=1 δk . We obtain equations for �k = � and

σ :

�̈ + β�̇ + cos(φ0)� = 0, (10)

σ̈ + βσ̇ + cos(φ0)σ + CsNσ̈ = 0. (11)

If � diverges with time, the uniform solution becomes
unstable. On the other hand, if σ diverges while � decays with
time, the synchronization is kept and the system transits into
another synchronized state if it exists. We are interested in the
coherent oscillation, and we will only focus on Eq. (10) in the
later analysis. We will solve Eq. (10) for weak oscillations both
analytically and numerically based on the Floquet theorem.

A. Analytical treatment

We consider the region where the amplitude of Josephson
oscillation is small. The solution of Eq. (8) in linear approxi-
mation can be written as

φ0 = ωt + A exp(iωt) (12)

with

A = i

−(CsN + 1)ω2 + iβω
� 1. (13)

The frequency ω is determined by the dc current conservation

IB = βω + Re[A]/2. (14)

Substituting Eq. (12) into Eq. (10), we get the equation for �,

�̈ + β�̇ +
[

1

2
(eiωt + e−iωt ) − 1

2i
(e2iωt − 1)A

]
� = 0.

(15)

The coupling of perturbations to the oscillation exp(iωt)
induces higher frequency harmonics. The general solution for
� is

� = e−i�t

+∞∑
k=−∞

ake
ikωt . (16)

The stability is determined by the spectrum of perturbations
�. In the framework of the Floquet theory,40 we call Im(�) the
Floquet exponent. The uniform solution is stable if and only if
the largest Floquet exponent is negative; i.e., Im(�) < 0. One
may easily identify Im(�) as a relaxation time and Re(�) as
an energy gap of perturbations.

To obtain �, we plug Eq. (16) into Eq. (15) and compare
each frequency component. Then we have the following linear
equations for the coefficients ak:

−(kω − �)2ak + i(kω − �)βak

+ 1

2
(ak−1 + ak+1) − A

2i
(ak−2 − ak) = 0. (17)
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The existence of the nonzero solution of ak requires that the
determinant of the coefficient matrix vanishes, det D = 0 with

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

... .. .. .. .. .. ..

− A
2i

1
2 c−1

1
2 0 0 0

0 − A
2i

1
2 c0

1
2 0 0

0 0 − A
2i

1
2 c1

1
2 0

0 0 0 − A
2i

1
2 c2

1
2

... .. .. .. .. .. ..

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

and ck = −(kω − �)2 + i(kω − �)β + A/(2i). The solution
gives the spectrum of the perturbation.

In the region of ω � 1, the frequency modes with k = 0,±1
are dominant and higher harmonics may be truncated. We
obtain a second-order equation for �:

�2 + iβ� = A

2i
+ 1

2ω2
= CsN

(CsN + 1)

1

2ω2
, (19)

with solutions

� =
−iβ ±

√
−β2 + 2CsN

(CsN+1)
1
ω2

2
. (20)

We see that the uniform oscillations are always stable for
nonzero Cs in the region of ω � 1. In the limit ω ≈ IB/β →
∞, the largest Floquet exponent approaches zero, and the
solution becomes neutrally stable.

Near the stability boundary where the largest Im(�)
changes sign, one has to keep higher harmonics in Eq. (16)
because ω ∼ 1. But for CsN � 1, one can still use the linear
expansion in Eq. (12). Under these conditions, the stability
boundary can be determined by the numerical calculation of
det D = 0.

B. The Floquet theory

Equation (10) can also be interpreted as a particle moving
in a periodic potential with period T . Then we can apply the
Floquet theorem (Bloch theorem) to extract the exponents. The
solution has the form

�(t) = exp(λ1t)y1(t) + exp(λ2t)y2(t), (21)

where y1(t) and y2(t) are periodic functions with period T ,
and the exponents λ1 and λ2 follow λ1 + λ2 = −β according
to the Floquet theorem.40 When no dissipation is present β =
0, the dynamics is time reversal and λ1 + λ2 = 0. When the
dissipation is involved, the volume of phase space is shrinking
with a rate β; thus the two exponents follow λ1 + λ2 = −β.

