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We develop anisotropic pseudo-spin antiferromagnetic Heisenberg models for monoclinically distorted double
perovskites. We focus on these A2BB′O6 materials that have magnetic moments on the 4d or 5d transition metal
B′ ions, which form a face-centered cubic lattice. In these models, we consider local z-axis distortion of B′-O
octahedra, affecting relative occupancy of t2g orbitals, along with geometric effects of the monoclinic distortion
and spin-orbit coupling. The resulting pseudo-spin-1/2 models are solved in the saddle-point limit of the Sp(N )
generalization of the Heisenberg model. The spin S in the SU(2) case generalizes as a parameter κ controlling
quantum fluctuation in the Sp(N ) case. We consider two different models that may be appropriate for these
systems. In particular, using Heisenberg exchange parameters for La2LiMoO6 from a spin-dimer calculation, we
conclude that this pseudo-spin-1/2 system may order, but will be very close to a disordered spin liquid state.
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I. INTRODUCTION

Geometrically frustrated magnets have been of great recent
interest, and are a common starting point in search of exotic
ground states.1,2 One class of such frustrated antiferromagnets
is found in the double perovskite oxides, which host a
wide range of interesting behavior.3–8 These compounds of
chemical formula A2BB′O6 feature ordered, interpenetrating
face-centered cubic (fcc) lattices of the B and B′ ions when the
charge difference between these ions is large.9 Both B and B′

transition metal ions are octahedrally coordinated by oxygen.
A geometrically frustrated fcc lattice is obtained when only
the B′ ions are magnetic.

A conventional picture of isotropic antiferromagnetic su-
perexchange is insufficient for these materials. Altering this
picture are two important effects considered in our work. The
first effect is spin-orbit coupling, which is relevant for the
4d and 5d transition metal ions that comprise the magnetic
sites. Spin-orbit coupling has been seen to lead to increased
correlation effects, particularly in materials containing 5d Ir
ions. This is responsible for topological insulating behavior,10

particularly in the pyrochlore iridates,11–16 the Mott insulator
ground state of Sr2IrO4,17–23 and the potential spin-liquid
ground state of Na4Ir3O8

24–32 and honeycomb compounds
A2IrO3.33 Octahedral crystal fields favor the t2g d orbitals,
which have an effective orbital angular momentum Leff = 1,
up to a sign difference. Combined with S = 1/2 spin angular
momentum, the pseudo-total angular momentum states of
Jeff = 1/2 and Jeff = 3/2 result. In this case, the quadruplet of
Jeff = 3/2 states form a lower energy manifold than the other
two states of Jeff = 1/2.34 The second effect is geometrical dis-
tortion from the cubic case; monoclinic distortion is commonly
seen in double perovskites.9 Lowered symmetry from the
monoclinic distortion will spoil the exchange isotropy directly,
and introduce new exchange pathways. One particularly
important result is the local z-axis compression or expansion of
the B′-O octahedra, which we refer to as a tetragonal distortion
of these octahedra. While the octahedral crystal field favors the
t2g orbitals over the eg ones, the tetragonal distortion will split

the t2g levels. In the case of a local z-axis compression, the dxy

orbital is favored to be occupied, while an expansion favors the
dxz and dyz. All of these effects will generate the anisotropic
interactions that form the focus of our models.

The role of spin-orbit coupling in the undistorted cubic
double perovskites has been carefully considered by Chen
et al. for materials of d1 electronic configuration.34 In this
work we focus on the 4d1 and 5d1 monoclinically distorted
double perovskites, and consider the quantum pseudo-spin-
1/2 models that result, as explained in the main body of the
paper. We are particularly interested in the case of a local
B′-O z-axis compression, where orbital degeneracy is absent.
La2LiMoO6 is a candidate for such a material, while the
otherwise isostructural Sr2CaReO6 features instead a z-axis
expansion of the octahedra. La2LiMoO6 shows no magnetic
ordering down to 2 K from either heat capacity or neu-
tron diffraction; however, μSR measurements show evidence
of short-range correlations developing below 20 K.36 The
Curie-Weiss temperature is negative, θC = −45 K, indicating
predominant antiferromagnetic superexchange. In contrast,
Sr2CaReO6 shows spin-freezing behavior below 14 K.37

In the present work, we use the Sp(N ) generalization
of Heisenberg models to describe these systems.38–40 This
generalization provides a unifying framework to study the
effect of spin magnitude, from semiclassical ordering at “large
spin” to possible spin liquid phases for “small spin.”

The ability to capture large-spin magnetic order may help
to describe the higher-spin analogs of d1 double perovskites.
In particular, the “spin-3/2” analog of La2LiMoO6 is the
isostructural La2LiRuO6, whose 4d3 configuration occupies
all three t2g orbitals. Since the effective magnetic moment
is close to the spin-3/2-only moment, there is only slight
renormalization due to spin-orbit coupling, and intra-orbital
Coulomb repulsion is the dominant effect in determining
orbital occupancy. We model this material with a spin-3/2
Heisenberg model, given the lack of orbital degeneracy,
providing a test for Sp(N )-predicted ordering at spin larger
than 1/2. In fact, La2LiRuO6 shows type I antiferromagnetic
ordering below 30 K,41 where spins are aligned on each
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FIG. 1. (Color online) Magnetic ordering (type I antiferromag-
netic) of the spin-3/2 Ru in La2LiRuO6 (blue, with arrows).41

Also shown are the nonmagnetic Li (light green) atoms, and two
of the Ru-O (purple) octahedra, showing the effects of monoclinic
distortion.

x-y plane but antiparallel on the x-z and y-z planes, as
seen in Fig. 1. This is consistent with the results in the
semiclassical (large spin) limit of our Sp(N ) model. In contrast,
an appropriate pseudo-spin-1/2 anisotropic Heisenberg model
for La2LiMoO6 leads to the conclusion that this system must
be very close to a spin liquid state. This may be consistent
with the absence of magnetic order down to 2 K seen in
experiment.36

The rest of the paper is organized as follows. In Sec. II
we discuss the effects of monoclinic distortion and spin-orbit
coupling. This leads us to consider two different models, the
planar anisotropy and general anisotropy models, each taking
the form of a pseudo-spin Heisenberg model. In Sec. III
we solve for the classical spin ordering of both of these
models. In Sec. IV we describe the Sp(N ) generalization of
the Heisenberg model and its mean-field treatment. Results of
this mean-field treatment are shown in Sec. V for the planar
anisotropy model, and in Sec. VI for the general anisotropy
model. An extension to finite temperature is discussed in
Sec. VII. In Sec. VIII we summarize our results and discuss
extensions of this work.

