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Stability of precessing domain walls in ferromagnetic nanowires
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We show that a recently reported precessing solution of Landau-Lifshitz-Gilbert equations in ferromagnetic
nanowires is stable under small perturbations of the initial data, applied field, and anisotropy constant. Linear
stability is established analytically, while nonlinear stability is verified numerically.
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I. INTRODUCTION

The manipulation and control of magnetic domain walls
(DWs) in ferromagnetic nanowires has recently become a
subject of intense experimental and theoretical research. The
rapidly growing interest in the physics of the DW motion can
be mainly explained by a promising possibility of using DWs
as the basis for next-generation memory and logic devices.1–5

However, in order to realize such devices in practice it is
essential to be able to position individual DWs precisely
along magnetic nanowires. Generally, this can be achieved
by either applying external magnetic field to the nanowire, or
by generating pulses of spin-polarized electric current. The
current study is concerned with the former approach.

Even though the physics of magnetic DW motion under
the influence of external magnetic fields has been studied
for more than half a century,6–9 the current understanding of
the problem is far from complete and many new phenomena
have been discovered only recently.10–14 In particular, a new
regime has been reported13,14 in which rigid profile DWs
travel along a thin, cylindrically symmetric nanowire with their
magnetization orientation precessing around the propagation
axis. In this paper, we address the stability of the propagation
of such precessing DWs with respect to perturbations of the
initial magnetization profile, some anisotropy properties of the
nanowire, and applied magnetic field.

Let m(x) = [cos θ (x), sin θ (x) cos φ(x), sin θ (x) sin φ(x)]
denote the magnetization along a one-dimensional wire. With
easy magnetization axis along x̂ and hard axis along ŷ, the
micromagnetic energy is given by15

E(m) = 1

2

∫ [
Am′2 + K1

(
1 − m2

1

) + K2m
2
2

]
dx

= 1

2

∫
[Aθ ′2 + sin2 θ (Aφ′2 + K1 + K2 cos2 φ)]dx,

(1)

where A is the exchange constant and K1 and K2 are the
anistropy constants. Here and in what follows, integrals are
taken between −∞ and ∞ (for the sake of brevity, the limits
of integration will be omitted).

We consider here the case of uniaxial anisotropy, K2 = 0.
Minimizers of E subject to the boundary conditions

lim
x→±∞ m(x) = ±x̂, (2)

describe optimal profiles for a domain wall separating two
magnetic domains with opposite orientation. The optimal
profiles satisfy the Euler-Lagrange equation

m × H = 0, (3)

where

H = − δE

δm
= Am′′ + K1(m · x̂)x̂ = −e0m + e1n + e2p. (4)

Here, m, n = ∂m/∂θ , and p = m × n form an orthonormal
frame, and the components of H in this frame are given by

e0 = Aθ ′2 + sin2 θ (K1 + Aφ′2),

e1 = Aθ ′′ − 1
2 sin 2θ (K1 + Aφ′2), (5)

e2 = A sin θφ′′ + 2A cos θθ ′φ′.

In terms of these components, the energy (1) (with K2 = 0) is
given by

E(m) = 1

2

∫
e0 dx, (6)

and the Euler-Lagrange equation becomes e1 = e2 = 0.
While the energy E is invariant under translations along

and rotations about the x axis, the optimal profiles cannot
be so invariant (because of the boundary conditions). Instead,
the optimal profiles form a two-parameter family obtained by
applying translations, denoted T (s), and rotations, denoted
R(σ ), to a given optimal profile m∗. We denote the family by
T (s)R(σ )m∗. In polar coordinates, T (s)R(σ )m∗ is given by
φ(x) = σ (the optimal profile lies in a fixed half-plane), and
θ (x) = θ∗[(x − s)/d0], where d0 = √

A/K1 and

θ∗(ξ ) = 2 tan−1(e−ξ ). (7)

It is clear that θ∗(ξ ) satisfies

θ ′
∗ = − sin θ∗, sin θ∗(ξ ) = sech ξ. (8)