The exponents can be computed numerically as follows. We
first calculate the trajectory of φ0 in Eq. (8). Then we calculate
two trajectories of �a(t) and �b(t) with two different initial
conditions �a(t0) = 0, �̇a(t0) = 1 and �b(t0) = 1, �̇b(t0) =
0. These two trajectories obey40

(
�a(t + T ), �b(t + T )

�̇a(t + T ), �̇b(t + T )

)
= F(T )

(
�a(t), �b(t)

�̇a(t), �̇b(t)

)
,

(22)

with F being a coefficient matrix, which can be evaluated by
inverting Eq. (22) because the trajectories of �a and �b are
known. λ1 and λ2 are just the eigenvalues of the matrix F. We

FIG. 2. (Color online) The largest Floquet exponent calculated
by det D = 0 with D given by Eq. (18) (red line), and by numerical
calculation using the Floquet theory in Eq. (21) (symbols). For the
exponent smaller than 0, the uniform oscillations are stable.

have compared the results obtained by Eq. (22) and those by
analytical calculations. Both methods give consistent results
as shown in Fig. 2.

C. Stability diagram

The stability analysis above does not tell us what the
final state is when the uniform solution becomes unstable.
To answer this question, we solve Eqs. (5) and (6) with I n

k = 0
directly by numerical simulation. The stability diagram then is
constructed, and is depicted in Fig. 3. For a sufficiently large
IB thus ω � 1, the uniform solution is stable as described by
Eq. (20). For a small β, upon decreasing IB , the uniform
oscillations become unstable below the retrapping current
Ir < Ic and the system evolves into zero-voltage state. For
a large β, the uniform oscillation loses stability at Is > Ic,
where no zero-voltage state is available for the system to go to.
In this case, the system becomes partially synchronized with
a fraction of junctions oscillating in-phase, while the others
do out-of-phase oscillation. When IB is reduced further, the
partial synchronization becomes unstable and the system is
retrapped into the zero-voltage state at IB = Ic.

Let us discuss the transition from the complete synchro-
nization to the partial synchronization when β is large. To
characterize the partially synchronized state, we introduce the
order parameter which is widely used in the literature:30

r(t) exp[iθ (t)] = 1

N

N∑
j

exp(iφj ). (23)

Here r is positively defined. We compute the average of r(t),

〈r〉 = 1

tf

∫ tf

0
dt r(t), (24)

and take tf → +∞.
The I-V and the corresponding order parameter are shown in

Fig. 4. When the complete synchronization becomes unstable,
a sharp jump of voltage is observed, associated with decrease

104501-4



SYNCHRONIZATION IN A ONE-DIMENSIONAL ARRAY OF . . . PHYSICAL REVIEW B 84, 104501 (2011)

FIG. 3. (Color online) Stability diagram of the uniform solution
in the absence thermal fluctuations. Light blue/pink/orange region
denotes complete synchronization/zero-voltage state/partial synchro-
nization. The blue line is the stability boundary of the uniform solution
calculated by the Floquet theory Is , and the open red circle is the
retrapping current Ir determined by direct calculations of Eqs. (5)–(7).
The dashed line shows the retrapping current determined by Eq. (8)
while the dotted line shows the retrapping current for a single junction.
Here Cs = 3/N .

of the order parameter. The reduction of voltage when the
system becomes partially synchronized can be understood as
follows. At a given voltage, the shunt capacitor reduces the
plasma oscillation amplitude depending on the number of the
synchronized junctions, as described by Eq. (13). For the uni-
form oscillations, the suppression is largest and the dc current
induced by the Josephson oscillation is reduced significantly
according to Eq. (14). For the partial synchronized oscillations,
the dc current is larger than that of the uniform oscillations.
Therefore when one biases the array with a fixed current, the
voltage of the uniform state increases compared with that in
the partial synchronized state.

FIG. 4. (Color online) I-V curve (black) and dependence of the
order parameter on the voltage (red) for β = 2.0 and Cs = 3/N .