II. MODEL

In modeling monoclinically distorted double perovskites
with 4d or 5d magnetic ions, there are two important effects
of the monoclinic distortion that should be considered in
conjunction with spin-orbit coupling. The first effect of
monoclinic distortion is local z-axis compression or expansion
of the B′-O octahedra, which affects orbital occupation. The
second is the change of orbital orientation due to the geometric
distortion, which affects overlap integrals and the resultant
interactions. We will derive our models by considering the
effect of distortion and spin-orbit coupling on the interactions
between t2g orbitals.

One motivation for our models comes from a spin-1/2
Heisenberg model obtained via spin-dimer calculation for
the isostructural monoclinically distorted double perovskites
La2LiMoO6 and Sr2CaReO6.36 In this method, the tetragonal
compression (or expansion) of these materials was modeled
by assuming occupation of only the dxy orbitals (or equal

TABLE I. Relative strengths of Heisenberg couplings, given in
Fig. 2, from the spin-dimer calculation of Aharen et al.36

Material J1 J2 J3 J4 J5 J6

La2LiMoO6 0.14 1.0 0.014 0.014 0.000 43 0.000 43
Sr2CaReO6 0.87 1.0 0.16 0.16 0.25 0.25

occupation of only the dxz and dyz orbitals). This method
is also sensitive to the effect of the geometric changes
resulting from the distortion. However, spin-orbit coupling
was not considered, so that the assumed orbital occupation
will be slightly incorrect. The result is an anisotropic S = 1/2
Heisenberg model, with estimates for the relative strengths of
the couplings, seen in Table I.

A. Interactions

To understand the effects of the monoclinic distortion
and spin-orbit coupling, we first look at the interactions
between neighboring t2g orbitals in the case of cubic symmetry,
as have been considered in detail by Chen et al.34 To
facilitate this, we show the six nearest-neighbor directions
δn for the fcc lattice in Fig. 2. Without distortion, the a,
b, and c axes are simply the Cartesian x, y, and z axes.
The strongest interaction is antiferromagnetic superexchange,
involving sites and orbitals lying in the same plane. For
instance, dxy orbitals on neighboring sites along the x-y plane
will interact antiferromagnetically. Ferromagnetic interactions
between sites on a plane will couple orbitals lying on that
plane to orbitals lying perpendicular to it.34 Along the x-y
plane, dxy orbitals interact ferromagnetically with neighboring
dyz and dxz orbitals. Quadrupole-quadrupole interactions also
exist between all t2g orbitals on neighboring sites, due to
different orientations of the quadrupole moments of these
orbitals.

B. Monoclinic distortion

The first effect of monoclinic distortion is the local z-
axis distortion of the B ′-O octahedra, a compression for
La2LiMoO6, and an expansion for Sr2CaReO6. This splits
the degeneracy of the three t2g orbitals. The dxz and dyz

orbitals will remain degenerate, but the dxy orbital will have
a lower energy for a compression and a higher energy for an
expansion. Consequently, the occupation of the dxy orbital will
be favored or disfavored compared to occupation of the other

c b
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FIG. 2. Nearest-neighbor lattice vectors δn and associated
nearest-neighbor couplings Jn for the fcc lattice.
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two orbitals. This is taken as a very important effect in the
spin-dimer calculation to explain the relative anisotropies of
the two materials.36

The second important effect of the monoclinic distortion is
a global c-axis elongation, and rotation of the B′-O octahedra,
affecting the overlap of the occupied orbitals, which are
now tilted out of plane. An example of this, in the case of
La2LiRuO6, is shown in Fig. 1. The dxy orbitals, for instance,
are tilted out of the a-b plane, and will have some interaction
with dxy orbitals on neighboring planes. In this fashion, many
new exchange pathways will contribute at the nearest-neighbor
level.

These effects generate a significant amount of exchange
anisotropy in the spin-dimer calculation.36 The relative
coupling strengths estimated by spin-dimer calculation for
La2LiMoO6 and Sr2CaReO6 can be seen in Table I. Interac-
tions between x-y planes in La2LiMoO6 are relatively weak,
as expected from dominant in-plane dxy-dxy antiferromagnetic
interaction and c-axis elongation. We note that further in-plane
anisotropy is significant due to the strong effect of Mo-O
octahedra rotation upon dxy orbital overlap. In Sr2CaReO6,
intraplane interactions are still larger than interplane interac-
tions, even though the superexchange between dxy orbitals is
not present. The only in-plane superexchange processes occur
through tilted dxz or dyz orbitals. Nevertheless, the interplane
interactions are significantly stronger than in La2LiMoO6. The
length of the unit cell along the c axis is significantly larger
than along the a or b axes, which could explain the smaller
interplane coupling, as compared to the intraplane one. For
both materials, however, the planar anisotropy of the couplings
is clear, and effects of both geometrical distortion and orbital
occupation are important.

C. Spin-orbit coupling

Beyond monoclinic distortion, we now consider spin-orbit
coupling, which can be important in the 4d and 5d magnetic
ions commonly seen in the double perovskites. For instance,
spin-orbit coupling in octahedrally coordinated Mo5+ is
estimated to be on the order of 0.1 eV.42 The effect of spin-orbit
coupling on the t2g orbitals of octahedrally coordinated ions
is a well-studied problem. When the octahedral crystal field
splitting is significantly large compared to the spin-orbit
coupling, we may project out the eg states. Upon projection,
the L = 2 orbital angular momentum for the d orbitals looks
like a L = 1 pseudo-angular momentum operator l up to a sign
change, where L → −l. This Leff = 1 pseudo-orbital angular
momentum combines with the S = 1/2 angular momentum
of the single electron to create states of effective total angular
momentum Jeff = 3/2 and 1/2. The spin-orbit coupling λL · S
breaks the degeneracy of these states, where the four Jeff = 3/2
states have an energy 3λ/2 lower than the two Jeff = 1/2 ones.
These Jeff = 3/2 states are written in terms of the t2g ones as

∣∣∣∣3

2
,
3

2

〉
= 1√

2
(−|yz, ↑〉 + i|xz, ↓〉),∣∣∣∣3

2
,
1

2

〉
= 1√

6
(−|yz, ↓〉 + i|xz, ↓〉 + 2|xy, ↑〉),

∣∣∣∣3

2
, − 1

2

〉
= 1√

6
(|yz, ↑〉 + i|xz, ↑〉 + 2|xy, ↓〉),∣∣∣∣3

2
, − 3

2

〉
= 1√

2
(|yz, ↓〉 + i|xz, ↑〉). (1)

With a d1 configuration, the occupancy of the dxy orbital upon
projection to these states is given by34

ni,xy = 3
4 − 1

3 (jz
i )2. (2)

The occupation operators for the other t2g orbitals are given
by cyclic permutation of the x, y, z indices, and the single-
occupancy constraint ni,xy + ni,xz + ni,yz = 1 is satisfied.

