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We explicitly calculate the moments tn of general Heisenberg Hamiltonians up to eighth order. They have
the form of finite sums of products of two factors. The first factor is represented by a (multi-)graph that has
to be evaluated for each particular system under consideration. The second factors are well-known universal
polynomials in the variable s(s + 1), where s denotes the individual spin quantum number. From these moments
we determine the corresponding coefficients of the high-temperature expansion of the free energy and the zero
field susceptibility by a new method. These coefficients can be written in a form that makes explicit their
extensive character. Our results represent a general tool to calculate eighth-order high-temperature series for
arbitrary Heisenberg models. The results are applied to concrete systems, namely to magnetic molecules with the
geometry of the icosidodecahedron, to frustrated square lattices, and to the pyrochlore magnets. By comparison
with other methods that have been recently applied to these systems, we find that the typical susceptibility
maximum of the spin-s Heisenberg antiferromagnet is well described by the eighth-order high-temperature
series.
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I. INTRODUCTION

The Heisenberg model

H =
∑
μ<ν

Jμνsμ · sν (1)

is the basic model to describe physical properties of magnetic
insulators. Despite its simplicity the thermodynamics of the
model is generally unknown. For unfrustrated quantum spin
systems the quantum Monte Carlo (QMC) method provides
accurate numerical results for the temperature dependence of
the physical quantities. If the exchange couplings are frustrated
the “sign problem” precludes accurate QMC calculations.1 For
one-dimensional (1D) frustrated systems the density-matrix
renormalization group approach2 yields precise results in
the whole temperature range. For frustrated quantum spin
systems in dimension D > 1 accurate methods to calculate
thermodynamic properties are notoriously rare. Quite reason-
able results for arbitrary temperatures T can be obtained,
e.g., by a second-order Green function technique, see, e.g.,
Refs. 3–5. However, the application of this method needs quite
a lot of technical experience. Hence, a simple but universal
approach is desirable. A well-established method fulfilling
this criterion is the high-temperature expansion (HTE). Since
often experimental results, e.g., for the susceptibility, are
available in a wide temperature range (including temperatures
exceeding the energy scale set by the major exchange constant
J , i.e., for kT � |J |), the HTE can serve as a method to
extract the exchange constants of the Heisenberg model from
experimental data.

For Heisenberg models on the simple two-dimensional (2D)
and three-dimensional (3D) lattices the HTE is available up
to high orders; see Refs. 6 and 7 and references therein.
However, often one is faced with materials where two or
even more different exchange constants are relevant. A typical
example are frustrated quasi-1D or quasi-2D magnets where
except the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) in-chain or in-plane couplings also the interchain or

interplane couplings are important. Typically, for such more
complex exchange geometries the HTE is known only up to
low order. In this situation it would be desirable to have at one’s
disposal explicit formulas of higher-order HTE for general
Heisenberg systems and general spin quantum number s. It
is the aim of the present paper to derive such formulas. The
key notion is given by the the moments Tr Hn of order n,
which can be expressed as sums over suitable sets of graphs.
From the moments one can derive the coefficients of the
HTE for, say, susceptibility or specific heat in a tedious but
straightforward manner. Unfortunately, the number of involved
graphs grows super-exponentially with the order n, which
delimits the maximal order of the HTE for practical purposes.
In this paper, we have confined ourselves to calculations up
to eighth order and have to take account of 1139 relevant
graphs. Nevertheless, this order is sufficient to describe typical
properties of frustrated spin systems, as we will show by means
of examples.

The calculation of the HTE for spin systems has a long
tradition. Since the 1970s it is known that the moments of
certain spin lattices with only one exchange constant can be
written as sums over sets of graphs Gν with two factors. The
first factor was called the “lattice constant” and counts how
often the graph Gν can be embedded into the spin lattice. The
second factor is a universal polynomial pν(r) in the variable
r = s(s + 1). The polynomials pν(r) up to eighth order
together with the corresponding graphs Gν are contained in the
appendix of Ref. 6. We have independently calculated these
polynomials by computer-algebraic means and confirmed a
sample of the data in Ref. 6. The generalization of these results
from simple spin lattices to arbitrary Heisenberg models is
achieved by replacing the above-mentioned “lattice constant”
by an “evaluation” of the graph Gν for the spin system
under consideration. This evaluation involves sums of products
of coupling constants Jμν and yields analytical expressions
for the moments of H and the coefficients of the HTE of
susceptibility and specific heat. It seems that such general
analytical expressions for moments have only be published
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up to order three; see Ref. 8. Those papers that consider
higher-order expansions, see, e.g., Refs. 9–27, are usually
confined to special cases, i.e., special geometries or special
values of s. We have used some of these papers, namely
Refs. 9, 10, and 26 to check our general results.

The paper is organized as follows. In Sec. II we give the
definitions used and illustrate the underlying mathematics. In
Sec. III we present general results of the HTE coefficients
up to fourth order for the moments of the Hamiltonian, the
free energy, and the specific heat, and the magnetic moments
and the susceptibility. The very general expressions up to
eighth order can be found in Supplemental Material 1.28 In
Sec. IV we apply our method to specific Heisenberg models,
which are currently discussed in the literature, namely the
Heisenberg antiferromagnet on the Archimedean icosidodec-
ahedron, frustrated square-lattice Heisenberg model, as well
as the Heisenberg model on the pyrochlore lattice. For these
models the HTE for the specific heat and the susceptibility
up to eighth order for arbitrary spin quantum number s are
collected in the appendices and Supplemental Material 2.29

Although the information provided in this paper and the
supplemental materials28 allows us, in principle, to calculate
the HTE up to eighth order, it might be a tedious task to
do so in practice. Hence, we provide a simple computer
program written in C++ that allows to calculate within a
few seconds the eighth-order HTE coefficients as well as the
Padé approximants for the susceptibility and the specific heat
for an arbitrary Heisenberg model with up to four different
exchange constants.30

II. DEFINITIONS

In this paper we consider systems of N spins with individual
spin quantum number s = 1

2 ,1, 3
2 , . . . . The Heisenberg Hamil-

tonian has the form (1), where the Jμν = Jνμ, 1 � μ �= ν � N

are suitable coupling constants and sμ denotes the spin vector
operator of the μth spin. The moments tn of H will be
normalized by division by the dimension of the total Hilbert
space, i.e., tn ≡ Tr(Hn)

(2s+1)N . Analogously, the magnetic moments

of H are defined by μn = Tr(S(3)2Hn)
(2s+1)N , where S denotes the

total spin vector and S(i), i = 1,2,3, its ith component. As
usual, χ (β) = β

Tr[S(3)2 exp(−βH )]
Tr[exp(−βH )] denotes the normalized zero

field susceptibility. χ (β) = ∑∞
n=1 cnβ

n is its HTE in terms
of the dimensionless inverse temperature β ≡ |J |

k T
, where J

is a typical energy. The Hamiltonian H is understood to be
dimensionless on division by |J |. The free energy F (β) is
defined by −βF (β) = ln(Tr e−βH ) and its HTE is given by
−βF (β) = ∑∞

n=0 anβ
n. From this one derives the normalized

specific heat C(β) ≡ −2β2 ∂F
∂β

− β3 ∂2F
∂β2 and a short calculation

shows that its HTE C(β) = ∑∞
n=2 dnβ

n is related to that of
F (β) by dn = n(n − 1)an for n = 2,3, . . . .