D. Retrapping current

According to Eqs. (13) and (14) the amplitude of the
Josephson oscillation increases with decreasing IB . To achieve
the strongest oscillation, one would like to know how small a
current one can achieve in order to support the resistive state.

For a single junction, the dynamics is equivalent to a particle
sliding down in the damped inclined washboard potential. It
shows hysteretic behavior for small β; i.e., the system remains
resistive even when IB < Ic. The system evolves into the
superconduction state at a current Ir > 0, where the input
power is insufficient for the phase particle to move in the
damped tilted washboard potential. The retrapping current for
a weak damping is given by Ir ≈ 1.48β.41 On the other side,
the dynamics becomes overdamped for a large β, and the
system comes back to the zero-voltage state once IB < Ic.
The dependence of Ir on β for a single junction is shown by
the dotted curve in Fig. 3.

For the junction array shown in Fig. 1, if the uniform
solution is always stable in the whole current region, the
retrapping current will be the same as in a single-junction
case with an effective β ′ = β/

√
CsN + 1 normalized by the

shunt capacitor (dashed line in Fig. 3). In fact, the uniform
solution loses stability at Is (blue line in Fig. 3) and the system
evolves into the zero-voltage state. Therefore Is is the genuine
retrapping current for the present junction array, and can be
measured experimentally.

How does one decrease Is , or is it possible to shift the
stability boundary in Fig. 3 leftward? One recalls that the shunt
capacitor induces interaction between junctions. By increasing
the coupling constant Cs , one would expect that the stable
region enlarges and the stability boundary shifts leftward. We
study the dependence of Is on Cs , and the results are presented
in Fig. 5. For β � 0.5, the retrapping current decreases with
Cs , while it increases with Cs for smaller β. A qualitative
picture for this unexpected nonmonotonic dependence is as
follows.

FIG. 5. (Color online) Dependence of the boundary retrapping
current Ir on the shunt capacitance for several β’s. Lines are obtained
with the Floquet theory and symbols are direction simulations of
Eqs. (5)–(7). The region above the line corresponds to the uniform
oscillations while zero-voltage state below the line. Here N = 200.
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FIG. 6. (Color online) I-V curves for (a) β = 0.02 and (b) β = 1.0
for several typical values of Cs . Here N = 200.

Equations (8) and (10) with Cs = 0 can also describe the
stability of the resistive state for a single junction, where
the retrapping current is enhanced by the dissipation as
shown by the dotted line in Fig. 3. We rewrite Eq. (8) to a
form equivalent to the single junction case by rescaling the
time t ← √

NCs + 1t ′, and with an reduced dissipation β ′ =
β/

√
NCs + 1. The dynamics of the perturbations Eq. (10) then

acquire a form

1

NCs + 1
�̈ + β ′�̇ + cos(φ0)� = 0. (25)

Thus the presence of a shunt capacitor reduces both the
effective mass of perturbations and the damping coefficient.
The reduction of the mass makes the system more vulnerable
to the oscillatory potential cos(φ0)�2/2 and therefore tends
to increase the retrapping current. For the junction array with
weak damping, the effect of the reduction of mass dominates
and the retrapping current is increased by the shunt capacitor.
On the other hand, for the junction array with strong damping,
the reduction of the damping by the shunt capacitor dominates
and the retrapping current is decreased.

The I-V curves for several typical values of Cs are shown
in Fig. 6. As seen in the figure, the I-V curves with Cs = 0
deviate from the asymptotic linear behavior IB ≈ ω/β at small
ω, which indicates strong plasma oscillations according to
Eq. (14). For β = 0.02 the I-V curves in Fig. 6(a) behave
differently near the trapping point for Cs = 0 and for nonzero
Cs , where in the latter case the I-V is linear down to the
retrapping current. This linear dependence near the retrapping
point with ω ∼ 1 is due to the suppression of the oscillation
amplitude by the shunt capacitor Cs . However, for β = 1.0
the I-V curves remain nonlinear near the retrapping point even
for the same Cs . For a large β, the retrapping voltage is much
smaller than that of small β and thus results in stronger plasma
oscillations.

