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The effect of dipolar interaction and local uniaxial anisotropy on the magnetic response of small spin clusters
where spins are located on the vertices of icosahedron (Ih), cuboctahedron (Oh), tetrahedron (Th), and square (D4)
geometries have been investigated. We consider the ferromagnetic and antiferromagnetic spin-1/2 and spin-1
Heisenberg model with uniaxial anisotropy and dipolar interaction and apply a numerical exact diagonalization
technique to study the influence of frustration and anisotropy on the ground-state properties of the spin clusters.
The ground-state magnetization, spin-spin correlation, and several thermodynamic quantities such as entropy
and specific heat are calculated as functions of temperature and magnetic field.
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I. INTRODUCTION

Realizing promising applications in physics, magneto-
chemistry, and biomedicine, molecular magnets have recently
been the focal point of intense research. Although these materi-
als appear as macroscopic objects, i.e., crystals or powders, the
intermolecular magnetic interactions are negligible compared
to the intramolecular magnetic interaction. Thus their magnetic
properties mainly reflect the ensemble properties of small
clusters. It appears that in the majority of these molecules,
the localized single-particle magnetic moments couple anti-
ferromagnetically, and the spectrum is rather well described
by the Heisenberg model with isotropic nearest-neighbor
interaction, sometimes augmented by anisotropic terms and
dipolar interactions.1–7 Thus, the interest in the Heisenberg
model, which has been known for a long time, has been
renewed recently by the successful synthesis of new magnetic
clusters and magnetic molecules.

Ab initio studies show that often these magnetic systems
are frustrated due to the competing magnetic interactions
between the individual magnetic moments. The effect of finite
sizes, quantum fluctuations, and frustrations can have dramatic
consequences on the energy spectra and can even give rise to
new phases apart from the conventional Néel-like order.7–21 A
great deal of effort has been devoted to the theoretical studies
on magnetic clusters using different theoretical techniques to
solve the Heisenberg model.8,11,22,23

Using exact diagonalization of the antiferromagnetic
Heisenberg model, Konstantinidis et al.8 calculated the
ground-state magnetization for a dodecahedron and an icosa-
hedron symmetry for s = 1/2 and 1 and obtained discon-
tinuities in the field-dependent magnetization and double
peaks in the temperature-dependent specific heat arising due
to frustrations. Using perturbation theory, Coffey et al.22

studied the effect of frustration and connectivity on the
magnetic properties of a 60-site cluster. Schnalle et al.11

applied an approximation of diagonalization scheme to a
cuboctahedron for s = 1 and 3/2 in order to obtain the
energy spectra. In addition to the magnetic properties, several
studies exist of the thermodynamic properties of clusters. For
example, Honecker et al.23 calculated several magnetothermal
properties such as the magnetic susceptibility, specific heat,
and magnetic cooling rate for a cuboctahedron with different

spin quantum numbers using the antiferromagnetic Heisenberg
model. Besides the exact diagonalization method, several
other techniques such as the density matrix renormalization
group,24,25 cluster expansions,26 spin-wave expansions,27–29

and quantum Monte Carlo techniques30–32 can be used to study
the magnetic systems. However, some of these techniques have
drawbacks; for example, the quantum Monte Carlo technique
has limitations in describing the systems with geometric
frustration. The advantage of the exact diagonalization method
relative to these approximate methods is that one obtains
all information about the whole energy spectra such as the
degeneracy, the lowest eigenenergies, and eigenfunctions from
which the ground state as well as finite temperature properties
can be calculated.

In the present work we applied the exact diagonalization
method to calculate the properties of clusters with spin 1/2
and spin 1. We have studied the magnetic and thermodynamic
properties of small clusters with the focus on showing the
effects of dipolar interaction and uniaxial anisotropy on
the magnetization behavior in the presence of magnetic
fields, the studies of which are still limited in literature.33–35

In addition, the temperature-dependent as well as the ground-
state spin-spin correlation functions were calculated for these
clusters and compared with respect to the classical case.