HTE are usually written in a compact way by utilizing
graph-theoretic notations; see, e.g., Refs. 6 and 7. Let G be a
multigraph consisting of g nodes (vertices) and a number of
N (i,j ) = N (j,i) bonds (edges) between the ith and the j th
node. We do not consider “loops,” i.e., N (i,i) = 0 for all i =
1, . . . ,g. The total number of all bonds, γ (G) = ∑

i<j N (i,j ),
will be called the size of G. G is not necessarily connected;

TABLE I. A selection of graphs Gν .

G . . . . . . . . . . . .

1 2 3

5 6 8

9 10 12

14 16 23

27 35 39

see the examples below. We will identify the set of g nodes
with {1,2, . . . ,g} and the set of N spins with {1,2, . . . ,N}.
To simplify the wording we will omit the prefix “multi-”
and simply speak of “graphs” in what follows. A selection
of graphs Gν, ν = 1, . . . , needed for purposes of illustration
is represented in Table I. A complete list of all relevant graphs
up to size 8 can be found in Supplemental Material 1.28

For every graph we define its multinomial factor by

f (G) ≡ γ (G)!∏
i<j N (i,j )!

. (2)

Define the symmetry group G(G) of a graph in the obvious
way

G(G) ≡ {π ∈ Sg|N (i,j ) = N (π (i),π (j ))

for all 1 � i,j � g}. (3)

Here Sg denotes the group of all permutations π :
{1, . . . ,g} −→ {1, . . . ,g}. A localization of a graph G is an
embedding

j : {1, . . . ,g} −→ {1, . . . ,N} (4)

up to symmetries of G. More precisely, two embeddings j1,j2 :
{1, . . . ,g} −→ {1, . . . ,N} are called equivalent if and only if
j1 = j2 ◦ π for some π ∈ G(G), and a localization of G is a
corresponding equivalence class of embeddings. The number
of localizations of G (for given N ) will be denoted by L. We
will also speak of localized graphsG that will be represented by
attaching numbers of different spin sites to the nodes ofG, with
the understanding that two localized graphs that differ only by
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a symmetry permutation of the spin sites are considered as

identical, e.g., 1 2 = 2 1 .
Two localized graphsG1,G2 can be soldered in a natural way

yielding the “soldering product” G1 ⊕ G2, which is another
localized graph. The nodes of G1 ⊕ G2 are identified according
to their numbering and the bonds are correspondingly added.
For example,

1 2 ⊕ 3 2 1 = 1 2 3 (5)

Conversely, we will say that the localized graph G1 ⊕ G2 is
decomposed into G1 and G2. In general, a localized graph can
be decomposed in different ways.

From the expansion

TrHn =
∑

μ1<ν1,...,μn<νn

∏
i

Jμiνi
Tr

(∏
i

sμi · sνi

)
(6)

it is clear that the expressions for the moments tn involve
various products of coupling constants Jμν . The structure of
these products can be represented by the graphs G defined
above, such that the factors J 	

μν correspond to the bonds of G
with multiplicity 	. The sum of different products in (6) of the
same structure will be obtained by an evaluation of G, denoted
by G, for the spin system under consideration. G denotes a real
number which depends on the coupling constants and only
implicitly on the number N of spins. This number will be
defined according to the following statements:

(i) If g > N we set G = 0.
(ii) If g � N we select from each equivalence class of

embeddings a certain representative

j	 : {1, . . . ,g} −→ {1, . . . ,N}, 	 = 1, . . . ,L (7)

and define

G ≡
L∑

	=1

∏
1�i<j�g

(Jj	(i),j	(j ))
N (i,j ). (8)

Obviously, the definition of G does not depend on the choice of
representatives j	 since the product

∏
1�i<j�g (Jj	(i),j	(j ))N (i,j )

is invariant under permutations from the symmetry group π ∈
G(G).

In order to illustrate this definition we consider an ex-
ample of N = 4 spins and G = , hence g = 3 < 4 = N .
The symmetry group G(G) consists of all permutations of
{1,2,3}, hence |G(G)| = 3! = 6. There are 4! embeddings
j : {1,2,3} −→ {1,2,3,4} and L = 4!

3! = 4 equivalence classes
from which we choose the representatives

j1 = (1 → 1, 2 → 2, 3 → 3), (9)

j2 = (1 → 1, 2 → 2, 3 → 4), (10)

j3 = (1 → 1, 2 → 3, 3 → 4), (11)

j4 = (1 → 2, 2 → 3, 3 → 4). (12)

Hence G = J12J23J13 + J23J34J23 + J34J14J13 + J14J12J24.
The coefficients cn of the susceptibility’s HTE (and,

similarly, the an of the free energy HTE) will contain products
of evaluations Gν Gμ. These expressions can be simplified
using rules that transform such products into linear combi-
nations of other evaluations. To give an example, we consider

G1 G2 = = (
∑

μ<ν Jμν) (
∑

κ<λ J 2
κλ). It is obvious that

this product can be written as a sum over evaluations of the
three graphs that can be combined from and ,
namely , , and . In fact,

= +
+ . (13)

Similar expressions can be derived for other products of
evaluations yielding various “product rules” of the form

Gμ Gν =
∑

λ

cλ
μν Gλ. (14)

Here the sum over λ runs through all graphs Gλ whose
localizations are soldering products of localizations of Gμ and
Gν . The integers cλ

μν count the number of ways to decompose a
localization of Gλ into localizations of Gμ and Gν . For example,
the decomposition (5) is unique (up to symmetries), hence
c35

2,6 = 1; cf. Table I. On the other hand,

1

2

3

4

= 2 4 ⊕ 1 4 3 (15)

= 1 4 ⊕ 2 4 3 , (16)

hence c39
2,6 = 2; cf. Table I.

In the case Gμ = Gν we have to define cλ
μν in such a way

that the binomial factor 2 is included for products of different
localizations. For example,

2 = + 2 + 2 . (17)

From the product rules (14) one can derive further ones for
multiple products.

III. RESULTS

A. Moments

It turns out that the moments tn can be written in the
following way:

tn =
∑
ν∈Tn

Gν pν(r). (18)

Here the Gν, ν ∈ Tn, denote certain graphs of size n and the
pν are polynomials of order � n in the variable r = s(s + 1).
Actually, the pν are of the form pν = ∑n

i=g a
(ν)
i r i , where g

denotes the order of Gν and some a
(ν)
i may vanish. The leading

coefficients a(ν)
n determine the classical limit r −→ ∞ of the

moments, hence they can be calculated by means of integrals
over unit spheres.

It is crucial that the polynomials pν depend neither on N nor
on the coupling constants Jμν , whereas the terms Gν depend
only on the coupling constants and only implicitly on N via
(8). The polynomials pν up to eighth order are well known and
have been used for the HTE of certain spin lattices. A subset
of the pν is, for example, listed in Ref. 6 together with certain
rules that permit the calculation of the remaining polynomials.
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The most important rule holds in the case where G is the
disjoint union of two simpler graphs, G = G1

⊎
G2, and reads

p(G) = p(G1) p(G2)
f (G)

f (G1) f (G2)
. (19)

Note that the polynomials in Ref. 6 are defined as our pν

divided by the multinomial factor (2), hence these factors do
not occur in the rule analogous to (19). Other rules, which we
need not repeat here, say that the pν vanish a priori for certain
graphs.