The effect of projection onto this Jeff = 3/2 subspace, due
to large spin-orbit coupling, has been considered by Chen et al.
for the cubic materials.34 The Hamiltonian can be written in
terms of the orbitally resolved spin operators, such as Si,xy =
Sini,xy . Upon projecting to the Jeff = 3/2 states, these orbitally
resolved spin operators contain terms both linear and cubic in
j. The resulting Hamiltonian, containing terms of fourth and
sixth order in j, leads to interesting multipolar behavior.34

When spin-orbit coupling is much larger than the local
z-axis crystal field, the Jeff = 3/2 states provide the relevant
starting point, rather than the t2g orbitals. However, one can
consider the general splitting of t2g orbital degeneracy in
the presence of both spin-orbit coupling and the local z-axis
distortion. We can model each site with a local Hamiltonian
Hloc = �[(lz)2 − 2/3] − λl · S, where � > 0 is the strength of
the crystal field splitting due to local z-axis compression. The
case for a local z-axis expansion has been considered by Jackeli
and Khaliullin.35 We proceed in a similar manner, identifying
the relevant low-energy eigenstates of Hloc. Diagonalization
of Hloc determines the lowest-energy Kramers pair to be given
by

| ↑〉G = sin (θ )√
2

(i|yz, ↓〉 + |xz, ↓〉) − i cos (θ )|xy, ↑〉,

| ↓〉G = sin (θ )√
2

(−i|yz, ↑〉 + |xz, ↑〉) − i cos (θ )|xy, ↓〉,

tan (2θ ) = 2
√

2λ/(λ + 2�). (3)

The energy difference between the ground and first ex-
cited doublets is given by −λ + (λ + 2�)[1 + 1/ cos (2θ )]/4,
which goes to zero as � → 0, and approaches � − λ/2 when
� � λ. We consider the case where this separation is large
enough to focus on the lowest-energy doublet. This will require
the tetragonal crystal field to be significantly larger than the
exchange coupling J , regardless of the relative strength of
spin-orbit coupling. By projecting out the higher-energy states,
we obtain a pseudo-spin-1/2 model.

Within this projection we consider the form of the inter-
actions in an otherwise cubic double perovskite, beginning
with the quadrupole-quadrupole interaction. Due to the fixed
orbital occupation in (3), this interaction is constant and will
not contribute to our models. The orbitally off-diagonal fer-
romagnetic interactions, of strength J ′, generate pseudo-spin
interactions that are both spatially and spin anisotropic. For our
models, we will focus on the antiferromagnetic interactions.
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Nearest-neighbor interactions along the undistorted x-y, x-z,
and y-z planes are given by

HAF = J
∑

〈ij〉 in x−y

(
Si · Sj − 1

4

)
ni,xynj,xy

+ (xy → yz) + (xy → xz), (4)

where ni,xy is the occupation operator of the dxy orbital at site
i.34 Upon projection to the lowest-energy doublet, we obtain
a Heisenberg model in the pseudo-spin-1/2 operators Pi ,

H′ = N

(
− J

4

)
+

∑
〈ij〉 in x−y

cos (θ )4JPi · Pj

+
∑

〈ij〉 in x−z

sin (θ )4 J

4
Pi · Pj

+
∑

〈ij〉 in y−z

sin (θ )4 J

4
Pi · Pj . (5)

For � 
 λ, this result reduces to the one obtained by Chen
et al. in the easy-plane limit of the cubic perovskite model
with J ′ = 0.34 Without an accurate estimate for the strength
of Hund’s coupling to Coulomb repulsion, the ratio J ′/J
is difficult to ascertain. However, we note that the easy-
plane result of Chen et al. is an antiferromagnetic state for
J ′ < J .34 Consequently, we consider the physical picture of
antiferromagnetic interactions, and as a first-order approx-
imation we ignore the ferromagnetic contributions to the
Hamiltonian.

We note that the introduction of spin-orbit coupling results
in a reduction of the magnetic moment compared to the case
of dxy occupation when λ = 0.

D. Planar-anisotropy and general-anisotropy models

The first, and simpler, of the two models considered in this
paper is concerned primarily with the effects of the tetragonal
crystal field splitting. Without spin-orbit coupling, we see from
(4) that preferential dxy orbital occupation leads to anisotropic
interactions that are stronger on the x-y planes. In this
case, we have a true spin-1/2 antiferromagnetic Heisenberg
model. However, considering spin-orbit coupling and tetrago-
nal distortion leads to the pseudo-spin-1/2 antiferromagnetic
Heisenberg model in (5), with a similar form of anisotropy.
From this, we are motivated to study the pseudo-spin-1/2
antiferromagnetic Heisenberg model where coupling along
the x-y plane differs from the coupling along the y-z and
x-z planes. The planar anisotropy model is given in terms of
pseudo-spin-1/2 operators (henceforth referred to as Si) by

HPA = Jin

∑
〈ij〉 in x−y

Si · Sj

+ Jout

∑
〈ij〉 in y−z

Si · Sj + Jout

∑
〈ij〉 in x−z

Si · Sj . (6)

Both Jin and Jout are antiferromagnetic, and one can consider
this model as a generalization of the antiferromagnetic model
in Eq. (5). The ratio Jout/Jin depends on the strengths of the
spin-orbit coupling and tetragonal distortion of the octahedra,
seen in �/λ. In addition, it captures certain geometrical
effects of the monoclinic distortion, such as the global c-axis

elongation, contributing to the particular planar anisotropy
in (6).