The paper is organized as follows. In Sec. II, we describe
the theoretical method used for modeling the quantum clusters.
Section III discusses the results obtained for 13-atom clusters
with spin 1/2, including the effect of dipolar interaction.
Then, Sec. IV describes the findings for 4-atom clusters
with spin 1, where the effects of uniaxial anisotropies and
temperature-dependent correlation functions are discussed,
and Sec. V discusses the results for a spin-1 icosahedron in the
presence of local uniaxial anisotropies. In Sec. VI the results
are summarized.

II. THEORETICAL METHOD

From first-principles calculations it turns out36 that the
interaction between electrons may be well represented by a
model Hamiltonian describing a set of interacting spins �si .
An important class of such interacting spin models consists of
spins coupled bilinearly on a finite lattice. The Hamiltonian of

104438-11098-0121/2011/84(10)/104438(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.104438


HUCHT, SAHOO, SIL, AND ENTEL PHYSICAL REVIEW B 84, 104438 (2011)

1

2

11

9 5
3

6

7
4

8
12

10

6

10

7

11

129

8

2

41

5

3

FIG. 1. (Color online) Schematic picture of ICO (left) and CUBO
(right) with labeling of each atomic site. Both structures have 12
vertices with one atom at the center (not shown). The magnetic field
is aligned parallel to �r2 for both ICO and CUBO.

such a system can be expressed by the Heisenberg Hamiltonian

H0 = −
∑
i<j

Jij �si · �sj , (1)

where in general the sum runs over all pairs. �si is the spin
operator on site i having total spin s, and the z component of the
spin �si can take the values sz

i = −s, − s + 1, . . . ,s; Jij is the
exchange interaction. This model describes the ferromagnetic
(antiferromagnetic) Heisenberg model when Jij > 0 (Jij < 0).
In one dimension and for only nearest-neighbor couplings
Jij = J , the s = 1/2 Heisenberg model has been solved
analytically by means of the Bethe ansatz.37 Unfortunately,
the use of the Bethe ansatz is quite limited, because this
method is only applicable to models in one dimension. For
higher dimensions, one has to look for approximate methods.
However, if the number of spins in the system is small enough,
one can solve the problem by employing exact diagonalization
techniques.38 A straightforward way to study the model
Hamiltonian, defined in Eq. (1), numerically is simply to
obtain the matrix elements of H in a basis of |sz

1,s
z
2, . . . ,s

z
n〉,

with the z axis taken as the quantization direction, where n is
the total number of spins in the system, and then diagonalize
the Hamiltonian matrix numerically. The Hamiltonian matrix
can be decomposed into a block structure with the use of
symmetries of the model. Since the isotropic Heisenberg
model includes only the scalar product between the spins,
the Hamiltonian is rotationally invariant in spin space, i.e.,
it commutes with the square of the total spin of the system,
�S2, and the z component of the total spin, Sz. Even though
it is straightforward to work in the Sz subspace, there is no
simple method to construct symmetry adopted eigenstates of
�S2, this requires more involved calculations.39–43 Additionally,
the Hamiltonian is symmetric under permutations of spins
that respect the connectivity of our small-sized cluster, and
the model possesses time reversal symmetry in the absence
of external magnetic fields. When we take into account
the symmetries in the system, the Sz basis states can be
projected onto states that transform under specific irreducible
representation of the symmetry group. In this way, the Hamil-
tonian is block diagonalized into smaller matrices and the
maximum dimension required for numerical diagonalization
is considerably reduced compared to full Hilbert space size.

In the presence of an external magnetic field, dipolar
interaction, and anisotropy, the Heisenberg Hamiltonian (1)
is modified to

H = H0 − BzSz + Hdipole + Hani, (2)

where Bz is the homogeneous external magnetic field defining,
without loss of generality, the z direction. Here it may be noted
that the factor gμB is absorbed into Bz and the z component
of the the total spin, Sz = ∑

i s
z
i , can take values from −S to S

in unit steps, where S is the maximum total spin of the system.
The dipolar term Hdipole in Eq. (2) is defined as