The dynamics of the magnetization in the presence of an
applied magnetic field is described by the Landau-Lifschitz-
Gilbert equation,16 which for convenience, we write in the
equivalent Landau-Lifschitz (LL) form:

ṁ = m × (H + Ha) − αm × [m × (H + Ha)]. (9)

Here, α > 0 is the damping parameter, and we take the applied
field to lie along x̂,

Ha = H1(t)x̂. (10)
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In polar coordinates, the LL equation is given by

θ̇ = αe1 − e2 − αH1 sin θ, (11)

sin θφ̇ = e1 + αe2 − H1 sin θ. (12)

The precessing solution is a time-dependent translation
and rotation of an optimal profile, which we write as
T [x0(t)]R[φ0(t)]m∗. The center x0(t) and orientation φ0(t) of
the domain wall for the precessing solution evolve according
to

ẋ0 = −αd0H1, φ̇0 = −H1. (13)

It was shown13,14 that T (x0)R(φ0)m∗ satisfies the LL equation.
It is important to note that the precessing solution is funda-

mentally different from the so-called Walker solution.8 Indeed,
the latter is defined only for K2 > 0 (the fully anisotropic
case) and a time-independent H1 less than the breakdown
field HW = αK2/2. The Walker solution is given by m(x,t) =
[cos θW (x,t), sin θW (x,t) cos φW, sin θW (x,t) sin φW ] with

θW (x,t) = θ∗[γ −1(x − VW t)], (14)

sin 2φW = H1/HW , (15)

and

VW = γ (α + α−1)d0H1 , (16)

γ =
(

K1

K1 + K2 cos2 φW

) 1
2

. (17)

Equations (14)–(17) describe a DW traveling with a con-
stant velocity VW whose magnitude cannot exceed γ (α +
α−1)d0HW ; note that VW does not depend linearly on the
applied field H1. In contrast, the velocity ẋ0 of the precessing
solution is proportional to H1, and can be arbitrarily large.
Also, while for the Walker solution the plane of the DW
remains fixed, for the precessing solution, it rotates about
the nanowire at a rate proportional to H1. Finally, for the
Walker solution, the DW profile contracts (γ < 1) in response
to the applied field, whereas for the precessing solution the
DW profile propagates without distortion.

In this paper, we consider the stability of the precessing
solution. We establish linear stability with respect to pertur-
bations of the initial optimal profile (Sec. II), small hard-axis
anisotropy (Sec. III), and small transverse applied magnetic
field (Sec. IV); specifically, we show, to leading order in the
perturbation parameter, that up to translation and rotation,
the perturbed solution converges to the precessing solution (in
the case of perturbed initial conditions) or stays close to it for
all times (for small hard-axis anisotropy and small transverse
magnetic field). The argument is based on considerations of
energy, and depends on the fact that for all t , the precessing
solution belongs to the family of global minimizers. The
analytic argument establishes only linear stability. Nonlinear
stability is verified numerically for all three cases in Sec. V.
For convenience, we choose units so that A = K1 = 1.

II. PERTURBED INITIAL PROFILE

Let mε(x,t) denote the solution of the LL equation with
initial condition m∗ + εμ, a perturbation of an optimal profile.

Let T [xε(t)]R[φε(t)]m∗ denote the optimal profile that, at time
t , is closest to mε ; that is, the quantity

||mε − T (s)R(σ )m∗||2 =
∫

[mε(x,t) − R(σ )m∗(x − s)]2 dx

(18)

is minimized for s = xε(t) and σ = φε(t). Then the following
conditions must hold∫

mε ·
{
T [xε(t)]R[φε(t)]

∂m∗
∂x

}
dx = 0,

(19)∫
mε · {x̂ × T [xε(t)]R[φε(t)]m∗} dx = 0.