For the determination of tn it thus suffices to enumerate
the graphs Gν, ν ∈ Tn and the corresponding polynomials pν .
We will give the first four moments for the sake of illustration
and defer the lengthy expressions for tn, n = 5,6,7,8 to the
Supplemental Material 1.28

t1 = 0 (20)

t2 =
∑
μ<ν

J 2
μν

1

3
r2 = 1

3
r2 G2, (21)

t3 = −1

6
r2 G5 + 2

3
r3 G8, (22)

t4 = 1

15
r2(2 − 2r + 3r2) G12 + 2

9
r3(−1 + 3r) G14

− 2

9
r3 G16 + 8

9
r4 G23 + 2

3
r4 G27. (23)

B. Free energy

It is well known that the coefficients of the power series for
the free energy F (β)

−βF (β) = ln(Tr e−βH ) =
∞∑

n=0

anβ
n (24)

can be expressed in terms of the moments tn and its products.
As indicated in Sec. II, a variety of product rules can be used to
simplify the resulting expressions. This simplification, which
is sometimes also referred to as the “cumulant expansion,”
see, e.g., Ref. 7, has the further advantage that it reveals the
extensive character of the an. By this we mean the following.
If the spin system under consideration would have a periodic
lattice structure of, say, K unit cells with periodic boundary
conditions, it follows immediately that the evaluation of a
single graph G linearly scales with K , and hence with N , as
long asG is connected. For unconnectedG the evaluation scales
with Kc, where c is the number of connected components of
G. Obviously, products of evaluations of connected graphs
Gν Gμ would scale with K2. It turns out that the elimination
of these and higher products in the expression for the an by
means of the rules (14) also eliminates the evaluation terms
of unconnected graphs. This has to be expected on physical
grounds, since the total free energy of a spin lattice should be
an extensive quantity, i.e., linearly scale with K . But it is an
additional consistency test of our results that the nonextensive
contributions to the an actually cancel.

The first five coefficients of the series (24) read as follows:

a0 = N ln(2s + 1), (25)

a1 = 0, (26)

a2 = 1

6
r2 G2, (27)

a3 = 1

36
r2 G5 − 1

9
r3 G8, (28)

a4 = − 1

180
r2(−1 + r + r2) G12 − 1

108
r3 G14

− 1

108
r3 G16 + 1

27
r4 G23. (29)

The an, n = 5,6,7,8 are given in Supplemental Material 1.28

C. Magnetic moments and susceptibility

To obtain the magnetic moments μn we will adopt a special
method that is available if one knows the moments tn for
all values of the coupling constants Jμν . We replace H by
the one parameter family of Hamiltonians Hα ≡ H + α

2 (S2 −
Nr). Equivalently, we can substitute Jμν 
→ Jμν + α for all
coupling constants. The magnetic moments then result from
differentiating Tr(Hn+1

α ) with respect to α and, finally, setting
α = 0:

∂

∂α
Tr

(
Hn+1

α

)∣∣∣∣
α=0

= n + 1

2
Tr

[
Hn

0 (S2 − Nr)
]

= (n + 1)(2s + 1)N

2
(3μn − Nrtn). (30)

We can calculate the left-hand side of (30) if we insert the
results for the moments and consider “derivatives”G ′ of graphs
defined in the following way. Let G(ij ) denote the graph G but
with one bond removed,N (i,j ) 
→ N (i,j ) − 1. IfN (i,j ) = 0
then we set G(ij ) = 0. Further let G(G) and G(G(ij )) denote the
respective symmetry groups. Then we define

G ′ =
∑
i<j

N (i,j ) G(ij ) |G(G(ij ))|
|G(G)| . (31)

One has, so to speak, to break each bond of the graph
and to sum over all results. Further, one has to introduce
factors that compensate for the possible change of symmetries.
For example G ′

16 = 6G8 + G6, see Table I. It is obvious
that the evaluation of G ′ just yields ∂

∂α
G|α=0. Then it is

a straightforward task to calculate the magnetic moments
μ0, . . . , μ7 by using the above results for the tn. We will
display the results for μn, n = 0,1,2,3 and give the remaining
μn, n = 4,5,6,7 in Supplemental Material 1.28

μ0 = Nr

3
, (32)

μ1 = 2

9
r2 G1, (33)

μ2 = 1

9
r2(Nr − 1)G2 + 4

27
r3 G3, (34)

μ3 = 1

90
r2(8 − (8 + 5N )r + 12r2)G5 + 1

9
r3(−1 + 2r)G6

+ 2

9
r3(−1 + Nr)G8 + 4

27
r4 G9 + 2

9
r4 G10. (35)

The coefficients of the high temperature expansion of χ =
β

Tr[S(3)2 exp(−βH )]
Tr[exp(−βH )] can be expressed through the μn and the tn
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that occur as coefficients of the series in the numerator or in
the denominator, respectively. The first four coefficients are
given by

χ =
∞∑

n=1

cn βn = μ0 β − μ1 β2 + 1

2
(μ2 − μ0 t2)β3

+ 1

6
(t3μ0 + 3t2μ1 − μ3)β4 + . . . . (36)

Inserting the known values for tn and μn yields the desired
results for cn. Similarly as in Sec. III B, a variety of product
rules can be used to simplify the resulting expressions
revealing the extensive character of cn.

We will represent the results for the susceptibility’s HTE
up to fourth order in the inverse temperature β. The higher
coefficients cn, n = 5,6,7,8 will be given in Supplemental
Material 1:28

c1 = Nr

3
, (37)

c2 = −2

9
r2 G1, (38)

c3 = − 1

18
r2 G2 + 2

27
r3 G3, (39)

c4 = 2

135
r2(−1 + r + r2)G5 + 1

54
r3 G6

+ 1

27
r3 G8 − 2

81
r4 G9. (40)

IV. APPLICATION TO FRUSTRATED
HEISENBERG SYSTEMS

To improve the HTE approximation, G. A. Baker has
introduced Padé approximants31 (see also Refs. 6 and 7). These
ratios of two polynomials [m,n] = Pm(x)/Rn(x) of degree m

and n provide an analytic continuation of a function f (x)
given by a power series, and, therefore, they yield a better
approximation of the function f (x). As a rule, approximants
with m = n provide best results. Since we have a power
series up to eighth order, we use the corresponding [4,4] Padé
approximant.