E. RC circuit

In real devices, the shunt circuit also carries finite resistance.
We perform similar analysis of the stability diagram and the
retrapping current, when a resistor with resistance R is serially
connected to the capacitor in the load circuit. A new term Q̇R

should be added to the right-hand side of Eq. (6).
The resulting stability diagram is qualitatively the same as

Fig. 3. For a given R, the retrapping current increases with Cs

for a small β while decreasing for large β, as depicted in Fig. 7.

FIG. 7. (Color online) Same as Fig. 5 but with a shunt RC circuit.
Parameters are indicated in the figures.

Comparing Fig. 7 with Fig. 5, we can see that the shunt resistor
increases the retrapping current, because the dissipation of the
system is increased by the resistor.

F. LRC circuit

Another interesting case is an array of Josephson junctions
shunted by a LRC circuit, which introduces a characteristic
frequency ωc = 1/

√
LsCs . The LRC circuit can represent

the cavity intrinsically formed by the single crystal of
BSCCO.12,13,42,43

The stability of the uniform oscillations can be obtained
similarly. We consider the case with ω � 1 and β � 1 so
the analysis in Sec. III A is applicable. The dynamics for small
perturbations is still given by Eqs. (10) and (12) with a modified
amplitude

A = i

−ω2 + iβω − Nω2

Ls(ω2
c−ω2)+ωiR

. (26)

The stability is determined by Eq. (19) and the results are
shown in Fig. 8. When ω � ωc, the LRC circuit behaves as a
RC circuit, which always stabilizes the uniform solution for a
small R as given by Eq. (20). On the other hand, for ω � ωc,
the LRC circuit behaves as a LR circuit which makes the
uniform solution unstable for a large Ls . When ω ∼ ωc, the
stability depends on the quality factor R of the LRC circuit.
A small quality factor (large R) makes the synchronization
difficult.

IV. EFFECT OF THERMAL NOISE

Real circuits inevitably involve noise because of resistivity
caused by quasiparticles. This leads to diffusive dynamics
in the phase space and destroys the synchronization at a
certain critical point. To study the effect of noise, knowledge
of attractors in the phase space is necessary. An attractor
attracts trajectories nearby and the volume of phase space
that the attractor attracts defines the basin of attraction of the
attractor. The phase space is covered by basins of attraction
and the boundary between basins of attraction is called the
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FIG. 8. (Color online) Stability of the uniform oscillations when
an array of Josephson junctions are shunted by an LRC circuit. The
regions below lines are stable.

separatrix. For a small β, we have already identified two
attractors with one being the zero-voltage state, and the other
uniform-oscillation state. For a large β, an additional attractor
with partial synchronous oscillations appears.

Suppose the system is initially at the uniform-oscillation
state, and then we turn on thermal noise. The noise perturbs the
system away from the uniform state. However, the deviation
from the attractor is penalized by the action S. The comparison
of the action S for the system moving from the attractor to
the separatrix with the noise strength defines three distinct
regions:

(1) kbT � S. In this case the possibility of thermal escape
is extremely small and this region is described by the reaction-
rate theory.44 Especially, when the thermal activation between
two attractors a and b is asymmetric, that is, the action Sa �
Sb, the system will spend a much longer time in the attractor
b. This is the situation of retrapping from resistive state to
zero-voltage state for small β � 1 discussed before. When the
bias current IB is close to the retrapping current IB − Ir � 1,
the resistive state is about to lose stability. So the presence of
weak noise will destabilize the resistive state and the system
evolves into the zero-voltage one. On the other hand, the energy
barrier for the system to transform from zero-voltage state to
resistive one again is large when IB � Ic, and the noise is
not strong enough to promote such a transition. So the system
remains zero voltage. Thus the thermal noise increases the
retrapping current.45

(2) kbT � S. In this region the thermal energy is large
enough to kick the system off the attractor of the coherent
oscillation, and the synchronization is destroyed. The tem-
perature at which the synchronization is destroyed is the
synchronization-desynchronization transition temperature Tm.