It is clear that xε(t) = x0(t) + O(ε) and φε(t) = φ0(t) + O(ε),
but we shall not explicitly calculate the O(ε) corrections
produced by the perturbation. Rather, our approach is to show
that to leading order O(ε2), ||mε − T (xε)R(φε)m∗||2 decays
to zero with t . This will imply that the precessing solution is
linearly stable under perturbations of initial conditions up to
translations and rotations.

Let θε(x,t) and φε(x,t) denote the spherical coordinates of
mε(x,t). We expand these in an asymptotic series,

θε(x,t) = θ∗[x − xε(t)] + εθ1[x − xε(t),t] + · · · ,
(20)

φε(x,t) = φ∗(t) + εφ1[x − xε(t),t] + · · · ,

where the correction terms θ1(ξ,t), φ1(ξ,t), etc. are expressed
in a reference frame moving with the domain wall. Then to
leading order O(ε2),

||mε − T (xε)R(φε)m∗||2 = ε2
∫

(θ2
1 + sin2 θ∗φ2

1) dξ

= ε2〈θ1|θ1〉 + ε2〈sin θ∗φ1| sin θ∗φ1〉,
(21)

where for later convenience we have introduced Dirac notation,
expressing the integral in Eq. (21) in terms of inner products.
It is straightforward to show that the conditions (19) imply
(using θ ′

∗ = − sin θ∗) that

〈sin θ∗|θ1〉 = 〈sin θ∗| sin θ∗φ1〉 = 0, (22)

which expresses the fact that the perturbations described by θ1

and φ1 are orthogonal to infinitesimal translations (described
by sin θ∗) along and rotations about x̂.

Since the difference between mε and T (xε)R(φε)m∗ is O(ε),
the difference in their energies is O(ε2) [as T (xε)R(φε)m∗
satisfies the Euler-Lagrange equation (3)], and is given to
leading order by the second variation of E about m∗,

�Eε = E(mε) − E[T (xε)R(φε)m∗]

= E(mε) − E(m∗) = ε2

2

∫
f0 dξ, (23)

where f0 = θ ′
1

2 + cos 2θ∗θ2
1 + sin2 θ∗φ′

1
2
.

Using the relations Eq. (8) and performing some integrations
by parts, we can write∫

f0 dξ = 〈θ1|H|θ1〉 + 〈sin θ∗φ1|H| sin θ∗φ1〉, (24)
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where H is the Schrödinger operator −d2/dξ 2 + V (ξ ) with
the potential given by

V (ξ ) = 1 − 2 sech2 ξ. (25)

V (ξ ) is a particular case of the Pöschl-Teller potential, for
which the spectrum of H is known.17 H has two eigen-
states, namely, sin θ∗(ξ ) = sech ξ with eigenvalue λ0 = 0 and
cos θ∗(ξ ) = tanh ξ with eigenvalue λ1 = 1, and its continuous
spectrum is bounded below by λ = 1. This is consistent with
the fact that the optimal profiles are global minimizers of E

[subject to the boundary conditions Eq. (2)], which implies that
the second variation of E about m∗ is positive for variations
transverse to translations and rotations of m∗. It follows that,
for any (smooth) square-integrable function f (ξ ) orthogonal
to sin θ∗, we have

〈f |Hj+1|f 〉 � 〈f |Hj |f 〉 (26)

for j � 0 (we will make use of this for j = 0 and j = 1). In
particular, since θ1 and sin θ∗φ1 are orthogonal to sin θ∗ [cf.
Eq. (22)], it follows that

〈θ1|H|θ1〉 � 〈θ1|θ1〉, (27)

〈sin θ∗φ1|H| sin θ∗φ1〉 � 〈sin θ∗φ1| sin θ∗φ1〉. (28)

Therefore, from the preceding Eqs. (27)–(28) and Eqs. (21)
and (23)–(24), we get, to leading order O(ε2) that

||mε − T (xε)R(φε)m∗||2 � 2�Eε. (29)

Below we show that, to leading order O(ε2), for small
enough H1 (it turns out that |H1| < 1/2 is sufficient), we have
the inequality

d

dt
�Eε � −γ�Eε (30)

for some γ > 0. Taking Eq. (30) as given, it follows from the
Gronwall inequality that