A. The Keplerate magnetic molecules

In the Keplerate molecules Mo72Fe30, Mo72Cr30, Mo72V30,
and W72V30 the magnetic ions sit on the vertices of an almost
perfect icosidodecahedron32–35; see Fig. 1. Moreover, the in-
teractions between the magnetic ions are well described by the
Heisenberg model (1) with NN interactions. These molecules
have attracted much attention from the experiment32–37 and
theory.36–43 One reason is that their frustrated exchange geom-
etry has much in common with the kagome lattice; see, e.g.,
Refs. 44 and 45. For the Mo72V30 and W72V30 molecules the
spin quantum number is s = 1/2, which allows us to calculate
low-energy states exactly by Lanczos exact diagonalization.38

For spin quantum numbers s > 1/2 that is already impossible,
i.e., for Mo72Cr30 (s = 3/2) and Mo72Fe30 (s = 5/2) the
low-energy spectrum can be found only approximately.36,39

To evaluate thermodynamic properties already for s = 1/2 one

FIG. 1. (Color online) The Archimedean solid icosidodecahe-
dron. In the magnetic molecules Mo72Fe30, Mo72Cr30, Mo72V30, and
W72V30 the magnetic ions occupy the vertices (red bullets).

has to use approximations.42,43 Only at high magnetic fields
and low temperatures numerical exact results were reported.41

Very recently a finite-temperature Lanczos approximation
has been used43 to describe the magnetic properties of
W72V30 at finite temperatures, and it has been found that the
theoretical results agree well with the experimental data over
a wide temperature range. However, for frustrated quantum
spin systems with s > 1/2 the calculation of thermodynamic
quantities is even more challenging. Hence our HTE seems to
be useful, in particular, for s > 1/2. The HTE series for the
susceptibility and the specific heat for arbitrary spin quantum
number are given in Eqs. (A1) and (A2) in Appendix A.

We focus on the analysis of the HTE data for the suscepti-
bility, since the high temperature magnetic part of the specific
heat often cannot be accurately separated from the phonon
part. First we compare our s = 1/2 HTE result for χ with
experimental35 and theoretical43 data for W72V30. In Fig. 2 we
show the T χ vs. T curve as done in Refs. 43 and 35. While

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  50  100  150  200  250  300

T
χ (

K
 c

m
3 /m

ol
)

T(K)

HTE
HTE Pade

exp
Lanczos

FIG. 2. (Color online) Susceptibility times temperature in de-
pendence on the temperature. The symbols show the experimental
data for Mo72Cr30 (Ref. 35), the black dashed line represents the
finite-temperature Lanczos result,43 the blue dashed line shows the
pure HTE results, and the red solid line the [4,4] Padé approximant of
the HTE series. For the exchange parameter J and the spectroscopic
splitting factor g we have used the same values as in Refs. 35 and 43,
namely J/k = 115 K and g = 1.95. Note that the Padé approximant
and the finite-temperature Lanczos data in a wide temperature range
practically coincide.
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FIG. 3. (Color online) Results of the HTE-Padé approximant for
the susceptibility times temperature in dependence on the temperature
(arbitrary units) for spin quantum numbers s = 1/2, s = 3/2, and
s = 5/2.

the raw HTE data start to deviate from the experimental ones
at about T = 115K we find an excellent agreement with the
experimental results and the previous theoretical simulations
if we use the [4,4] Padé approximant.

Next we compare in Fig. 3 our results for χ for the spin
quantum numbers s = 1/2, 3/2, 5/2 relevant for Mo72V30,
W72V30, Mo72Cr30, and Mo72Fe30. Again we show T χ vs. T ,
since such a plot is used in many experimental papers; see,
e.g., Refs. 35, 34, and 44. Suggested by Eq. (A1) given in
Appendix A we use a renormalized temperature T/s(s + 1),
i.e., we show the dependence T χ/s(s + 1) vs. T/s(s + 1) in
Fig. 3. Obviously, the curves for different s are very close to
each other. From Eq. (A1) it is obvious that with increasing spin
quantum number s in each order of β = 1/kT the highest order
in r = s(s + 1) yields the dominant contribution, and therefore
the plot T χ/s(s + 1) vs. T/s(s + 1) becomes independent of
s for larger values of s. However, from both Figs. 2 and 3 the
question arises whether the T χ/s(s + 1) vs. T/s(s + 1) plot

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  50  100  150  200  250  300  350  400
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T(K)/s(s+1)

exp. s=1/2 (W72V30)
FT Lanczos s=1/2
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HTE Pade s=3/2
HTE Pade s=5/2

FIG. 4. (Color online) Results of the HTE-Padé approximant
for the susceptibility in dependence on the temperature for the
Keplerate magnetic molecule for spin quantum numbers s = 1/2,
s = 3/2, s = 5/2 compared with experimental data for the s = 1/2
system W72V30

35 (symbols) and finite-temperature Lanczos results
for s = 1/243 (blue dashed line). For the exchange parameter J and
the spectroscopic splitting factor g we have used the same values as
in Refs. 35 and 43, namely J/k = 115 K and g = 1.95.

is appropriate to detect specific features in χ , in particular at
low temperatures. Indeed, the plots in Fig. 4 demonstrate that
the characteristic low-temperature maximum in χ is masked
in the T χ/s(s + 1) vs. T/s(s + 1) plot. The height and the
position of the maximum in χ clearly depend on s. From
Fig. 4 it is obvious that its position is shifted to lower values
of T/s(s + 1) while its height is increasing with growing s.

B. The square-lattice J1- J ′
1- J2- J ′

2 model

Next we consider spin systems on infinite lattices. As an
example, we focus on the frequently discussed square-lattice
Heisenberg magnet with NN couplings J1 and frustrating NNN
bonds J2, the so-called J1-J2 model. This system has attracted
a great deal of interest as a model system to study quantum
phase transitions; see, e.g., the recent publications46–52 and
references therein. The HTE for the spin-1/2J1-J2 model was
presented in Ref. 26.

The interest in this model is also promoted by a number of
experimental investigations on magnetic materials described
reasonably well by the J1-J2 model. However, in real materials,
one is often faced with deviations from the ideal J1-J2 model.
For instance, in layered vanadium phosphates53,54 due to
low crystal symmetry the bonds along the sides and the
diagonals of the square can be nonequivalent. Hence, in a
realistic spin model for these compounds one has to consider
two independent NN and two independent NNN exchange
parameters. Therefore, we consider here a generalized J1-J ′

1-
J2-J ′

2 model

H =
∑

ν

(J1sν · sν+x + J ′
1sν · sν+y

+ J2sν · sν+x+y + J ′
2sν · sν+x−y), (41)

which is more appropriate to provide a realistic description
of frustrated square-lattice materials such as the layered
vanadium phosphates. The exchange pattern of the model (41)
is illustrated in Fig. 5.

Based on our general formulas we get the coefficients of
the high-temperature expansion for the susceptibility and the
specific heat for the generalized model (41); see Appendix B
and Supplemental Material 2.29 These formulas also contain
interesting limits of coupled chain systems55–58 obtained by an
appropriate choice of the coupling constants.

J1

J’1

J2

J’2

FIG. 5. (Color online) Illustration of the exchange paths for the
anisotropic frustrated square-lattice model (41).
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FIG. 6. (Color online) Susceptibility χ of the unfrustrated
Heisenberg antiferromagnet [i.e., J ′

1 = J1 = 1, J ′
2 = J2 = 0 in

Eq. (41)] for spin quantum numbers s = 1/2, s = 1, and s = 5/2. The
data of the pure HTE series and the Padé approximant are compared
with corresponding QMC (taken from Ref. 52) and ED results.