The other model considered in this paper will include in
full the geometrical effects of the monoclinic distortion. This
will generate many other anisotropic interactions, breaking the
symmetry of the x-y plane. Effective pseudo-spin exchange
energies will become intrinsically anisotropic, in addition to
the effects of orbital occupation. We will model these like
the spin-dimer calculation does, with different strengths of the
nearest-neighbor couplings shown in Fig. 2. Due to spin-orbit
coupling, the particular parameters Jn in Table I will not be
quantitatively correct. Nonetheless, we will consider them as
a starting point to understand the effect of further anisotropy
in the interactions. Estimates for corrections due to spin-orbit
coupling are given in Sec. VI B. The general anisotropy model
is given by

HGA =
∑

i

∑
n

JnS(ri) · S(ri + δn). (7)

To analyze the model Hamiltonians (6) and (7), we will
use the Sp(N ) generalization of the Heisenberg model, which
offers several advantages. The first is that the parameter
N allows for a controlled expansion, beginning from the
saddle-point solution as N → ∞. The second is that quantum
fluctuations can be controlled by a parameter κ [where κ = 2S

in the SU(2) case] allowing a transition from a classical-spin
limit (large κ) to one dominated by quantum fluctuations (small
κ). This may capture a changing value of (pseudo)-spin. The
gapped Z2 spin liquid, obtained as a disordered state in the
Sp(N ) generalization, is often seen as a potential ground state
in many Heisenberg models.43,44

The Sp(N ) generalization may be capable of naturally
capturing the changing behavior with S seen in the family
of magnetic materials isostructural to La2LiMoO6. The spin-
3/2 La2LiRuO6 is magnetically ordered, while spin-1/2
La2LiMoO6 shows short-range correlations and suppression
of magnetic order. The isostructural spin-1 La2LiReO6 is more
amenable to a multiorbital model, and falls outside the scope
of these calculations.45

III. CLASSICAL ORDERING

In this section, we solve both planar anisotropy and general
anisotropy models in the limit of classical spins. The magnetic
ordering patterns and wave vectors are determined by the
O(N ) model, where we generalize to N → ∞ components
of the spin vector, as explained in Appendix A. We will see
in Sec. IV D that this corresponds also to the classical limit of
the Sp(N ) model.

A. Planar-anisotropy model

In the planar anisotropy model (6), two phases are found
with varying Jout/Jin, the ratio of interplane to intraplane
interactions. For Jout < Jin, the intraplane interactions create
antiferromagnetic Néel order within each x-y plane. For
Jout > Jin, the interplane interactions create antiferromagnetic
order between planes.
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FIG. 3. View along the z axis of fcc lattice magnetic ordering of
the planar anisotropy model for Jout > Jin. The solid lines indicate
an x-y plane of the fcc lattice, while the dotted lines indicate a
neighboring plane. Spins are aligned on each of the x-y planes, but
Néel ordered along x-z or y-z planes.

For Jout > Jin, the ordering wave vector q is given by

q = π

a/2
(0,0,1) or

π

a/2
(1,1,0). (8)

Spins on each x-y plane are aligned, while spins on neigh-
boring planes are antiparallel. Néel ordering is found along
the x-z and y-z planes. The antiferromagnetic interactions
between x-y layers are satisfied, as seen in Fig. 3.

For Jout < Jin, the ordering wave vector q is

q = π

a/2
(1,0,kz),

π

a/2
(0,1,kz) (9)

for arbitrary kz. Each x-y plane takes on the Néel order for
a square lattice. The degeneracy in kz indicates that spins on
neighboring planes may take any relative overall orientation.
An example of this ordering, with kz = 0, is given in Fig. 4.
We will see in Sec. IV D that this degeneracy is broken by the
introduction of quantum fluctuations, choosing kz = 0.

Both of these states show type I antiferromagnetic ordering
on the fcc lattice, where ordering is antiferromagnetic on two
of the x-y, x-z, or y-z planes, and ferromagnetic on the other.

B. General anisotropy model

The two parameter sets in Table I also yield antiferromag-
netic ordering in the x-y plane, similar to the Jout < Jin case.
However, the degeneracy of kz is broken here at the classical
level, where kz = 0 for both parameter sets. Ordering as in
Fig. 4 results.

IV. SP(N) MEAN FIELD THEORY

A. Sp(N) generalization of the spin models

The Sp(N ) method is a large-N generalization of the
Schwinger boson spin representation.38–40 In the physical case
N = 1, Sp(1) is isomorphic to SU(2), and we have the standard
Schwinger boson representation wherein Sia = 1

2b
†
iα(σ a)αβbiβ

and the boson number per site b
†
iαbiα ≡ nb = 2S determines

the spin quantum number. Here, α,β =↑ , ↓ label the primitive

FIG. 4. View along the z axis of fcc lattice magnetic ordering of
the planar anisotropy model for Jout < Jin with kz = 0. The solid lines
indicate an x-y plane of the fcc lattice, while the dotted line indicates
a neighboring plane. There is Néel ordering along each of the x-y
and y-z planes, but ferromagnetic ordering along the x-z plane. Also
possible is a state where the ferromagnetic ordering is along the y-z
plane instead.

spin-1/2 species that comprise the full spin angular momen-
tum. We generalize to 2N flavors of bosons, where α = (m,σ ),
labeled by m = 1, . . . ,N , and σ =↑ , ↓, transforming under
the group Sp(N ).39 κ = nb/N acts in analogous fashion to
2S in the SU(2) case, controlling the strength of quantum
fluctuations.

When generalized to Sp(N ), the Heisenberg Hamiltonian
(7), up to constants involving nb, is written as

H = −1

2N

∑
i

∑
n

Jn

(
J αβb

†
iαb

†
i+δn,β

)(
Jγ νb

γ

i bν
i+δn

)
. (10)

Here, Jαβ is a 2N × 2N block-diagonal antisymmetric tensor,
given by

Jmσ,m′σ ′ = δm,m′

(
0 1

−1 0

)
. (11)

B. Mean-field states

The quartic terms in (10) can be quadratically decoupled
by the mean field

Qin = 1

N

〈 ∑
m

εσσ ′b
†
imσ b

†
i+δn,mσ ′

〉
. (12)

When the boson dispersion becomes gapless, we allow for
a condensate, bi1σ = √

Nxiσ ∈ C, where σ =↑ , ↓, so that
〈bi1σ 〉 has a finite expectation value. This will account for the
appearance of long-range magnetic order.

The projective symmetric group analysis may be used to
characterize possible mean-field ground states; for Sp(N )
this has been applied to many other Heisenberg models.44

Qualitatively different states are distinguished by the value
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of a flux quantity for plaquettes of the lattice. The flux on a
plaquette of sites a, . . . ,z is defined by the phase � in46

|�|ei� =
∑
a,...,z

Qab(−Q∗
bc) · · ·Qyz(−Q∗

za). (13)

A nearest-neighbor Heisenberg model will favor the zero-
flux states at small κ , particularly for plaquettes of smaller
length.46 On the bipartite cubic lattice, for instance, a
translationally invariant choice of Qij yields zero flux on
any plaquette. Since the fcc lattice is frustrated, a trans-
lationally invariant Qij = −Qji , while giving zero flux
on most plaquettes, leaves π flux on a small number
of plaquettes. In particular, assuming all Q to be trans-
lationally invariant and positive, the four-site plaquettes
with π flux have sites on both the x-y and y-z planes,
such as i,i + δ1,i + ŷ,i + δ3, where i and i ± ŷ are joined
by the plaquette. There are eight such plaquettes with π

flux, of a total of 36 four-site plaquettes involving site i.
This provides motivation to consider translationally invariant
mean-field solutions, which we restrict ourselves to in this
work.