�Eε � 1
2Cε2e−γ t (31)

for some C > 0 (which depends only on the form of the initial
perturbation). From Eq. (29), it follows that

||mε − T (xε)R(φε)m∗||2 � Cε2e−γ t . (32)

The result (32) shows that, to O(ε2), mε converges to an
optimal profile with respect to the L2 norm. In fact, with a small
extension of the argument, we can also show that, to O(ε2),
mε converges to an optimal profile uniformly (that is, with
respect to the L∞ norm). Indeed, making use of the preceding
estimates, one can obtain a bound on ||m′

ε − T (xε)R(φε)m′
∗||,

the L2 norm of the difference in the spatial derivatives of the
perturbed solution and the optimal profile. To O(ε2),

||m′
ε − T (xε)R(φε)m′

∗||2
= ε2(〈θ ′

1|θ ′
1〉 + 〈sin θ∗φ′

1| sin θ∗φ′
1〉 + 〈sin θ∗θ1| sin θ∗θ1〉)

� ε2(3(〈θ1|H|θ1〉 + 〈sin θ∗φ1|H| sin θ∗φ1〉)
� 6ε2�Eε. (33)

Arguing as in Eqs. (29)–(32), we may conclude that ||m′
ε −

T (xε)R(φε)m′
∗|| decays exponentially with t . Thus mε con-

verges to an optimal profile with respect to the Sobolev H 1

norm (where ||f ||2
H 1 = ||f ||2 + ||f ′||2). It is a standard result

that this implies that the convergence is also uniform [again,
to O(ε2)].

It remains to establish Eq. (30). From Eq. (9), we have that
for any solution m(x,t) of the LL equation,

d

dt
E(m) = −

∫
H · ṁ dx

=
∫

(m × H) · Ha dx

−α

∫
(m × H)2 + (m × H) · (m × Ha) dx

= −α

∫ (
e2

1 + e2
2 + H1 sin θe1

)
dx, (34)

where e1 and e2 are given by Eq. (5), and we have used
the fact that the term (m × H) · Ha vanishes on integration.
Substituting the perturbed solution mε into Eq. (34) and noting
that the E[T (xε)R(φε)m∗] = E(m∗) does not vary in time, we
obtain after some straightforward manipulation that

d

dt
�Eε = −αε2[〈θ1|H2|θ1〉

+ 〈sin2 θ∗φ1|H2| sin θ∗φ1〉 + H1F ] (35)

to leading O(ε2), where

F =
∫ (

cos θ∗f0 + cos θ∗ sin2 θ∗θ2
1

)
dξ. (36)

For the first two terms on the right-hand side of Eq. (35), we
have, from Eqs. (26) and (23)–(24),

〈θ1|H2|θ1〉 + 〈sin θ∗φ1|H2| sin θ∗φ1〉
� 〈θ1|H|θ1〉 + 〈sin θ∗φ1|H| sin θ∗φ1〉 = 2

ε2
�Eε. (37)

The term H1F in Eq. (35) is not necessarily positive, as H1

can have arbitrary sign. But for sufficiently small |H1|, it is
smaller in magnitude than the preceding two terms. Indeed,
we have, again using Eqs. (26) and (23)–(24),

|F | �
∫ (|f0| + θ1

2
)
dξ � 2

ε2
�Eε + 〈θ1|θ1〉

� 2

ε2
�Eε + 〈θ1|H|θ1〉 � 4

ε2
�Eε. (38)

Substituting Eqs. (37) and (38) into Eq. (35), we get

d

dt
�Eε � −2α(1 − 2|H1|)�Eε, (39)

from which the required estimate (30) follows for |H1| < 1/2.
It is to be expected that the stability of the precessing

solution depends on the applied field not being too large.
Indeed, it is easily shown that, for H1 > 1 (respectively, H1 <

−1), the static, uniform solution m = −x̂ (respectively, m =
+x̂) becomes linearly unstable. As the precessing solution is
nearly uniform away from the domain wall, one would expect
it to be similarly unstable for |H1| > 1. The numerical results
of Sec. V A bear this out. Finally, we remark that the stability
criterion obtained here, namely, |H1| < 1/2, is certainly not
optimal.