First, we compare in Fig. 6 the HTE data for the suscep-
tibility with accurate QMC data for the pure square lattice
Heisenberg antiferromagnet for s = 1/2, s = 1, and s = 5/2;
see, e.g., Refs. 59, 60, and 52, as well as with numerical exact
data for finite lattices obtained by full exact diagonalization
(ED). Again, we use the renormalized temperature T/s(s + 1)
for the plot; see the discussion in the previous section. The
comparison with precise QMC data allows to estimate that
temperature Ta down to which the HTE approximation for χ is
accurate. We find that the pure HTE in eighth order practically
coincides with QMC data until Ta,1/[J1s(s + 1)] = 1.2, 1.4,
and 2.0 for s = 1/2, s = 1, and s = 5/2, respectively. Using
the [4,4] Padé approximant we find Ta,2/[J1s(s + 1)] = 0.85,
0.75, and 0.95 for s = 1/2, s = 1, and s = 5/2, respectively,
and it is evident from Fig. 6 that the maximum in χ

is described accurately. Even significantly below Ta,2 the
Padé approximant describes the QMC data reasonably well.
Moreover, by comparison with ED data we can figure out
how good typical ED results can describe realistic large
systems in two dimensions. Often, the ED is used as the only

method to discuss the thermodynamics of strongly frustrated
2D quantum spin systems; see, e.g., Refs. 53 and 61–63. The
results shown in Fig. 6 indicate that for 2D systems already
at moderate temperatures and even for s = 1/2 (where largest
systems are accessible by ED) significant finite-size effects
appear and that our HTE results for N → ∞ are better than
typical ED results. A similar finding was reported in Ref. 5
where ED results for χ are compared with data of a Green’s
function approach for a spin-1/2 frustrated square-lattice
ferromagnet.

We consider now the generalized J1-J ′
1-J2-J ′

2 model (41)
relevant for layered vanadium phosphates.53,54 First, we men-
tion that, for the symmetric model (i.e., J1 = J ′

1, J2 = J ′
2), we

give the general formulas for the HTE coefficients for arbitrary
s up to eighth order in Appendix B. For the asymmetric model
for arbitrary s the formulas become very lengthy for higher
orders. Therefore, in Appendix B we present the formulas for
arbitrary s only up to fifth order and give the remaining sixth
to eighth orders in Supplemental Material 2.29 To illustrate
our HTE results we follow the lines of Ref. 53 and discuss
the influence of exchange asymmetry J1 �= J ′

1, J2 �= J ′
2 on the

temperature dependence of the susceptibility, in particular, on
the position and the height of the maximum in χ . This issue
was discussed Ref. 53 based on ED data for N = 16 = 4 × 4
(see Fig. 9 therein). We have repeated these ED calculation
and compare the ED results with the HTE data for N = 16
and N → ∞ in Fig. 7 and in Table II.

Obviously for N = 16 the ED and the corresponding
HTE-Padé data for the maximum in χ agree well. But it is
also obvious, that the finite-size data for the maximum do not
agree well with data for N → ∞. The shift of the maximum
by varying the asymmetry (i.e., the difference in J1 and J ′

1
or/and in J2 and J ′

2) discussed Ref. 53 is not observed (or is at
least much less pronounced) in the HTE results for N → ∞;
cf. Fig. 7 and Table II. Hence we argue again that the
conclusions based on finite-temperature ED data for 2D
systems might be not reliable for large systems.

C. The Heisenberg model on the pyrochlore lattice

As the last example we consider a 3D frustrated spin
system, namely the Heisenberg model on the pyrochlore
lattice. In three dimensions the ED is not applicable to calculate

TABLE II. Position Tm = Tmax/Jc and height χm = χmaxJc/(NAg2μ2
B ) of the susceptibility maximum of the model (41). In the table we

compare the numerical exact ED data for N = 16 (superscript ED), the corresponding HTE-Padé data for N = 16 (superscript HTE16) and
the HTE-Padé data for N = ∞ (superscript HTE∞). The thermodynamic energy scale is defined as Jc =

√
(J 2

1 + J ′2
1 + J 2

2 + J ′2
2 )/2.

J1 J ′
1 J2 J ′

2 T ED
m χED

m T HTE16
m χHTE16

m T HTE∞
m χHTE∞

m

− 1
2 − 1

2 2 0 1.02 0.1214 1.02 0.1214 0.83 0.1290

− 1
2 − 1

2
8
5

2
5 0.99 0.1199 1.01 0.1197 0.81 0.1284

− 1
2 − 1

2
4
3

2
3 1.00 0.1181 1.04 0.1174 0.80 0.1287

− 1
2 − 1

2
8
7

6
7 1.02 0.1170 1.06 0.1159 0.80 0.1291

− 1
2 − 1

2 1 1 1.02 0.1167 1.07 0.1155 0.80 0.1291

− 4
7 − 3

7 1 1 1.03 0.1165 1.08 0.1152 0.80 0.1288

− 2
3 − 1

3 1 1 1.05 0.1154 1.11 0.1141 0.83 0.1276

− 4
5 − 1

5 1 1 1.10 0.1136 1.17 0.1118 0.89 0.1254

−1 0 1 1 1.15 0.1115 1.22 0.1097 0.96 0.1225
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FIG. 7. (Color online) Comparison of ED and HTE-Padé results
for the susceptibility of the frustrated model (41) for spin quantum
number s = 1/2. For the exchange parameters we follow Ref. 53 and
choose J1 = J ′

1 = −1/2 and (J2 + J ′
2)/(J1 + J ′

1) = −2. The thermo-
dynamic energy scale is defined as Jc =

√
(J 2

1 + J ′2
1 + J 2

2 + J ′2
2 )/2.

reasonably well thermodynamic properties. Moreover, typi-
cally there is finite-temperature phase transition that needs
special analysis of the HTE series. The pyrochlore lattice is
highly frustrated and it has attracted much attention over the
past few years; see, e.g., Refs. 64–66 and references therein.
To the best of our knowledge so far no higher-order HTE has
been presented. For the classical limit the thermodynamics
was investigated systematically mainly by classical Monte
Carlo (MC) simulations; see, e.g., Refs. 67, 68, and 69.
Due to strong frustration there is no phase transition to an
ordered low-temperature phase for the pyrochlore Heisenberg
antiferromagnet. For the quantum model no precise data are
available at lower temperatures.

The HTE series for the susceptibility and the specific heat
for arbitrary spin quantum number s are given in Eqs. (C1) and
(C2) in Appendix C. The plots of the Padé approximants for
the Heisenberg antiferromagnet are shown in Fig. 8 for various

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  1  2  3  4  5

χ

 T/s(s+1) 

s=1/2
s=1

s=3/2
s=5/2

s=∞
class. MC

FIG. 8. (Color online) HTE Padé approximant for the suscepti-
bility of pyrochlore Heisenberg antiferromagnet for s = 1/2, 1, 3/2,
5/2, and s → ∞. The MC data for s → ∞ are taken from Refs. 68
and 69.

values of s. For the classical model (s → ∞) we compare
our HTE data with MC data calculated in Ref. 68; see also
Ref. 69. Surprisingly, there is excellent agreement with the MC
data down to temperatures that are considerably below |J |/k.
In particular, the fact that there is no maximum in the χ (T )
curve is observed both in MC and HTE results. Lowering the
quantum number s, i.e., increasing the quantum fluctuations a
low-temperature maximum in χ (T ) emerges. The height χm

of the maximum decreases, whereas the position Tm/s(s + 1)
increases with decreasing of s.