C. Mean-field Hamiltonian

After decoupling in the site-independent Qn fields, the
Hamiltonian (10) becomes

H =
∑
i,n

Jn

[
− Qn

2
εσσ ′

(
N∑

m̃=2

bm̃σ
i bm̃σ ′

i+δn

+ xσ
i xσ ′

i+δn
N

)
+ H.c. + N

2
|Qn|2

]

+
∑

i

μi

(
− nb +

N∑
m̃=2

b
†
im̃σ bm̃σ

i + Nx∗
iσ xσ

i

)
. (14)

Here the boson number constraint is enforced on average
by the inclusion of the Lagrange multiplier μi . We assume
translational invariance, with μi = μ. We have allowed the
m = 1 component to condense, represented by xσ

i ∈ |C.
The saddle-point Hamiltonian (for N → ∞) is derived

in full in Appendix B. The first step is a Fourier transform
defined by bi = 1√

Ns

∑
k bke

−ik·ri . The second step is a Bogoli-
ubov transformation diagonalizing the Hamiltonian, yielding
a quasiparticle energy ωk = √

μ2 − [
∑

n JnQn sin (k · δn)]2.
The transformation is defined by b = T −1γ , where the Hamil-
tonian is diagonal in the γ basis. The condensate enters only
via the total density n = ∑

kσ |xσ
k |2, and ±k1, the wave vectors

of the boson dispersion minimum where the condensate
forms.

We then write the diagonalized Hamiltonian as

H
NsN

=
∑

δ

Jδ

2
|Qδ|2 + μ(−1 − κ + n)

+n
∑

δ

JδQδ sin (k1 · δ)

+ 1

Ns

∑
k

ωk(1 + γ
†
k↑γk↑ + γ

†
k↓γk↓). (15)

D. Semiclassical large-κ limit

We take advantage of the Sp(N ) fluctuation parameter κ

to look at the semiclassical magnetic order from the κ → ∞
limit. This provides a link from the classical order of Sec. III
to the magnetic order seen at finite κ .

We begin by approximating the Hamiltonian for κ � 1.
Here leading-order behavior in the Hamiltonian is of O(κ2).
Corrections, of O(κ), act to split degeneracy of the classical
ordering.39 We have that Q, μ and n are all O(κ) as κ � 1.
EC , the largest contribution to the energy is of O(κ2):

EC

NsN
=

∑
δ

Jδ

2
|Qδ|2 + μ(−κ + n)

+ n
∑

δ

JδQδ sin (k1 · δ), (16)

while the first-order quantum correction E1, of O(κ), is given
by

E1

NsN
= −μ + 1

Ns

∑
k

ωk, (17)

where Q, μ, and n are given by solutions minimizing the
classical energy (16).39 The mean-field equations for EC are
easily solved, yielding n = κ , μ = −∑

n JnQn sin (k1 · δn),
and Qm = −κ sin (k1 · δm). We can then write EC as a function
of the minimum wave vector k1:

EC

NsN
= −κ2

∑
n

Jn

2
sin2 (k1 · δn). (18)

With the boson dispersion minimum at ±k1, spin ordering
occurs at the wave vectors q = ±2k1. The minimum of EC

corresponds to an ordering pattern equivalent to that of the
classical O(N ) model (see Appendix A for details).47 The
correction (17) can then easily be computed for all k1 (with
corresponding Q, μ, n) in the degenerate set of minima of
(18).

V. PLANAR ANISOTROPY MODEL RESULTS

In this section we study the planar anisotropy model with
in-plane coupling Jin (J1 = J2) and out-of-plane coupling Jout

(J3 = J4 = J5 = J6). We study the effect of quantum fluctua-
tions, controlled by κ , and coupling anisotropy, controlled by
Jout/Jin. In Sec. III we saw classical Néel ordering on each x-y
plane. The first-order quantum correction E1 in (17) breaks the
degeneracy. After this “order by disorder,” the ordering wave
vectors are

q = π

a/2
(1,0,0) or

π

a/2
(0,1,1),

(19)
q = π

a/2
(0,1,0) or

π

a/2
(1,0,1).

Spins are aligned along either the x-z or y-z planes. Ordering
along one such direction was seen in Fig. 4.

As κ is reduced from this limit, we wish to see the evolution
of the ordering wave vector and mean-field parameters. For
small κ we investigate the destruction of the ordered state by
quantum fluctuations. We note that the semiclassical solutions,
for all values of Jout/Jin, all feature |Q1| = |Q2|,|Q3| = |Q4|,
and |Q5| = |Q6|. Motivated additionally by the equality of
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FIG. 5. Heuristic phase diagram for the Q1, Q3, Q5 ansatz of
the planar anisotropy model. Note that the label Qm = 0 indicates
that Qm is negligibly small (compared to κ and the finite Q) in the
condensed phase; Qm is identically zero in the corresponding spin
liquid phases. Solid lines indicate second-order transitions, while
dashed lines indicate first-order transitions.

in-plane couplings, J1 = J2, and of between-plane couplings,
J4 = J4 = J5 = J6, we take an ansatz with Q1 = Q2,Q3 =
Q4, and Q5 = Q6. The relative signs, such as between Q1 and
Q2, correspond to making a particular gauge choice. With such
an ansatz, the semiclassical solutions remain unchanged, with
wave vectors (8) or (19) as appropriate. Furthermore, relaxing
the ansatz suggests that the equivalence |Q1| = |Q2|,|Q3| =
|Q4|, and |Q5| = |Q6| is retained down to low κ . With this
ansatz, we numerically solve the mean-field equations, given
explicitly in Appendix B. The resulting phase diagram is given
in Fig. 5, in which there are five phases to consider.

A. Interplane antiferromagnetic order

This state is an extension of the classically ordered state
for Jout > Jin, with antiparallel magnetization on neighboring
x-y planes. Ferromagnetic ordering is seen along the x-y
plane, with Néel ordering along the x-z and y-z planes. In
this state, the intraplane Q1 = Q2 is significantly smaller than
the intraplane Q3 through Q6. The ordering wave vector has
only small corrections to the classical result (8).

B. x- y plane Néel order

This state is an extension of the classically ordered state
for Jout < Jin, with Néel order on the x-y planes. It is
characterized by large |Q1| = |Q2| within the x-y plane. Of
the two independent interplane Q, one is significantly smaller
than the other, depending on the gauge choice of ferromagnetic
order direction (along the x-z or y-z plane). The ordering wave
vector has only small corrections to the semiclassical result
(19).