104445-3



GOU, GOUSSEV, ROBBINS, AND SLASTIKOV PHYSICAL REVIEW B 84, 104445 (2011)

III. SMALL HARD-AXIS ANISOTROPY

Next we assume that the hard-axis anisotropy is small
but nonvanishing, taking K2 = ε > 0. Let mε(x,t) denote the
solution of the LL equation with initial condition mε(x,0) =
m∗(x). As above, let T [xε(t)]R[φε(t)]m∗ denote the translated
and rotated optimal profile closest to mε at time t . Adapting
the argument of the preceding section, we show below that, to
leading order O(ε2),

||mε − T (xε)R(φε)m∗||2 � C2ε
2 for all t > 0, (40)

for some constant C2 > 0. In contrast to the preceding result,
Eq. (32), for perturbed initial conditions, here we do not expect
mε to converge to T (xε)R(φε)m∗. Indeed, while an explicit
analytic solution of the LL equation is not available for small
K2 (the Walker solution is valid only for K2 > 2|H1|/α), it
is easily verified that there are no exact solutions of the form
T [xε(t)]R[φε(t)]m∗. The result, Eq. (40), demonstrates that,
through linear order in ε, the solution for K2 = ε remains close
to the precessing solution, up to translation and rotation.

To proceed, let �Eε denote, as above, the difference in
the uniaxial micromagnetic energy, i.e., the energy given by
Eq. (1) with K2 = 0, between mε and T (xε)R(φε)m∗. Then,
as in Eq. (29), we have

||mε − T (xε)R(φε)m∗||2 � 2�Eε. (41)

Since E[T (xε)R(φε)m∗] = E(m∗) is constant in time, we have

d

dt
�Eε = d

dt
E(mε). (42)

The hard-axis anisotropy affects the rate of change of the
uniaxial energy through additional terms in ṁ. Indeed, for any
solution m(x,t) of the LL equation, we have

d

dt
E(m) = d

dt

∣∣∣∣
K2=0

E(m) + G(m), (43)

where d/dt |K2=0E(m) denotes the rate of change when K2 =
0, as given by Eq. (34), and

G(m) = −ε

∫
R

(m · ŷ)[m × H(m)] · ŷ dx

+ εα

∫
[m × H(m)] · (m × ŷ)(m · ŷ) dx. (44)

Taking m = mε , we recall from the preceding section [c.f.
Eq. (30)] that, for |H1| < 1/2,

d

dt

∣∣∣∣
K2=0

E(mε) � −γ�Eε (45)

for some γ > 0. Below we show that there exists constants
C1,γ1 with γ1 < γ such that

|G(mε)| � γ1�Eε + C1ε
2. (46)

Taking Eq. (46) as given and substituting it along with Eq. (45)
into Eqs. (42)–(43), we get that

d

dt
�Eε � −(γ − γ1)�Eε + C1ε

2. (47)

From Gronwall’s equality, it follows that

�Eε � C1

γ − γ1
ε2, (48)

which together with Eq. (41) yields the required result (40).
It remains to show Eq. (46). Substituting the asymptotic ex-

pansion Eq. (20), we obtain after straightforward calculations
that, to leading order O(ε2),

G(mε) = −ε2 cos2 φ∗(t)

×
∫

(sin4 θ∗φ′
1 + 4/3α sin3 θ∗θ ′

1) dξ. (49)

This can be estimated using the elementary inequality

2|ab| � βa2 + b2

β
, (50)

which holds for any β > 0. Indeed, recalling Eqs. (8), (23),
and (27), and using integration by parts where necessary, we
have that∣∣∣∣

∫
sin4 θ∗φ′

1 dξ

∣∣∣∣ � β

2

∫
sin2 θ∗φ′

1
2
dξ + 1

2β

∫
sin6 θ∗ dξ

� β

ε2
�Eε + 8

15β
,

∣∣∣∣
∫

sin3 θ∗θ ′
1 dξ

∣∣∣∣ � β

2

∫
θ ′

1
2
dξ + 1

2β

∫
sin6 θ∗ dξ

� β

ε2
�Eε + 8

15β
. (51)

From Eqs. (49)–(51), it is clear that β, γ1, and C1 can be chosen
so that Eq. (46) is satisfied.