V. CONCLUSIONS

In this paper we provide general expressions for the high-
temperature expansion series up to the eighth order of free
energy, the specific heat, and the susceptibility for Heisenberg
models with arbitrary exchange patterns Jμν and spin quantum
number s. These formulas can be used as a tool to investigate
thermodynamic properties of general Heisenberg systems and
thus for the interpretation of experimental data, especially
if other precise methods, such as the quantum Monte Carlo
method or the finite-temperature density matrix renormaliza-
tion group approach, are not applicable. By comparison with
precise quantum Monte Carlo results for the susceptibility
χ of the unfrustrated 2D Heisenberg antiferromagnet with
NN exchange J with s = 1/2, s = 1,. . ., s = 5/2 we find
that the HTE results yield the correct susceptibility at high
temperatures down up to T/s(s + 1) ≈ |J |/k. Using Padé
approximants the accuracy can be extended to lower tem-
peratures. In particular, the typical maximum in χ for the
Heisenberg antiferromagnet can be well described using the
HTE of eighth order.

We apply our method to frustrated systems, namely to
frustrated Keplerate magnetic molecules, to a frustrated
square-lattice Heisenberg magnet, and to a pyrochlore Heisen-
berg magnet. By comparison with finite-size data for the
unfrustrated as well as the frustrated square-lattice Heisenberg
model obtained by full exact diagonalization we find that the
size of 2D systems accessible by full exact diagonalization
seems to be too small to get precise data for the susceptibility
maximum. The comparison with Monte Carlo data for the clas-
sical pyrochlore Heisenberg antiferromagnet yields excellent
agreement down to low temperatures.
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APPENDIX A: THE HIGH-TEMPERATURE EXPANSION
FOR THE SUSCEPTIBILITY AND THE SPECIFIC HEAT

FOR THE HEISENBERG MODEL ON THE
ICOSIDODECAHEDRON WITH NEAREST-NEIGHBOR

EXCHANGE INTERACTION

The general formulas for the susceptibility and the specific
heat for the Heisenberg model on the icosidodecahedron
with the NN exchange constant J up to eighth order
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read

χ (β) = N

J

∞∑
n=1

cn(Jβ)n; r = s(s + 1)

c1 = 1

3
r; c2 = −4

9
r2; c3 = 1

9
r2(4 r − 1); c4 = − 4

405
r2(3 − 28 r + 37 r2)

c5 = r2

4860
(−45 + 702 r − 1892 r2 + 1328 r3)

(A1)

c6 = − r2

510 300
(1728 − 35 946 r + 164 289 r2 − 209 296 r3 + 99 776 r4)

c7 = r2

2 041 200
(−2898 + 72 972 r − 467 127 r2 + 967 124 r3 − 765 536 r4 + 259 008 r5)

c8 = − r2

11 481 750
(7695 − 223 128 r + 1 769 382 r2 − 5 284 101 r3 + 6 231 056 r4 − 3 632 860 r5 + 745 760 r6)

and

C(β) = Nk

∞∑
n=2

dn(Jβ)n

d2 = 2

3
r2; d3 = r2

9
(3 − 4 r); d4 = − 2

45
r2(−3 + 23 r + 3 r2)

d5 = r2

162
(9 − 126 r + 116 r2 + 32 r3)

(A2)

d6 = r2

22 680
(576 − 11 142 r + 34 323 r2 + 5088 r3 + 3952 r4)

d7 = − r2

97 200
(−1242 + 29 556 r − 150 039 r2 + 100 736 r3 + 32 624 r4 + 25 472 r5)

d8 = − r2

1 093 500
(−7695 + 213 084 r − 1 435 806 r2 + 2 566 548 r3 + 214 682 r4 + 473 600 r5 + 82 120 r6).

APPENDIX B: THE HIGH-TEMPERATURE EXPANSION
FOR THE SUSCEPTIBILITY AND THE SPECIFIC HEAT

FOR THE SQUARE-LATTICE J1- J ′
1- J2- J ′

2 MODEL

Here we list the general formulas for the susceptibility
and the specific heat for the J1-J ′

1-J2-J ′
2 model defined in

Eq. (41). Since the corresponding formulas become very
lengthy in higher orders of the HTE, we restrict ourselves here
to (i) general formulas for the symmetric model (J1 = J ′

1 and

J2 = J ′
2) for arbitrary spin quantum number s up to eighth

order and (ii) general formulas for the asymmetric model (J1 �=
J ′

1 and J2 �= J ′
2) for arbitrary s up to fifth order, only (for the

remaining sixth- to eighth-order coefficients, see Supplemental
Material 229). Note that for the symmetric models with
s = 1/2 the HTE coefficients up to 10th order are given in
Ref. 26.

First we give the formulas for the symmetric model:

χ (β) = N

∞∑
n=1

cnβ
n; r = s(s + 1)

c1 = r

3
; c2 = −4

9
r2(J1 + J2); c3 = 1

27
r2

[
3J 2

1 (−1 + 4r) + 32J1J2r + 3J 2
2 (−1 + 4r)

]
c4 = − 2

405
r2

[
3J 3

1 (2 − 17r + 28r2) + 10J 2
1 J2r(−9 + 34r) + 20J1J

2
2 r(−3 + 20r) + 3J 3

2 (2 − 17r + 28r2)
]

c5 = 1

4860
r2

[
J 4

1 (−45 + 648r − 1808r2 + 1712r3) + 120J 3
1 J2r(5 − 54r + 80r2) + 12J 2

1 J 2
2 r(69 − 574r + 1536r2)

+ 192J1J
3
2 r(2 − 27r + 68r2) + J 4

2 (−45 + 648r − 1808r2 + 1712r3)
]
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c6 = − 1

127 575
r2

[
2J 5

1 (216 − 4131r + 18 339r2 − 28 710r3 + 18 100r4) + 21J 4
1 J2r(−279 + 4801r − 14 048r2 + 12 368r3)

+ 14J 3
1 J 2

2 r(−477 + 7158r − 40 044r2 + 49 864r3) + 35J 2
1 J 3

2 r(−216 + 3261r − 13 504r2 + 24 240r3)

+ 350J1J
4
2 r(−9 + 186r − 832r2 + 1168r3) + 2J 5

2 (216 − 4131r + 18 339r2 − 28 710r3 + 18 100r4)
]

c7 = 1

3 061 800
r2

[
J 6

1 (−4347 + 99 738r − 623 943r2 + 1 392 666r3 − 1 440 944r4 + 673 152r5)

+ 28J 5
1 J2r(2133 − 44 406r + 223 896r2 − 351 328r3 + 209 664r4)

+ 42J 4
1 J 2

2 r(1620 − 35 649r + 248 050r2 − 618 992r3 + 485 984r4)

+ 28J 3
1 J 3

2 r(2061 − 46 134r + 389 520r2 − 1 234 240r3 + 1 254 912r4)

+ 2J 2
1 J 4

2 r(36 936 − 789 687r + 4 517 328r2 − 12 128 272r3 + 15 232 512r4)

+ 64J1J
5
2 r(432 − 11 097r + 75 108r2 − 181 180r3 + 166 680r4)