(3) For T < Tm, the uniform oscillations survive. The
noise current excites perturbations and the system frequently
deviates from the attractor. The dynamics of the perturbations
are described by Eq. (9). These perturbations broaden the
linewidth of the frequency spectrum. The linewidth at ω � 1
can be estimated as follows. For ω � 1, the I-V is linear, so

FIG. 9. (Color online) Dependence of the order parameter on
temperature with different system sizes. Inset is a double-logarithm
plot of the reduced temperature Tm − T and order parameter. Here
IB = 1.5, β = 1.0, and Cs = 3.0/N .

the noise current I n induces a noise voltage I n/β. From the ac
Josephson relation ∂tφ = 2eV/h̄, one easily obtains that the
linewidth increases linearly with T for Gaussian white noise.

In the presence of noise, the equations of motion become
stochastic, and it is natural to describe the dynamics in term
of a probability density in the phase space. The flow of the
probability density is governed by the Fokker-Planck equation.
However analytical calculations of the coupled nonlinear
partial differential Fokker-Planck equation is difficult. In
this section we will use numerical simulations as the main
workhorse, and we will also provide qualitative analysis to
understand the numerical results. We first consider the desyn-
chronization transition of the synchronous state and the critical
behavior at the transition. We then find a correlation between
the largest Floquet exponent and the transition temperature.
Finally a stability diagram of the uniform oscillations with
respect to noise is constructed.

A. Synchronization-desynchronization transition

To study the synchronization-desynchronization transition,
we evaluate the order parameter defined in Eqs. (23) and (24),
and its standard deviation

σr = 〈r2〉 − 〈r〉2, (27)

which is similar to the susceptibility defined in spin systems.
We solve numerically Eqs. (5), (6), and (7), and derive 〈r〉

and σr at different T . The results are presented in Figs. 9
and 10. We also check the finite-size effect with different
N ’s. The finite size effect is prominent around Tm. The
synchronized oscillations are continuously suppressed by the
thermal fluctuations. At Tm the synchronized oscillations
become unstable, and the system undergoes a continuous
transition into random oscillations. Since σr serves as a
measure of the fluctuation effect, it reaches maximum at Tm, as
shown in Fig. 10. Practically σr provides a convenient way to
determine Tm especially for a small system where the transition
is obscured by the finite-size effect.
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FIG. 10. (Color online) Dependence of the fluctuations σr on the
temperature. Here IB = 1.5, β = 1.0, and Cs = 3.0/N .

Once we identify the desynchronization transition as a
critical phenomenon, we can define the exponent

〈r〉 ∼ (Tm − T )βc . (28)

In Fig. 9, we obtain βc ≈ 1/2 which is consistent with the
mean-field theory.

We then study which factors determine Tm and how to
enhance Tm. As discussed at the beginning of this section, Tm

is given by the action for the system moving out of the attractor.
Thus knowledge about the whole basin of attraction is needed.
However, it is still conceivable that the local slope near the
attractor may to a certain extent reflect the global structure of
the basin. The local slope is just the largest Floquet exponent
obtained in the previous section. Therefore one expects that the

smaller the exponent, the higher the Tm. We find numerically
that this is indeed the case, as shown in Fig. 11.

The correlation between the largest Floquet exponent and
Tm can be understood in terms of the local stability analysis.
The small perturbations to the uniform oscillation decay q̃ ∼
exp(λ2t) with λ2 < 0 being the largest Floquet exponent. This
is equivalent to the relaxation of a particle in the parabolic
potential ∂t q̃ = −∂V/∂q̃ with V (q̃) = −λ2q̃

2/2. The slope
−λ2 > 0 measures the depth of the potential. Thus it is more
robust against noise for a larger −λ2.