IV. SMALL TRANSVERSE APPLIED FIELD

Suppose the applied magnetic field has a small transverse
component, so that Ha = H1x̂ + H2ŷ, where

H2 = εh2(x) (52)

(h2 depends on x but not t). For simplicity, let K2 = 0. Let
mε(x,t) denote the solution of the LL equation with initial
condition mε(x,0) = m∗(x). As above, let T [xε(t)]R[φε(t)]m∗
denote the translated and rotated optimal profile closest to mε

at time t .
We first note that, unless h2 vanishes as x → ±∞, mε will

not remain close to T [xε(t)]R[φε(t)]m∗. For example, if h2

is constant, then away from the domain wall, mε will relax
to one of the local minimizers of the homogeneous energy
K1(1 − m2

1) − Ha · m, and these do not lie along ±x̂ for H2 	=
0. It follows that ||mε − T [xε(t)]R[φε(t)]m∗|| will diverge
with time.

Physically, this divergence is spurious. It stems from the
fact that we are taking the wire to be of infinite extent. One
way to resolve the issue, of course, would be to take the wire
to be of finite length. However, one would then no longer have
an explicit analytic solution of the LL equation.

Here, we shall take a simpler approach, and assume that the
transverse field h2(x) approaches zero as x approaches ±∞.
In fact, for technical reasons, it will be convenient to assume
that the integral of h2

2 + h′
2

2, i.e., the squared Sobolev norm
||h2||H 1 , is finite. Then without loss of generality, we may
assume

||h2||2H 1 =
∫ (

h2
2 + h′

2
2)

dξ = 1. (53)
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Under this assumption, the main result of this section is that mε

stays close to an optimal profile up to translation and rotation.
That is, for some C1 > 0,

||mε − T (xε)R(φε)m∗||2 � C1ε
2. (54)

The demonstration proceeds as in the preceding section, so
we will discuss only the points at which the present case is
different. The main difference is that, in place of Eq. (49), we
get (by considering the LL equation with H2 	= 0 rather than
K2 	= 0) the following expression for G(mε) to leading order
O(ε2):

G(mε) = ε2

[
α cos φ∗(t)

∫
cos θ∗(θ ′′

1 − cos 2θ∗θ1)h2 dξ

−α sin φ∗(t)
∫

sin θ∗(φ′′
1 − 2 cos θ∗φ′

1)h2 dξ

− sin φ∗(t)
∫

(θ ′′
1 − cos 2θ∗θ1)h2 dξ

− cos φ∗(t)
∫

sin θ∗ cos θ∗(φ′′
1 − 2 cos θ∗φ′

1)h2 dξ

]
.

(55)

After some straightforward manipulations including integra-
tion by parts and making use of the inequality (50), one can
show that∣∣∣∣

∫
cos θ∗(θ ′′

1 − cos 2θ∗θ1)h2 dξ

∣∣∣∣ � β

2
‖θ1‖2

H 1 + 1

2β
,

∣∣∣∣
∫

sin θ∗(φ′′
1 − 2 cos θ∗φ′

1)h2 dξ

∣∣∣∣ � β

2
|| sin θ∗φ′

1||2 + 1

2β
,

∣∣∣∣
∫

(θ ′′
1 − cos 2θ∗θ1)h2 dξ

∣∣∣∣ � β

2
‖θ1‖2

H 1 + 1

2β
,

(56)∣∣∣∣
∫

sin θ∗ cos θ∗(φ′′
1 − 2 cos θ∗φ′

1)h2 dξ

∣∣∣∣
� β

2
|| sin θ∗φ′

1||2 + 1

2β
.