Hdipole = μ0

4π
(gμB)2

∑
i<j

�si · �sj − 3(�si · �̂rij )(�̂rij · �sj )

|�rij |3 , (3)

where �̂rij = �rij /|�rij | is the unit vector along the line connecting
the two spins or dipoles located on the sites i and j , and the
sum runs over all pairs. Hani in Eq. (2) represents the local
uniaxial anisotropy, which is defined by

Hani = −
∑

i

Di ( �ei · �si)
2, (4)

where Di are the local uniaxial anisotropy constants and �ei

are the unit vectors giving the anisotropy axes. Since the
commutators [Hdipole,S

z] �= 0 and [Hani,S
z] �= 0, Sz is no

longer a good quantum number in the presence of these
anisotropies, and therefore the block diagonalization with
respect to different Sz values is not possible.

Now we construct the Hamiltonian matrix in terms of
eigenstates of the total Sz operator and express the Hamiltonian
in terms of the raising and lowering operators s±

i = sx
i ± is

y

i .
When s+

i and s−
i operate on the eigenstates of sz

i , we have

s±
i

∣∣sz
i

〉 =
√

s(s + 1) − sz
i

(
sz
i ± 1

) ∣∣sz
i ±1

〉
. (5)

For example, for a spin-1/2 particle,

s+
i | ↑i〉 = 0,s+

i |↓i〉 = |↑i〉,
s−
i |↑i〉 = |↓i〉,s−

i |↓i〉 = 0,

and for a spin-1 particle,

s+
i |↑i〉 = 0,s+

i |0i〉 =
√

2|↑i〉,
s+
i |↓i〉 =

√
2|0i〉,s−

i |↑i〉 =
√

2|0i〉,
s−
i |0i〉 =

√
2|↓i〉,s−

i |↓i〉 = 0,

where in the latter case {↓ ,0, ↑} denote the three possible
values of sz

i = −1,0,1. In the absence of Hdipole and Hani, the
z component of the total spin is a conserved quantity and we
can decompose the Hamiltonian matrix into smaller blocks
characterizing each value of the total spin. For example, for
a 13-atom cluster with s = 1/2, the 213 × 213 dimensional
Hamiltonian matrix is divided into blocks with dimension
( 13

k ) × ( 13
k ), with k = 0, . . . ,13. Fourteen such block matrices

have to be diagonalized, and the largest block matrix has
( 13

6 ) = 1716 rows. It may be noted that with Sz being a
good quantum number, the Zeeman term is not needed in
the numerical diagonalization process and can be included
later by shifting the eigenvalues by BzSz. However, this
simplification is not possible when dipolar interactions or
uniaxial anisotropies are present in the Hamiltonian.

104438-2



EFFECT OF ANISOTROPY ON SMALL MAGNETIC CLUSTERS PHYSICAL REVIEW B 84, 104438 (2011)

FIG. 2. All 8192 energy eigenvalues in units of |J | for AFM
interactions of the 13-atom ICO (left panel) and CUBO (right panel)
with spin 1/2. The energy levels are shaded according to their
degeneracy. There exists a ±Sz degeneracy in the AFM case for
both symmetries. For the FM case, the energy spectra are reversed
with respect to the AFM spectra, which fulfills EFM = −EAFM.

III. 13-ATOM CLUSTERS WITH s = 1/2

We have considered two different geometries, namely,
the icosahedron (ICO) and cuboctahedron (CUBO) for the
investigation of 13-atom clusters. The characteristic feature
of the icosahedron, which has a connectivity like that of
fullerenes,44,45 is that it possesses 12 vertices, 20 triangular
faces, and 30 edges. It is categorized in the symmetry group of
Ih, which is the point symmetry group with 120 operations.46

On the other hand, a cuboctahedron has 12 vertices with 8
triangular and 6 square faces and 24 identical edges, and
belongs to the symmetry group Oh. Schematic pictures of the

ICO and CUBO geometry are shown in the left and right panels
of Fig. 1, respectively. Both geometries possess 12 vertices
on the surface shell and one atom at the center, and can be
transformed into each other via a Mackay transformation.47

Though the number of nearest neighbors for the center atom
are the same (12) for both geometries, each of the surface
atoms for both cases possesses a different number of nearest
neighbors, i.e., the ICO has five and the CUBO has four nearest
neighbors in the outer shell. In this section we first study the
ground-state properties and thermodynamic quantities such as
entropy and specific heat in the absence of dipolar and uniaxial
anisotropy terms and then switch on the dipolar interaction to
investigate its influence on ground-state properties.