B. Stability phase diagram with noise

Based on the previous analysis, we discuss the stability
phase diagram of the synchronization in the presence of
thermal noise. For a given Cs , when the bias current is
increased, the system approaches the synchronous state, where
the associated Floquet exponent changes from positive to
negative at the stability boundary. If the current increases
further, it reaches the maximal value −β/2. For a sufficient
large current, the system becomes neutral stable according
to Eq. (20). Therefore the critical temperature first increases
and then decreases with the current. The corresponding
stability diagram is shown in Fig. 12(a). Meanwhile, the shunt
capacitance plays a role of coupling strength, so Tm increases
with Cs . Keep in mind that the current at the stability boundary
is the retrapping current. At a given T , the retrapping current
increases with Cs for a small β, while it decreases for a large β.
Based on these observations, we construct the phase diagram
of the coherent oscillations for a given β, which is sketched
in Fig. 12(b). The region enclosed with the green surface
represents a stable synchronization.

To enhance Tm a larger β is helpful since the maximal
Floquet exponent is −β/2. One should also adjust the current
accordingly to ensure that the maximum is reached. For a

FIG. 11. (a1), (b1), and (c1): Dependence of Tm on the bias current, shunt capacitance, and β, respectively. (a2), (b2), and (c2) are the
corresponding largest Floquet exponent. Other parameters used are shown in the figure.
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FIG. 12. (Color online) Possible stability diagram of the uniform
solution (a) at a given Cs , and (b) at a given β. The region inside the
green surface corresponds to stable uniform oscillations.

given operating frequency, one may increase Cs to enhance
the thermal stability, at sacrifice of the oscillating amplitude.

V. DYNAMIC RELAXATION

So far we have concentrated on the stability of the uniform
oscillation, and investigated the dynamics of perturbations
around the uniform state. However, in most applications, the
initial condition cannot be guaranteed as the state of uniform

oscillations. For instance, when we ramp up the current and
bias all junctions in the resistive state, the initial state may be
far away from the uniform state in the phase space. Therefore
it is important to understand how the system approaches the
uniform state. In the present study, we focus on the relaxation
from the disordered state (all junctions oscillate out-of-phase)
into the ordered state (all junctions oscillate uniformly). For
a system whose final ordered state is in equilibrium, this is a
phase-ordering phenomenon. The kinetics of phase ordering
has been extensively studied decades ago in spin systems, and
they can be described by universal scaling behavior.46 However
the relaxation dynamics is not very clear when the final state
is out of equilibrium.

To reach the uniform state, the initial state must be in the
basin of attraction of the uniform state. This can be realized
by operating all junctions at the resistive state. We prepare
the initial state with arbitrary nonzero 〈r〉 � 1. We also give
initial velocity to all junctions; as such the system falls into the
basin of attraction of the uniform state. Let us first consider
dynamical relaxation obtained by computer simulation. We
introduce the distribution of the phase difference between
junctions

P (φ) =
∑
i,j

δ(φ − �ij ) (29)

with �ij = φi − φj . The time evolution of P (φ) is depicted in
Fig. 13. Initially the distribution is flat indicating a disordered
phase. This flat distribution does not change with time too
much at the beginning, but then it suddenly becomes sharp.
Finally it reaches a steady distribution with finite width
depending on the temperature.

A qualitative picture of the relaxation can be obtained based
on the local stability analysis presented in Sec. III. Suppose we
have a small synchronized cluster of junctions with population
Ni and the rest of the junctions oscillate randomly. This small
cluster serves as a seed of the nucleation and delivers energy
into the shunt capacitor, which in turn attracts nearby out-
of-phase oscillators into the cluster. The growth rate of the
synchronized population can be estimated by the local stability
analysis by replacing N with n(t), where n(t) is size of the
cluster at time t . The time evolution of the population of the
cluster follows

n(t + dt) = n(t) exp(−λdt) ≈ n(t)[1 − λ(n)dt], (30)

FIG. 13. (Color online) Time evolution of the distribution of phase difference Eq. (29), starting from completely random state at several
temperatures. Here β = 0.02, IB = 1.5, and Cs = 3/N .
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FIG. 14. (Color online) (a) Dependence of the relaxation time on the system size with different temperatures. Symbols are numerics and
lines are the best fitting. (b) Dependence of the relaxation time on the temperature with the system size of N = 200 and with different shunt
capacitance. (c) Speedup of the relaxation by increasing the shunt capacitance. Here the system size is N = 200 and temperature T = 0.002.
All these results are obtained with β = 0.02 and IB = 0.15.