From Eqs. (23), (24), and (27), it follows that∫ (
θ ′

1
2 + sin2 θ∗φ′

1
2)

dξ � 4

ε2
�Eε, (57)

and ∫
θ2

1 dξ � 2

ε2
�Eε. (58)

Substituting Eqs. (56)–(58) into Eq. (55), we get that

|G(mε)| � (1 + α)

(
3β�Eε + 1

β
ε2

)
. (59)

This estimate is of the same form as Eq. (46), and the argument
given there, with β chosen appropriately, establishes Eq. (54).

V. NUMERICAL STUDIES

In the preceding Secs. II–IV we have shown that the
precessing solution is linearly stable; to leading order O(ε),
a perturbed solution either approaches or stays close to the
precessing solution up to a translation and rotation, according
to whether the perturbation is to the initial conditions or to

the anistropy and transverse applied magnetic field in the
LL equation. Here, we present numerical results that verify
nonlinear stability for the precessing solution under small
perturbations. To this end, we investigate the energy, �Eε =
E(mε) − E(m∗), of the numerically computed perturbed DW
mε(x,t) relative to the minimum energy E(m∗) of an optimal
profile, as a function of time t . Throughout, E is taken to be the
uniaxial micromagnetic energy given by Eq. (1) with K2 = 0.
As in the preceding sections, we choose units so that A =
K1 = 1. In these units, E(m∗) = 2. In typical ferromagnetic
microstructures, the value of the Gilbert damping parameter
α is known to lie between 0.04 and 0.22 (see, e.g., Ref. 18
and references within), so we take α = 0.1 throughout our
numerical study.

A. Perturbed initial profile

We first investigate the evolution of a DW mε(x,t) from an
initial perturbation of an optimal profile. We take the initial
condition in polar coordinates to be given by

θε(x,0) = θ∗

(
x

1 + ε1

)
, φε(x) = φ0 + ε2x , (60)

which corresponds to stretching the unperturbed profile along
and twisting it around the axis of the nanowire. The applied
field is directed along the nanowire, Ha = H1x̂, and we take
K2 = 0.

Figure 1 shows the dependence of the relative energy �Eε

on time t for different values of the applied field H1. The figure
presents 13 curves corresponding, from top to bottom, to H1

varying from −1.2 to 0 at the increment of 0.1. With the initial
condition given by Eq. (60), we take ε1 = 0.1 and ε2 = π/50.
Figure 1 clearly indicates that �Eε(t) decays exponentially
for weak applied fields, |H1| � 1/2, in accord with the
analytic result (31). However, for |H1| ∼ 1, deviations from
exponential decay are evident, and the precessing solution
appears to become unstable for |H1| � 1.
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FIG. 1. (Color online) Relative energy �Eε(t) of the perturbed
DW for 13 different values of the applied field H1. See text for
discussion.
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FIG. 2. (Color online) Relative energy �Eε(t) of the perturbed
DW for five different values of the hard-axis anisotropy constant K2.
See text for discussion.

B. Small hard-axis anisotropy

We consider next the evolution of a DW from an optimal
profile at t = 0 when the hard-axis anisotropy K2 is nonvan-
ishing. We fix H1 = −0.5.

Figure 2 shows the dependence of the relative energy �Eε

on time t for different values of K2. The figure presents five
curves corresponding, from top to bottom, to K2 varying
from 0.1 to 0.02 at the decrement of 0.02. (The blue and
red colorings alternate to make adjacent curves more easily
distinguishable.) It is evident that the relative energy remains
small, verifying the linear analysis of Sec. III.