C. Interplane spin liquid

This state is a disordered analog of the interplane ordered
state (Sec. V A) for Jout > Jin. However, the intraplane Q1 =
Q2 are identically zero in this state. While the direct intraplane
correlations are consequently zero, the finite interplane Q

prevent the lattice from decoupling. The minimum wave
vector, determining short-range order, still has only small
corrections compared to the ordered minimum (8). The
transition into this state from the intraplane ordered state, as κ

is lowered, is second order.

D. Three-dimensional intraplane spin liquid

This state is a disordered analog of the interplane ordered
state (Sec. V B) for Jout < Jin. However, one of the intraplane
Q is now identically zero, such as Q3 = Q4. The other
intraplane Q is nonzero, but still smaller than the in-plane
Q1 = Q2, preventing the lattice from decoupling. As before,
the minimum wave vector, determining short-range order, has
only small corrections compared to the ordered minimum (19).
The transition into this state from the intraplane ordered state,
as κ is lowered, is second order.

E. Quasi-two-dimensional spin liquid

In this state, all interplane Q vanish: Q3 = Q4 = Q5 =
Q6 = 0. The system then consists of decoupled two-
dimensional x-y planes in this mean-field theory. The tran-
sitions into this state, from either the ordered or disordered
intraplane states for Jout < Jin, are weakly first order. The
minimum (short-range order) wave vector no longer takes
the semiclassical value, instead taking a different value
among the classical solutions (9), with kz ∼ 0.15.

F. Tricritical point and destruction of order

We find a tricritical point at J̃out = 0.58Jin separating the
intraplane spin-liquid phases from the x-y plane Néel ordered
phase. For Jin > Jout > J̃out, the ordered state first enters the
three-dimensional spin-liquid state as κ is decreased. A first-
order transition to the two-dimensional spin liquid follows as
κ decreases further. The κ range of this three-dimensional
spin liquid narrows as Jout reaches tricritical point, as seen in
Fig. 5. For Jout < J̃out, in-plane coupling pushes the system
to decouple. However, we expect that the Q = 0 decoupling
seen in all three mean-field spin liquid states is an artifact of
the mean-field theory, and that 1/N corrections will restore a
small yet nonzero value to these Q.

The critical κ value of the destruction of magnetic ordering
κc is fairly small in this planar anisotropy model. κc ranges
from 0.1 for large Jout to 0.4 for small Jout. In the physical
N = 1 case, κ = 1 corresponds to the “most quantum” limit
of S = 1/2. Our N → ∞ solution indicates that ordering is
likely to occur, even though mean-field theory overestimates
ordering. While κc will differ in the exact N = 1 theory, the
values of κc ∼ 0.1–0.4 are too small to account for the behavior
of La2LiMoO6.
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κ
0.9860

AF Magnetic OrderAnisotropic Spin Liquid

FIG. 6. Phase diagram as a function of κ for the general
anisotropy model with parameters for La2LiMoO6, from Table I.
For κ larger than κc = 0.986, the system is in a three-dimensional
magnetically ordered state, as in the semiclassical limit. For κ smaller
than κc, the system is in an anisotropic and highly decoupled spin
liquid state.

VI. GENERAL ANISOTROPY MODEL RESULTS

A. Spin dimer parameters

We now turn to the particular parameter set in Table I
modeling La2LiMoO6. We saw that the semiclassical limit led
to type I antiferromagnetic order, with Néel order on the x-y
planes. As for the planar-anisotropy model, we take advantage
of coupling symmetry to simplify the mean-field calculation.
We make the ansatz Q3 = Q4 and Q5 = Q6, since J3 = J4

and J5 = J6. The semiclassical result satisfies this, while
relaxing the ansatz again suggests that this structure carries
to low κ . Then we numerically solve the resulting mean-field
equations. The mean-field solution finds that ordering persists
down to κc = 0.986. As in the planar anisotropy case, the
ordering wave vector changes little with κ , and Q5 remains
significantly smaller than the other Q. At κc, there is a
weakly first-order phase transition into a disordered state
with Q1 = Q3 = Q5 = 0. This highly anisotropic mean-field
solution consists of decoupled quasi-one-dimensional chains,
with Q2 contributing the only nonzero correlation. The phase
diagram for the general anisotropy model with parameters
modeling La2LiMoO6 is given in Fig. 6. As before, we expect
1/N corrections to remove this decoupling.

The parameter set for Sr2CaReO6 in Table I behaves
similarly, although the transition occurs at a smaller κc

∼= 0.41,
similar to the values from the planar anisotropy model.

Two comparisons to the planar anisotropy model are
relevant. The first is that at large exchange anisotropy, the
mean-field theory continues to predict immediate transitions
from magnetic order into maximally decoupled spin liquid
states. Additionally, this anisotropy stabilizes these decoupled
states. For the La2LiMoO6 parameters, we see a marked
increase in κc, which falls quite close to 1. This saddle-point
solution suggests that the S = 1/2 system must be very close
to the transition to a spin-liquid state, even if magnetic order
eventually appears at very low temperature. The effect of
further quantum or thermal fluctuations may be sufficient to
destroy the order. This could explain why no long-range order
is observed in La2LiMoO6 down to 2 K, while μSR shows at
most short-ranged order. The distortion of La2LiMoO6 from
the cubic perovskite structure is key in moving beyond the
magnetic order predicted by the planar anisotropy model.

B. Corrections to in-plane and out-of-plane anisotropy

While the Table I parameters give a good picture of the
anisotropy of La2LiMoO6, they will not be quantitatively
correct. We wish to look at deviations due to the inclusion
of spin-orbit coupling, from the viewpoint of in-plane and
out-of-plane anistropy. The change in orbital occupation will
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FIG. 7. (Color online) Critical value κc of destruction of magnetic
order. Two types of anisotropy are considered. RI is the ratio of the
anisotropy within x-y planes, while RO is the ratio of anisotropy
between these planes.

result in a reduction of dxy-mediated coupling as spin-orbit
coupling increases, along with new contributions, primarily
out-of-plane, from dxz and dyz occupation. From these con-
siderations, we estimate changes to Jn so as to minimize
the resulting anisotropy, thus estimating a lower bound for
κc upon inclusion of spin-orbit coupling. We determine the
effective couplings Jn in a manner similar to model (5), but
with intrinsically anisotropic exchange modified by orbital
occupation. In general, we have