+ J 6
2 (−4347 + 99 738r − 623 943r2 + 1 392 666r3 − 1 440 944r4 + 673 152r5)

]

c8 = − 1

91 854 000
r2

[
3J 7

1 (20 520 − 536 112r + 4 174 761r2 − 12 734 370r3 + 18 166 056r4

− 13 785 984r5 + 5 028 608r6) + 8J 6
1 J2r(−108 459 + 2 561 472r − 17 865 060r2 + 42 056 212r3

− 43 723 408r4 + 19 466 016r5) + 8J 5
1 J 2

2 r(−120 123 + 3 081 636r − 26 591 049r2

+ 104 756 322r3 − 150 488 432r4 + 82 730 944r5) + 4J 4
1 J 3

2 r(−205 416 + 6 235 740r

− 66 481 989r2 + 275 607 666r3 − 543 091 408r4 + 372 472 256r5) + 2J 3
1 J 4

2 r(−364 932

+ 10 618 461r − 111 258 000r2 + 530 418 656r3 − 1 116 577 664r4 + 926 078 848r5)

+ 20J 2
1 J 5

2 r(−51 678 + 1 313 703r − 10 031 442r2 + 34 441 608r3 − 66 122 048r4

+ 61 121 472r5) + 80J1J
6
2 r(−4347 + 127 044r − 1 130 751r2 + 3 894 570r3 − 6 116 240r4

+ 4 059 904r5) + 3J 7
2 (20 520 − 536 112r + 4 174 761r2 − 12 734 370r3 + 18 166 056r4

− 13 785 984r5 + 5 028 608r6)
]

(B1)

and

C(β) = Nk

∞∑
n=2

dnβ
n

d2 = 2

3

(
J 2

1 + J 2
2

)
r2; d3 = 1

3
r2

(
J 3

1 − 8J 2
1 J2r + J 3

2

)
d4 = 2

45
r2

[
J 4

1 (3 − 18r + 7r2) − 20J 3
1 J2r + 50J 2

1 J 2
2 r(−1 + 2r) + J 4

2 (3 − 18r + 7r2)
]

d5 = 1

162
r2

[
J 5

1 (9 − 108r + 28r2) − 8J 4
1 J2r(9 − 104r + 16r2) + 40J 3

1 J 2
2 r(−3 + 5r)

− 4J 2
1 J 3

2 r(39 − 274r + 256r2) + J 5
2 (9 − 108r + 28r2)

]

d6 = − 1

22 680
r2

[
J 6

1 (−576 + 9756r − 23 739r2 + 12 160r3 + 640r4) + 560J 5
1 J2r(9 − 135r + 16r2)

− 28J 4
1 J 2

2 r(−297 + 4023r − 12904r2 + 824r3) + 280J 3
1 J 3

2 r(24 − 153r + 128r2)

− 70J 2
1 J 4

2 r(−144 + 2139r − 3872r2 + 2400r3) + J 6
2 (−576 + 9756r − 23 739r2 + 12 160r3 + 640r4)

]

d7 = 1

97 200
r2[J 7

1 (1242 − 25 920r + 116 211r2 − 58 432r3 − 1920r4) + 8J 6
1 J2r(−1503 + 28 233r

− 99 398r2 + 31 296r3 + 3616r4) + 28J 5
1 J 2

2 r(−639 + 11 076r − 31 508r2 + 1648r3)

+ 56J 4
1 J 3

2 r(−279 + 5943r − 42 779r2 + 59 100r3 + 64r4) + 42J 3
1 J 4

2 r(−306 + 4361r − 7144r2 + 4000r3)

− 4J 2
1 J 5

2 r(5472 − 110 007r + 401 658r2 − 434 720r3 + 186 560r4)

+ J 7
2 (1242 − 25 920r + 116 211r2 − 58 432r3 − 1920r4)

]
104443-10



EIGHTH-ORDER HIGH-TEMPERATURE EXPANSION FOR . . . PHYSICAL REVIEW B 84, 104443 (2011)

d8 = 1

1093 500
r2

[
J 8

1 (7695 − 185 976r + 1 160 352r2 − 1 811 898r3 + 889 724r4 + 20 256r5

− 27 512r6) + 8J 7
1 J2r(−10 044 + 212 661r − 1 119 348r2 + 371 668r3 + 27 120r4)

− 2J 6
1 J 2

2 r(57 672 − 1 256 355r + 7 596 708r2 − 19 368 452r3 + 3 177 376r4 + 819 808r5)

+ 20J 5
1 J 3

2 r(−4536 + 111 771r − 777 870r2 + 988 176r3 + 896r4) − 2J 4
1 J 4

2 r(44 874

− 1 369 062r + 13 508 715r2 − 39 201 672r3 + 31 536 928r4 + 2 049 424r5) − 20J 3
1 J 5

2 r(3618

− 69 579r + 233 613r2 − 237 744r3 + 93 280r4) + 10J 2
1 J 6

2 r(−13 662 + 325 665r − 1 954 599r2

+ 3 232 376r3 − 2 405 088r4 + 818 624r5) + J 8
2 (7695 − 185 976r + 1 160 352r2 − 1 811 898r3

+ 889 724r4 + 20 256r5 − 27 512r6)
]
. (B2)

Next we give the formulas for the asymmetric model (up to fifth order). For the susceptibility χ we find

χ (β) = N

∞∑
n=1

cnβ
n; r = s(s + 1)

c1 = r

3
; c2 = −2

9
(J ′

1 + J1 + J ′
2 + J2)r2;

c3 = 1

54
r2{ − 3

(
J ′2

1 + J 2
1 + J ′2

2 + J 2
2

) + 4
[
J ′2

1 + J 2
1 + J ′2

2 + 4J ′
2J2 + J 2

2 + 4J1(J ′
2 + J2) + 4J ′

1(J1 + J ′
2 + J2)

]
r
}
;

c4 = 1

405
r2

{ − 6
(
J ′3

1 + J 3
1 + J ′3

2 + J 3
2

) + 3
{
7J ′3

1 + 7J 3
1 + 10J 2

1 (J ′
2 + J2)

+ 10J ′2
1 (J1 + J ′

2 + J2) + 10J1
(
J ′2

2 + J 2
2

) + (J ′
2 + J2)

(
7J ′2

2 + 3J ′
2J2 + 7J 2

2

)
+ 10J ′

1

[
J 2

1 + J ′2
2 + J 2

2 + J1(J ′
2 + J2)

]}
r − 4

[
J ′3

1 + J 3
1 + 20J 2

1 (J ′
2 + J2)

+ 20J ′2
1 (J1 + J ′

2 + J2) + 20J1
(
J ′2

2 + 3J ′
2J2 + J 2

2

) + (J ′
2 + J2)

(
J ′2

2 + 19J ′
2J2 + J 2

2

)
+ 5J ′

1

[
4J 2

1 + 9J1(J ′
2 + J2) + 4

(
J ′2

2 + 3J ′
2J2 + J 2

2

)]]
r2

}
;

c5 = 1

9720
r2{ − 45

(
J 4

1 + J ′4
2 + J 4

2

) + 192J ′3
1 (J1 + J ′

2 + J2)r(1 − 6r + 4r2)