where dt is a small time step and λ(n) < 0 is the largest
Floquet exponent with cluster size of n. Then the time
required for the system to achieve global synchronization
is

τg = −
∫ N

Ni

dn
1

nλ(n)
. (31)

Several observations are in order. First, the synchronization
time τg increases with the total number of junctions N .
Second, since λ(n) < 0 decreases monotonically with n and
then saturates at −β/2 [see Eq. (20)], the initial relaxation is
slow and it gradually speeds up, in accordance with Fig. 13.
Third, in the presence of thermal fluctuations, thermal noise
may kick oscillators out of the synchronized cluster. Thus the
increase rate is reduced and the relaxation time increases.

To quantify the relaxation process, we define the linear
relaxation function47

A(t) = 〈r(t)〉 − 〈r(∞)〉
〈r(0)〉 − 〈r(∞)〉 . (32)

It starts from unity at t = 0 and decays to 0 in the steady state.
The relaxation time is defined as

τ =
∫ ∞

0
A(t)dt. (33)

For an exponential decay, the definition above is equivalent
to the conventionally defined relaxation time. Two-stage
relaxation for A(t) is found at T = 0. First r increases from 0
to a value close to 1, where the local stability theory applies.
Then the system relaxes into the ordered state exponentially
with the exponent given by the Floquet exponents. Thermal
fluctuations smear the distinction of the two-stage relaxation.
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We numerically calculate A(t) and compute τ . The depen-
dence of τ on the number of junctions N , temperature, and
shunt capacitor is plotted in Fig. 14. τ increases with N as
expected from the qualitative estimate above. Furthermore the
relaxation time follows a power law τ ∼ Nz′

. The exponent
z′(T ) increases with T . τ increases with temperature. At Tm

it diverges and then drops. (The relaxation time above Tm is
not very meaningful because the final state is also disordered.)
Critical behavior is also identified for τ near Tm. On the other
hand, τ decreases with Cs which suggests a practical way to
speed up the relaxation. This can be explained by regarding
Cs as a coupling strength of the system. A larger Cs therefore
increases the rigidity of the uniform solution.

VI. CONCLUSION

In short, we have studied the synchronization of a one-
dimensional array of point Josephson junctions coupled to a
shunt capacitor. In the case of a noise-free system, a stability
phase diagram of the uniform oscillation is constructed.
For strong damping, after the uniform solution becomes
unstable, the system evolves into a partially synchronized
state. When the bias current is reduced below the Josephson
critical current, the system becomes zero voltage. For weak
damping or moderate damping, after the instability of the
uniform solution, the system evolves into the zero-voltage
state. At transition the current is the experimentally measurable
retrapping current. The retrapping current is increased by the
shunt capacitor for weak damping (β � 0.5), while it decreases
for moderate and strong damping (β � 0.5). Thus transport

measurement provides a convenient probe of the underlying
dynamics. Similar results are obtained when a resistor is
serially connected to the shunt capacitor.

In the presence of strong thermal noise, the coherent oscilla-
tion is destroyed through a second-order phase transition. The
critical exponent for the order parameter is 1/2 in accordance
with the mean-field theory. We also find the fluctuations of the
order parameter r showing a maximum at the transition, which
may serve as a convenient quantity to locate the transition
temperature. For a smaller relaxation time in the case of weak
perturbations, the transition temperature is higher. The results
suggest several possible ways to enhance the thermal stability.

The dynamic relaxation from a disordered phase to ordered
state is then investigated. The relaxation time increases with the
system size by a power law. It also increases when the system
approaches the transition temperature from below. One may
speed up the relaxation with a larger shunt capacitance.

Finally, a possible phase diagram of the uniform solution is
proposed when thermal fluctuations are involved. Our results
are of importance for the design of useful superconducting
devices based on Josephson junction arrays.
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14H. B. Wang, S. Guénon, J. Yuan, A. Iishi, S. Arisawa, T. Hatano,
T. Yamashita, D. Koelle, and R. Kleiner, Phys. Rev. Lett. 102,
017006 (2009).
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