In the absence of Hdipole and Hani, the total Hamiltonian
for a 13-atom cluster with nearest-neighbor interaction can be
written as
H13 = −J

∑
i,j > 0

〈ij〉

�si · �sj − J ′ ∑
i>0

�s0 · �si − Bz
∑

i

sz
i , (6)

where �s0 is the spin of the center atom, and the first sum runs
over all nearest-neighbor pairs 〈ij 〉 in the surface shell. J is the
exchange coupling between atoms in the surface shell, and J ′
is the exchange coupling between central and surface spins.

The energy spectrum for the two clusters, namely, the ICO
and the CUBO clusters, can be obtained by diagonalizing the
above Hamiltonian. In the presence of a magnetic field, the
ground-state energy is obtained by considering the minimum
of the energy eigenvalues from each magnetization sector. We
calculated the energy eigenvalues for the different exchange
couplings defined by (i) ferromagnetic (FM) couplings (J =
J ′ = 1), (ii) antiferromagnetic (AFM) couplings (J = J ′ =
−1), (iii) FM coupled surface shell with AFM coupled central
spin (J = 1 and J ′ = −1), and (iv) AFM coupled surface shell
with FM coupled central spin (J = −1 and J ′ = 1). However,
we will mainly discuss the ferromagnetic (J = J ′ = 1) and
antiferromagnetic (J = J ′ = −1) cases. Note that all energies
are measured in units of |J | with |J | is fixed to the value 1 in
this work.
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FIG. 3. (Color online) Variation of magnetization Mz = 〈Sz〉 as a function of the magnetic field for four different exchange interactions as
listed in the panels of ICO (left panel) and CUBO (right panel). J and J ′ are the exchange couplings among the surface spins and center-surface
spins, respectively. The external magnetic field is measured in units of |J |.
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FIG. 4. (Color online) Variation of ground-state magnetization Mz
i = 〈sz

i 〉 as a function of magnetic field (in units of |J |) for the AFM case
of 13-atom ICO at several values of the reduced dipole coupling strengths ω. The dark blue lines in all plots show the field dependence of
magnetization for the center spin 〈sz

0〉. The light green and gray lines show the same quantity for the top and bottom atoms and remaining ten
atoms on the surface, respectively. The top and bottom spins are strongly affected by dipolar interactions.

In Table I we present closed form expressions for the
ground-state energies E0, degeneracies K0, as well as the
lowest energy gap �E1 for the different Sz sectors of ICO
and CUBO. The exact polynomials for E0 are determined
with the Mathematica routine RootApproximant48 using high-
precision arithmetics with up to 400 digits. Due to the two-fold
degeneracy for the ±Sz sector, where the minimum energy
for each positive Sz sector has the same value as that of the
corresponding negative Sz sector, we have listed the results as
functions of |Sz| only.

The whole eigenvalue spectrum in the absence of an
external magnetic field is depicted in Fig. 2 for the AFM
interactions of ICO (left panel) and CUBO (right panel), where
the minimum energy eigenvalues for different magnetization

of the system are found to be different. Moreover, the
energy gaps between the minimum energy eigenvalues of the
consecutive Sz sectors differ for both ICO and CUBO. This
observation identifies the influence of symmetry on the nature
of the eigenvalue spectrum of the system and also explains
the nature of the variation of the magnetization with respect
to the external magnetic field for the two clusters. For the
FM interaction, we obtain degenerate minimum energies. This
occurs because the Hamiltonian has spin rotational invariance
and as a result, turning the total spin in another direction does
not change the energy of the system.

The left panel of Fig. 3 shows the variation of magnetization
in the unit of gμB as a function of external magnetic field for
the four cases of interactions of the ICO (mentioned above).