+ 12J ′
1r

[
16J 3

1 + 9J 2
1 J ′

2 + 9J1J
′2
2 + 16J ′3

2 + 9J 2
1 J2 + 9J1J

2
2 + 16J 3

2

− 2
(
48J 3

1 + 87J 2
1 (J ′

2 + J2) + 12(J ′
2 + J2)

(
4J ′2

2 + J ′
2J2 + 4J 2

2

) + J1
(
87J ′2

2 + 80J ′
2J2 + 87J 2

2

))
r

+ 16(J1 + J ′
2 + J2)

[
4J 2

1 + 4J ′2
2 + 26J ′

2J2 + 4J 2
2 + 17J1(J ′

2 + J2)
]
r2]

− J ′4
1 [45 + 4r(−69 + 4r(11 + r))] + 12J ′2

1 r
{
30

(
J ′2

2 + J 2
2

) − 80(J ′
2 + J2)2r + 80(2J ′

2 + J2)(J ′
2 + 2J2)r2

+ 10J 2
1 [3 + 8r(−1 + 2r)] + 3J1(J ′

2 + J2)[3 + 2r(−29 + 56r)]
} + 4r

{
48J ′3

2 J2(1 − 6r + 4r2)

+ 48J ′
2J

3
2 (1 − 6r + 4r2) + 48J 3

1 (J ′
2 + J2)(1 − 6r + 4r2) + 30J 2

1

[
3
(
J ′2

2 + J 2
2

)
− 8(J ′

2 + J2)2r + 8(2J ′
2 + J2)(J ′

2 + 2J2)r2
] + J 4

1 [69 − 4r(11 + r)]

+ J ′4
2 [69 − 4r(11 + r)] + J 4

2 [69 − 4r(11 + r)] + 30J ′2
2 J 2

2 [3 + 8r(−1 + 2r)]

+ 24J1(J ′
2 + J2)

(
2J ′2

2 (1 − 6r + 4r2) + 2J 2
2 (1 − 6r + 4r2) + J ′

2J2(−2 + r(−3 + 52r))
)}}

. (B3)

For the specific heat C we have

C(β) = Nk

∞∑
n=2

dnβ
n

d2 = 1

3
r2

(
J ′2

1 + J 2
1 + J ′2

2 + J 2
2

)
d3 = 1

6
r2

[
J ′3

1 + J 3
1 + J ′3

2 + J 3
2 − 8J ′

1J1(J ′
2 + J2)r

]
d4 = 1

45
r2{3

(
J ′4

1 + J 4
1 + J ′4

2 + J 4
2

) − 2
[
4J ′4

1 + 2
(
2J 4

1 + 5J 2
1 J ′2

2 + 2J ′4
2 + 5

(
J 2

1 + J ′2
2

)
J 2

2 + 2J 4
2

)

+ 5J ′
1J1

(
J ′2

2 + J 2
2 + J1(J ′

2 + J2)
) + 5J ′2

1

(
2J 2

1 + J1(J ′
2 + J2) + 2

(
J ′2

2 + J 2
2

))]
r

+ [ − 3J ′4
1 − 3J 4

1 − 3J ′4
2 + 20J ′2

2 J 2
2 − 3J 4

2 + 20J 2
1

(
J ′2

2 + 3J ′
2J2 + J 2

2

) + 20J ′2
1

(
J 2

1 + J ′2
2 + 3J ′

2J2 + J 2
2

)]
r2

}
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d5 = 1

324
r2

{
9
(
J ′5

1 + J 5
1 + J ′5

2 + J 5
2

) − 12
[
4J ′5

1 + 4J 5
1 + 5J 3

1

(
J ′2

2 + J 2
2

) + (J ′
2 + J2)

(
2J ′2

2 − J ′
2J2 + 2J 2

2

)2

+ 5J 2
1

(
J ′3

2 + J 3
2

) + 5J ′2
1

(
J 3

1 + J ′3
2 + J 3

2

) + 3J ′
1J1

(
J ′3

2 + J 3
2 + J 2

1 (J ′
2 + J2)

)
+J ′3

1

(
5J 2

1 + 3J1(J ′
2 + J2) + 5

(
J ′2

2 + J 2
2

))]
r + 4

[ − 3J ′5
1 − 3J 5

1 − 3J ′5
2 + 10J ′3

2 J 2
2 + 10J ′2

2 J 3
2 − 3J 5

2

+ 10J 3
1

(
J ′2

2 + 3J ′
2J2 + J 2

2

) + 5J 2
1 (J ′

2 + J2)
(
2J ′2

2 + J ′
2J2 + 2J 2

2

) + 8J ′
1J1(J ′

2 + J2)
(
13

(
J 2

1 + J ′2
2

)
+ 2J ′

2J2 + 13J 2
2

) + 2J ′3
1

(
5J 2

1 + 52J1(J ′
2 + J2) + 5

(
J ′2

2 + 3J ′
2J2 + J 2

2

))
+ 5J ′2

1

(
2J 3

1 + (J ′
2 + J2)

(
2J ′2

2 + J ′
2J2 + 2J 2

2

))]
r2 − 64J ′

1J1(J ′
2 + J2)

(
J ′2

1 + J 2
1 + J ′2

2 + 14J ′
2J2 + J 2

2

)
r3}.

(B4)

APPENDIX C: THE HIGH-TEMPERATURE EXPANSION FOR THE SUSCEPTIBILITY AND THE SPECIFIC HEAT FOR THE
HEISENBERG MODEL ON THE PYROCHLORE LATTICE

The general formulas for the susceptibility and the specific heat for the Heisenberg model on the pyrochlore lattice with NN
exchange constant J up to eighth order read for the susceptibility as follows:

χ (β) = N

J

∞∑
n=1

cn(Jβ)n

c1 = r

3
; c2 = −2r2

3
; c3 = 1

18
r2(−3 + 20r)

c4 = − 1

135
r2(6 − 91r + 224r2)

c5 = 1

1080
r2(−15 + 376r − 1816r2 + 2544r3) (C1)

c6 = − 1

14 175
r2(72 − 2406r + 18 909r2 − 47 188r3 + 46 848r4)

c7 = 1

2 041 200
r2(−4347 + 17 6346r − 1 901 709r2 + 7 300 134r3 − 1 1982 944r4 + 9 482 624r5)

c8 =− 1

61 236 000
r2(61 560−2 887 056r + 38 320 749r2− 202 461 642r3+ 477 409 712r4− 601 876 480r5 + 399 408 640r6)

and for the specific heat

C(β) = Nk

∞∑
n=2

dn(Jβ)n

d2 = r2; d3 = 1

6
r2(3 − 8r); d4 = 1

15
r2(3 − 38r + 7r2)

d5 = 1

36
r2(3 − 68r + 148r2 + 32r3)

(C2)

d6 = − 1

45 360
r2(−1728 + 53 964r − 301 671r2 + 102 672r3 + 56 128r4)

d7 = − 1

64 800
r2(−1242 + 47 808r − 418 437r2 + 728 520r3 + 178 240r4 + 13 312r5)

d8 = 1

729 000
r2(7695 − 345 816r + 3 954 204r2 − 13 638 312r3 + 5 728 812r4 + 4 024 640r5 + 1 856 680r6).
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