Jn → cos (θ )4J xy
n + 1

4 sin (θ )4J
xz,yz
n , (20)

with θ as defined in (3). While the θ = 0 spin-dimer parameters
give J

xy
n , the J

xz,yz
n are unknown. Since they arise from octa-

hedral tilting, the in-plane J
xz,yz
n will be quite small, similar

to how the out-of-plane J
xy
n are small. Since 0.25 sin (θ )4 is

also small, we ignore that term by estimating J
xy

1,2 = 0. For
the out-of-plane interactions, we will make a large estimate
for J

xz,yz
n to minimize the out-of-plane anisotropy, by taking

J
xz,yz

3,4,5,6 = J
xy

2 , the largest exchange scale in the problem. In
terms of the spin-dimer parameters J SD

n , we estimate the
change in magnitude of Jn due to the change in orbital
occupation from spin-orbit coupling by taking

J1,2 = cos (θ )4J SD
1,2 ,

J3,4,5,6 = cos (θ )4J SD
3,4,5,6 + 1

4 sin (θ )4J SD
2 . (21)

For the case of λ � �, we find that κc reduces to 0.86.
However, for a moderate case of λ = �, we find that there
is only a slight reduction in κc to 0.98. For moderate values of
λ/�, these mean-field results indicate that the system is still
close to a disordered state; however, this will be sensitive to
the value of λ/�.

Exchange anisotropy has shown to be very important, from
the results for the spin-dimer parameters and the spin orbit cou-
pling rescaled values (21). To better understand the combined
effect of in-plane and out-of-plane anisotropy, we consider
a model with slightly less than the full anisotropy, where
J1 = RIJ2, J3 = J4 = ROJ2, and J5 = J6 = RORIJ2. This
captures the in-plane (RI ) and out-of-plane (RO) anisotropy,
differing from the full anisotropy only in the very small
exchange parameters J5 and J6. In Fig. 7 we show κc as
a function of RO for several values of RI . We see that κc

decreases fairly evenly as either RO or RI increases. This
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confirms that both in-plane and out-of-plane anisotropy are
important in securing a large κc.

VII. FINITE TEMPERATURE

Thermal fluctuations of the quasiparticles in (15) introduce,
beyond quantum fluctuations, another mechanism inducing
disorder. At nonzero temperatures, these excitations have a
thermal Bose distribution. The energy 〈H〉 and the mean-field
equations, (15) and (B4), are modified accordingly. Thermal
fluctuations will reduce magnetic ordering and correlations.
We see different finite temperature behavior depending on the
state (ordered or spin liquid) seen at T = 0 for a given set of
Jn and κ .

A. Zero-temperature disordered phases

From disordered phases, as T increases, the magnitudes
of all Q decrease. The smaller the value of Q at T = 0,
the lower the temperature at which Q reaches zero. At
a large enough temperature, all Q are zero, describing a
perfectly paramagnetic state, where spins are independent and
completely uncorrelated. This unphysical behavior at high
temperature is typical of N → ∞ solutions of Schwinger
boson mean-field theories, and disappears for smaller values
of N .48

B. Zero-temperature magnetic phases

From ordered phases, as T increases, the condensate density
n decreases along with the mean-field parameters |Qn|. It
similarly reaches zero at a large enough T . At large κ , the
transition to the perfect paramagnet state is first order, with
the system remaining in the ordered state until all Q and n

discontinuously jump to zero. This occurs even for moderate
values of κ , such as κ ∼ 0.5 in the planar anisotropy model.
For instance, with Jout = 0.54Jin and κ = 0.5, this transition
occurs at T = 0.44Jin. With θC = −45 K and S = 1/2,
the transition temperature T = 53 K, an overestimate to be
expected of mean-field theory.

For smaller κ , close to the disordered state boundary, the
transition is second order. Furthermore, the order can be
destroyed before the Q become zero; the system has a second-
order transition to a thermally disordered state before entering
the perfect paramagnet state. We show such an example in
Fig. 8. Here, κ = 0.2, just above the zero-temperature critical
κc for Jout = 0.54Jin. At T = 0, the transition with varying κ

went from ordered state directly into a quasi-two-dimensional
spin liquid. At finite temperature we see that there is a window
0.1Jin � T � 0.15Jin, where a three-dimensional disordered
state exists, in contrast with the decoupling behavior of the
T = 0 mean-field theory.

The general anisotropy model with La2LiMoO6 parameters
shows similar behavior. However, at κ = 1, the transition
from the ordered state looks weakly first order, with the
system directly entering a quasi-two-dimensional decoupled
state where only Q1 and Q2, both in the x-y plane, are nonzero.
A fully three-dimensional disordered state is not predicted
here by the finite-temperature mean-field theory. Nonetheless,
this case illustrates how fluctuations destroy magnetic order

-0.35
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-0.15

-0.1

-0.05

 0

 0.05

 0  0.05  0.1  0.15  0.2  0.25  0.3

T (Jin)

Q1
Q3
Q5

Condensate
Density

FIG. 8. (Color online) Mean field and condensate density (ma-
genta) destruction with increasing temperature, shown for Jout =
0.54Jin and κ = 0.2 in the planar anisotropy model. Above T ∼
0.1Jin, the magnetic ordering is destroyed, leaving a thermally
disordered state. As Q5 (blue) and Q1 (red) become zero, the
system enters a two dimensionally or completely decoupled state,
respectively.

and inhibit decoupling in the spin-liquid states. As before, we
expect 1/N corrections to further restore correlations.

C. Heat capacity

The presence of the perfect paramagnet state is an artifact of
the mean-field theory. Regardless, the magnetic contribution
to the heat capacity is an important physical quantity, and can
be reliably calculated in this approach at low temperatures. CV

is found straightforwardly from d〈H〉/dT . In the magnetically
ordered states we find that CV ∝ T 3 at low temperatures.
This is expected from three-dimensional antiferromagnetic
spin wave contributions. In the disordered states, CV ∝
exp (−�G/kBT ). �G scales roughly with the spin gap, as
expected for gapped states. Unfortunately, the lattice match
material for La2LiMo6 was not useful in subtracting the lattice
contribution to the heat capacity.36 Without clear data for the
magnetic contribution to the specific heat, direct comparison
is not feasible. For a system close to the ordering transition,
such as the general anisotropy model for La2LiMoO6, the T 3

behavior persists only at extremely low temperatures, further
complicating potential comparison.