TABLE I. Lowest energy eigenvalue E0, degeneracy K0, and lowest energy excitation �E1 = E1 − E0 for different Sz for 13-atom AFM
ICO and CUBO. Energies are in units of |J |.

|Sz| EICO
0 K ICO

0 �EICO
1 ECUBO

0 KCUBO
0 �ECUBO

1

13/2 21/2 1 − 9 1 −
11/2 4 1 2.382 5/2 1 3
9/2 2 − √

5/2 3 0.618 0 5 1
7/2 −1.834a 5 0.102 −5/2 3 0.293
5/2 −3.967b 4 0.0045 −4.631c 1 0.339
3/2 −5.420d 5 0.022 −5.869e 1 0.093
1/2 −6.288f 3 0.100 −6.062g 3 0.093

aZero of x3 − 5x − 3 = 0.
bZero of 64x6 + 448x5 + 656x4 − 1184x3 − 3412x2 − 2036x − 53 = 0.
cZero of 2x5 + 16x4 + 29x3 − 23x2 − 61x − 8 = 0.
dZero of 4x10 + 84x9 + 700x8 + 2842x7 + 4992x6 − 1726x5 − 21401x4 − 31503x3 − 14082x2 + 4014x + 3402 = 0.
eZero of 64x6 + 960x5 + 4784x4 + 7168x3 − 8148x2 − 19868x + 6361 = 0.
fZero of 65536x16 + 2752512x15 + 51707904x14 + 571146240x13 + 4089167872x12 + 19595452416x11 + 61510348800x10 +
109531144192x9 + 14047096320x8 − 488888621568x7 − 1389656886528x6 − 2016792866048x5 − 1655926247744x4 −
669806791648x3 − 39673588208x2 + 46200676992x + 7484904361 = 0.
gZero of 64x21 + 3136x20 + 70272x19 + 952256x18 + 8684000x17 + 55985680x16 + 259611872x15 + 853909520x14 + 1844888624x13 +
1761797108x12 − 3621087792x11 − 18691236512x10 − 39464764094x9 − 49351650308x8 − 34081746286x7 − 3226424608x6 +
17175800242x5 + 16425687591x4 + 6952269434x3 + 1297049762x2 + 47065144x − 4927905 = 0.
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the correlation function between the center atoms and atoms on the
surface shell. The dashed lines indicate the classical limit for spin-∞
ICO and CUBO.

In the presence of an external magnetic field, the minimum
energy configuration for the AFM interaction (J = J ′ = −1)
gives rise to plateaus, which are marked by the solid red curve
in the left panel of Fig. 3. The appearance of different sizes
of plateaus is related to the inequivalent energy gaps between
the minimum energy values of consecutive Sz sectors. On the
other hand for FM interaction the ground-state energy lies in

the Sz = 13/2 sector for all positive values of Bz and in the
Sz = −13/2 sector for all negative values of Bz. Thus for the
ferromagnetic interaction (J = J ′), irrespective of the values
of magnetic field, |Mz| = 13/2 (see the black dashed line in
Fig. 3).

The right panel of Fig. 3 shows the variation of magneti-
zation as a function of magnetic field for the four different
set of exchange couplings in the case of CUBO geometry.
As observed in the case of ICO, a similar behavior for
the variation of magnetization with respect to the external
magnetic field is observed for the FM interaction. However,
for the AFM interactions of CUBO, the plateaus appearing in
the magnetization have different sizes compared to the ICO,
which can be noted from the solid red curve in the right panel
of Fig. 3. The differences in results are the consequence of the
differences in structural symmetries of the two clusters.