Figure 3 shows the maximum value of the relative energy
�Eε (over the interval 0 � t � 80) as a function of K2.
Red squares represent numerically computed values. The
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FIG. 3. (Color online) Maximum value of the relative energy �Eε

of the perturbed DW as a function of the hard-axis anisotropy K2.
Numerically computed values are represented by (red) squares. The
(black) solid curve is a parabola, max(�Eε) = CKK2

2 with CK =
1.3207, fitted by the method of least squares through the data points
with K2 � 0.04.
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FIG. 4. (Color online) Relative energy �Eε(t) of the perturbed
DW for five different values of the transverse field amplitude H̄2. See
text for discussion.

black solid curve is the parabola CKK2
2 , with CK = 1.3207

fitted by the method of least squares through the data points
with K2 � 0.04. We obtain convincing confirmation of the
leading-order analytical result (48). For larger values of K2,
we see departures from quadratic dependence; for sufficiently
large values of K2 (not shown), the Walker solution was
recovered.

C. Small transverse applied field

Finally, we address the stability of the precessing solution
under an applied magnetic field, Ha = H1x̂ + H2ŷ, with a
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FIG. 5. (Color online) Maximum value of the relative energy �Eε

of the perturbed DW as a function of the amplitude of the transverse
applied field, H̄2. Numerically computed values are represented by
(red) squares. The (black) solid curve is a parabola, max(�Eε) =
CH H̄ 2

2 with CH = 99.6586, fitted by the method of least squares
through the data points with H̄2 � 0.04.
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small transverse component, H2(x). As discussed in Sec. IV,
we want H2(x) to vanish as x → ±∞. Here, we take

H2(x) = H̄2w(x), (61)

where w(x) is equal to one inside the window 0 � x � 20 and
vanishes outside [the argument of Sec. IV is easily modified
to establish the linear stability result (48) in this case]. We
consider the evolution of a DW given at t = 0 by the optimal
profile m∗ centered at x = 0. We take H1 = −0.5, so that in
the absence of the transverse field, the DW velocity is positive
[cf. Eq. (13)] and the DW crosses the window. We take K2 = 0.

Figure 4 shows the dependence of the relative energy
�Eε on time t for different values of the transverse field
amplitude H̄2. The figure presents five curves corresponding,
from top to bottom, to H̄2 varying from 0.1 to 0.02 at the
decrement of 0.02. (The blue and red colorings alternate
to make adjacent curves more easily distinguishable.) The
relative energy �Eε(t) is presented over the time interval
0 � t � 400, which, for small values of H̄2, is sufficient for the
DW to traverse the spatial window 0 � x � 20 [cf. Eq. (13)].
The results confirm that the relative energy of the perturbed
magnetization profile remains small for small values of H̄2, in
accord with the leading-order results of Sec. IV.

Figure 5 shows the maximum value of the relative energy
�Eε (over the interval 0 � t � 400) as a function of H̄2.
Red squares represent numerically computed values. The
black solid curve corresponds to the parabola CHH̄ 2

2 with

CH = 99.6586 fitted by the method of least squares through
the data points with H̄2 � 0.04. The figure provides a
confirmation of the leading-order analytical result of Sec. IV
that the maximum relative energy depends quadratically on H̄2

for small H̄2. Deviations from the parabolic dependence can
be seen for H̄2 � 0.08.

VI. CONCLUSIONS

The precessing solution is a new, recently reported ex-
act solution of the Landau-Lifschitz-Gilbert equation. It
describes the evolution of a magnetic domain wall in a
one-dimensional wire with uniaxial anisotropy subject to a
spatially uniform but time-varying applied magnetic field
along the wire. We have analyzed the stability of the
precessing solution. We have proved linear stability with
respect to small perturbations of the initial conditions as
well as to small hard-axis anisotropy and small transverse
applied fields, provided the applied magnetic field along the
wire is not too large. We have also carried out numerical
calculations that confirm full nonlinear stability under these
perturbations.

Numerical calculations suggest that, for sufficiently large
perturbations and applied longitudinal fields, the precessing
solution becomes unstable, and new stable solutions appear. It
would be interesting to analyze these bifurcations and study
these new regimes for DW motion.
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