VIII. CONCLUSION

We have modeled the effects of monoclinic distortion
and spin-orbit coupling in 4d1 or 5d1 double perovskites.
Local z-axis distortion of the magnetic ion-oxygen octahedra
changed dxy orbital occupation compared to the other t2g

orbitals. Geometrical effects of monoclinic distortion changed
orbital overlaps, introduced multiple exchange pathways,
and generated significant anisotropy. Considering spin-orbit
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coupling in conjunction with the local z-axis crystal field
yielded a lowest-energy doublet of states and a pseudo-spin-
1/2 Heisenberg model from antiferromagnetic interactions.
We considered first the general case where interactions
between sites on x-y planes differ in strength from interactions
between these planes. This planar anisotropy model was
studied for a general ratio of these two couplings. Geometrical
changes of the monoclinic distortion induce further anisotropy
among the interactions, especially within the x-y plane,
leading to the general anisotropy model, studied for particular
parameters modeling La2LiMoO6, estimated from spin-dimer
calculation.36 We solved both these models in the saddle-
point limit of the Sp(N ) generalization of the Heisenberg
model. Semiclassical ordering was determined to be type I
antiferromagnetic, with antiferromagnetic order on two of the
x-y, x-z, y-z planes, and ferromagnetic order on the other. The
Sp(N ) method connected the semiclassical results to the limit
of large quantum fluctuations. The large interaction anisotropy
of the general anisotropy model predicted disordering at
a relatively large κc = 0.986. The N = 1 pseudo-spin-1/2
system was determined to be very close to a disordered state,
even if order sets in at a low temperature. This could explain
the lack of long-range order seen down to 2 K in La2LiMoO6.
Furthermore, estimates of the effect of spin-orbit coupling on
the spin-dimer calculation parameters of Table I reduced κc

only to 0.98 for moderate strength of spin-orbit coupling. The
system is still close to a disordered state in this case.

Further experimental and theoretical inquiries follow as
natural extensions of our investigation. Single-crystal experi-
mental results would be useful, primarily in determining the
short-range ordering wave vector of La2LiMoO6. Results at
temperatures lower than 2 K could determine specifically how
antiferromagnetic order is being suppressed. Finally, estimates
of the strength of the spin-orbit coupling and crystal field
splitting would guide a more precise model of the monoclinic
distortion.
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APPENDIX A: CLASSICAL O(N) MODEL

We begin by writing the real-space partition function for
the Heisenberg Hamiltonian on the fcc lattice,

Z =
∫

DφDμ exp [−S(φ,μ)],where S(φ,μ)

= β
∑
ij

[
Jij

2
φi · φj + μi

2
δij (φi · φi − N )

]
. (A1)

Here the O(N ) model generalizes the spin φ from a
three-component vector to an N-component vector. The
first step is to take the Fourier transform defined by φi =

1√
Ns

∑
k φk exp (−ik · ri), where Ns is the number of sites of

the lattice. After the Fourier transform, we have

S

βNsN
= −μ

2
+ 1

Ns

∑
k

|φk|2
[

μ

2
+

6∑
n=1

Jδn
cos (k · δn)

]
,

(A2)

Z ∝
∫

dμ
∏

k

dφkdφ∗
k exp (−S). (A3)

We perform the Gaussian integral over φk and φ∗
k , giving

Z ∝
∫

dμ exp

{
βμ

2
NsN −

∑
k

ln

[
D(k,μ)Nβ

π

]}
,

D(k,μ) = μ

2
+

6∑
n=1

Jn cos (k · δn). (A4)

The corresponding saddle-point solution gives μ from

1 = 1

Ns

∑
k

1

NβD(k,μ)
. (A5)

The spin-spin correlation function scales as

〈φk · φk′ 〉 ∝ δk′,−k
1

βD(k,μ)
. (A6)

As β → ∞, the minimum of D(k,μ) will become the
dominant contribution; magnetic ordering will occur with the
wave vector q that minimizes

∑6
n=1 Jn cos (q · δn).

APPENDIX B: SADDLE-POINT SOLUTION

To find the saddle-point solution, we first look at the Fourier
transform, defined as bi = 1√

Ns

∑
k bke

−ik·ri . After taking this
transform, the Hamiltonian (14) becomes

H
NsN

=
∑

n

Jδn

2
|Qδn

|2 + μ

(
− 1 − κ + 1

Ns

∑
k

x∗
kσ xσ

k

)

+ 1

Ns

∑
kn

(−Jδn
Qδn

2
εσσ ′xσ

k xσ ′
−ke

ik·δ + H.c.

)

+ 1

NsN

∑
mk

(b†km↑b−km↓)

(
μ Bk

−Bk μ

) (
bkm↑
b
†
−km↓

)
;

Bk = i
∑

n

Jδn
Qδn

sin (k · δn), (B1)

where Ns is the number of sites in the system.
The quadratic part of the mean-field Hamiltonian in (B1) is

diagonalized by a standard Bogoliubov transformation.49 With
the quasiparticle energy ωk = √

μ2 − [
∑

n JnQn sin (k · δn)]2,
the diagonalized quadratic terms are

1

Ns

∑
k

ωk(1 + γ
†
k↑γk↑ + γ

†
k↓γk↓). (B2)

Here the transformation is defined by b = T −1γ , where the
columns of T −1 are the eigenvectors of ηM , M is the quadratic
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Hamiltonian matrix in (B1), and the 2N × 2N η is given
by

ηαβ =
{
δαβ α � N

−δαβ α > eN
.

The structure of the condensate can be determined from the
associated mean-field equation: ∂〈H〉/∂xσ

k = 0. The solution
to the disordered case (x = 0) has a gapped dispersion. We can
track when the gap vanishes and bosons begin to condense.
We find that x

↑
k is a linear combination of condensates at the

minimum wave vectors ±k1: x↑
k = c1δk−k1 + c2δk+k1 . We then

rewrite the part of the mean-field energy depending on x↓ and
obtain the mean-field equation

0 = 1

NsN

∂E↓
∂xk↓

= μ

Ns

x∗
k↓ + 1

Ns

[∑
δ

JδQδ sin (k · δ)

]

× (−c1δk,−k1 − ic2δk,k1 ). (B3)

In the condensed phase, to ensure a gapless dispersion, μ =
−∑

n JnQn sin (k1 · δn) > 0. The form of x
↓
k follows as x

↓
k =

−ic∗
2δk−k1 + ic∗

1δk+k1 .
We arrive at the diagonalized Hamiltonian (15). From this

follow the mean-field equations

1

NsN

∂E

∂μ
= 0 = −1 − κ + n + 1

Ns

∑
k

μ

ωk

,

1

NsN

∂E

∂Qm

= 0 = JmQm + nJ� sin (k1 · δm)

− 1

Ns

∑
k

∑
n JnQn sin (k · δn)

ωk

[Jm sin (k · δm)],

1

NsN

∂E

∂n
= 0 = μ+

∑
n

JnQn sin (k1 · δn) (if n > 0).

(B4)
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