Now we shall study the effect of dipolar interaction on
the magnetization of the 13-atom ICO with s = 1/2 in
presence of magnetic fields. Since dipolar interaction breaks
the isotropy of the system, the dipole-dipole interaction may
be an important source of the observed magnetic anisotropy
of various magnetic materials.49 Moreover, as dipole-dipole
couplings depend only on known physical constants and
the inverse cube of the interatomic distances, understand-
ing the role of dipolar interactions on different properties
of the molecule will be useful in the study of molecular
structures. For our studies we shall consider the Hamiltonian
given in Eq. (3). Using the exact diagonalization technique
we calculate the magnetic properties of the above-mentioned
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system. Figure 4 shows the position resolved magnetization as
a function of the magnetic field for different reduced dipolar
interaction strengths,

ω = μ0

4π

(gμB)2

|�r0i |3|J | , (7)

ω = 0, 0.025, 0.05, and 0.1 for the AFM case, where |�r0i |
denotes the shell radius. For ω = 0 we find a reversed central
spin �s0 with negative hysteresis, as long as Bz/|J ′| < 13/2.
For larger fields the central spin flips into the field direction.
Table II lists the values of center sz

0 and surface spin sz
i

magnetizations for ω = 0 at different values of Sz, given by

〈sz
0〉 = − Sz

2(Sz + 1)
, 〈sz

i 〉 = Sz − 〈sz
0〉

12
. (8)

At finite values of ω, the magnetization of the surface
atoms behave differently depending on their position which
indicates that the dipolar interaction has a strong impact on
the magnetization of these spins. The spins of the top and
bottom atoms of the cluster (see left panel of Fig. 1) are
strongly modified (light green curves) compared to the other
surface spins (gray) even at very small values of ω, while the
magnetization of the center atom (dark blue curve) is nearly
unaffected by the change in ω values. On the other hand, for
the FM case, ω has no influence on the magnetization of center
or surface spins.

To understand the impact of frustration on the spin config-
uration of the clusters with different geometries, the spin-spin
correlation functions for ICO and CUBO are also calculated.

These are directly connected to the magnetic structure factor by
a Fourier transformation, which in principle can be measured
experimentally by, e.g., neutron scattering techniques. Never-
theless, we are not aware of such experiments on clusters. The
correlation function at finite temperature can be defined as

〈�si · �sj 〉 = Tr e−βH �si · �sj

Tr e−βH , (9)

where β = 1/T with the temperature measured in units of
|J |. However, at T = 0 the correlation functions are calculated
from the eigenvectors obtained from the exact diagonalization
of the Hamiltonian in Eq. (6) directly. The distance dependence
of the correlation function at zero temperature is plotted in
Fig. 5. The correlations for the FM case are found to be

TABLE II. Ground-state expectation values of center and surface
spins at ω = 0 for the AFM case of ICO and the corresponding Sz.
Note that for Sz = 13/2 the central spin is oriented parallel and Eq. (8)
does not hold.

Sz 〈sz
0〉 〈sz

i 〉
13/2 +0.5000 0.5000
11/2 −0.4231 0.4936
9/2 −0.4091 0.4091
7/2 −0.3889 0.3241
5/2 −0.3571 0.2381
3/2 −0.3000 0.1500
1/2 −0.1667 0.0556
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FIG. 8. (Color online) Magnetization as a function of magnetic field measured in units of |J | at various temperatures for the AFM (left)
and FM (right) cases of 13-atom ICO. With increase in temperature (arrows), the plateaus start to vanish for the AFM case of 13-atom ICO.
The insets for both AFM and FM cases show the variation of magnetization with respect to temperature for several values of magnetic fields
(arrows).

constant for both geometries, whereas for AFM interactions,
we obtain different correlation functions for ICO and CUBO,
suggesting the existence of frustration in the system. However,
the ICO seems to be less frustrated with respect to the CUBO,
as a regular + − +− oscillation is found for the ICO, while
the CUBO exhibits irregular and smaller correlations in the
third- and fourth-neighbor shells. The ground-state correlation
functions for the classical limit s→∞ are also calculated
for these clusters. Comparing the classical and quantum spin
correlation functions reveals that the ground-state correlation
functions for the ICO with s = 1/2 show a similar qualitative
trend compared to the classical case, while for the CUBO the
correlation functions show large deviations in the third and
fourth neighbors relative to the corresponding classical case.
This trend indicates that the CUBO has stronger frustration
effects than the ICO.

In addition, thermodynamic quantities such as entropy S

and specific heat C were calculated in the absence of dipolar
or uniaxial anisotropies for AFM interactions in the ICO and
CUBO as a function of magnetic field at several temperatures,
which are shown in Fig. 6. Sharp peaks at low temperature
are observed for the AFM case as the magnetic field is
changed. This is because the thermal fluctuation is enhanced
at those magnetic fields where level crossing occurs. Note
that the ground state entropy fulfills S0 = ln K0(kB = 1), with
degeneracy K0 from Table I (see dotted lines in Figures 6
and 7). With increasing temperature, however, a larger number
of states from each Sz sector contribute to the thermodynamics,
therefore a smearing of the peaks of the entropy S is observed.
Similar explanations can be given for the behavior of the
specific heat with respect to the magnetic field at various
temperatures. For the FM case (not shown), however, only
the maximum Sz block matrix has the lowest energy for all
magnetic fields, leading to a single step or peak at Bz = 0
in the corresponding quantities and therefore are not shown
in the present paper. The thermodynamic observables for the
antiferromagnetic interactions as a function of temperature for
both cluster geometries are shown in Fig. 7. The peak in the

specific heat curve as a function of temperature at T ≈ 1 marks
the classical excitations in the system. However, both systems
also have pure quantum excitations from the low-lying energy
levels at lower temperatures, visible as additional peaks in the
specific heat and plateaus in the entropy. For example, in the
case of ICO at Bz = 2, these excitations are at a very low
temperature T ≈ 10−3 and stem from the very small energy
gap �E1 = 0.0045 in the Sz = 5/2 sector, see Table I. A
similar behavior is observed at Bz = 1, where the maximum
at T ≈ 10−2 comes from the small energy gap �E1 = 0.022
in the Sz = 3/2 sector.

Figure 8 shows the variation of magnetization as a function
of the magnetic field at different temperatures for AFM
(left) and FM (right) interactions. It shows that for both
interactions, the magnetization is smeared out with increasing
temperature. The insets in Fig. 8 (left and right) show the
variation of magnetization with respect to the temperature at
different magnetic fields, which shows that quantum effects
vanish at around T ≈ 0.1 in the AFM case and that the total
magnetization tends to decrease with increasing temperature.
For CUBO, a similar variation of magnetization as a function
of magnetic field is observed.

1

4

3

2

4

3

2

1

FIG. 9. (Color online) Schematic picture of a planar square (left
panel) and a tetrahedron (right panel). The double arrows indicate the
radial anisotropy axes for s = 1. For the square case, the magnetic
field is perpendicular to the plane; for the tetrahedron, it is aligned
parallel to �r1.
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FIG. 10. (Color online) The effect of anisotropy on magnetization as a function of external magnetic field (measured in units of |J |) for
the spin-1 tetrahedron [(a) and (b)] and square [(c) and (d)]. The results for FM and AFM interactions are shown in the left and right panels,
respectively. The black line (circles) shows the variation of magnetization as a function of the magnetic field. The curves with squares (brown)
and diamonds (magenta) show the variation of the same quantity for positive and negative D.

IV. 4-ATOM CLUSTER WITH SPIN-1

Now we present results for 4-atom clusters with s = 1 and
uniaxial anisotropies [see Eq. (4)]. It may be noted that such
anisotropies only give a constant for s = 1/2. For a spin-1
system, the total Hamiltonian in the presence of local uniaxial
anisotropy axes �ei reads

H4 = −
∑
i<j

Jij �si · �sj − BzSz −
∑

i

Di ( �ei · �si)
2, (10)

where Di are the local uniaxial anisotropy constants and �ei are
the easy axes compatible with the symmetry of the system.50

We previously studied the structural and magnetic properties
of small transition metal clusters with more emphasis on
the magnetic anisotropy using the density functional theory
(DFT),50 where the energies obtained from DFT calculations
were fitted by using a classical Heisenberg Hamiltonian. The
investigations presented here can be viewed as a continuation

of the previous work in the sense that we perform exact
diagonalization of a corresponding quantum spin Hamiltonian
to study the system.

There have been several studies related to the magnetic
and thermodynamic properties of spin-1 clusters35,51 through
the Heisenberg model. However, studies including the effect
of local uniaxial anisotropy on cluster properties are still
limited.52 In the present work, we studied the influence of
radial anisotropy on the magnetic properties and temperature-
dependent correlation functions for the spin-1 tetrahedron and
square as shown in Fig. 9. A regular tetrahedron (symmetry
group Td ) consists of four triangular faces, whereby the
triangles meet at each vertex and are equilateral. A square
is a regular quadrilateral with D4 symmetry.

In the presence of radial anisotropy, the Hamiltonian is
modified to a form as represented in Eq. (10), where Di = D

is the anisotropy constant and �ei are the easy axes which differ
for each spin. In Fig. 9 the anisotropy axes (double arrows)

104438-8



EFFECT OF ANISOTROPY ON SMALL MAGNETIC CLUSTERS PHYSICAL REVIEW B 84, 104438 (2011)

0.0

0.5

1.0

D = -5.0
D = -2.5
D =  0. 0
D =  2. 5
D =  5. 0

-1.0

-0.5

0.0

0.0

0.5

1.0

〈 s
i⋅s j

〉

-1.5

-1.0

-0.5

0.0

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

Temperature T

0.0

0.5

1.0

Temperature T

0.0

0.5

1.0

Square n.n.

AFMFM

Tetrahedron

Square next n.n.

(a)

(c)

(b)

(d)

(e) (f)

Tetrahedron

Square n.n.

Square next n.n.

FIG. 11. (Color online) Variation of the spin-spin correlation function with temperature (expressed in units of |J |) for the FM and AFM
spin-1 tetrahedrons and squares. Diamonds, open symbols, and filled symbols represent the correlation functions 〈�si · �sj 〉 for zero, negative,
and positive anisotropy constants D, respectively.

pointing into the radial directions are shown for the square and
tetrahedron. For the 4-atom spin-1 cluster, the Hamiltonian
matrix is of dimension 34 × 34. For D = 0, the Hamiltonian
matrix can be decomposed into nine block matrices with Sz =
−4, − 3, . . . ,4. However, at finite D the block matrix structure
is destroyed because the uniaxial anisotropy term does not
commute with total Sz and the whole Hamiltonian matrix has
to be diagonalized.

The presence of anisotropy D results in a different quali-
tative behavior of magnetization as a function of the external
magnetic field, as shown in Fig. 10 for the tetrahedron and
the square. In the absence of magnetic anisotropy (D = 0),
we obtain a single step in the magnetization for FM exchange
interactions and nine plateaus for AFM exchange interactions
for both clusters, the tetrahedron and the square. The presence
of anisotropy leads to the smearing of magnetization with
respect to magnetic field for FM and AFM interactions (see
the squares and diamonds) of the square and tetrahedron, since
Hani mixes the eigenstates of H0 with different total spin

values. In particular, for the tetrahedron geometry, we observe
differences in the magnetization for positive and negative
values of D, whereas for the square geometry, the change
of sign in the anisotropy does not affect the magnetization
significantly. This shows the dependence of anisotropy on the
structural symmetry, which was observed earlier for 13-atom
clusters through Monte Carlo simulations.34

In addition, we calculated the temperature-dependent corre-
lation functions, as defined in Eq. (9), for the 4-atom clusters
with spin 1 in the presence of anisotropy. The variation of
the nearest-neighbor correlation functions with respect to
temperature is plotted in Fig. 11 for the spin-1 tetrahedron
and square with different anisotropy constants for the FM
and AFM case. For both interactions, it was observed that
the anisotropy modifies the correlation function significantly
at low temperatures. The correlations are positive in the FM
cases and negative in the AFM case. For D � 0 the correlations
decrease with temperature as expected. However, for negative
D the correlations are reduced at low temperatures due to the
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TABLE III. Size of block matrix, lowest energy eigenvalues E0, �E1, and degeneracies K0, K1, for different Sz for 13-atom AFM ICO
with spin 1.

|Sz| Matrix size E0/|J | K0 �E1/|J | K1

13 1 +42 1 − −
12 13 +29 1 4.763932 3
11 91 +17 1 4.763932 3
10 442 +10.763932 3 1.236068 5
9 1651 +5.034063 5 0.147456 1
8 5005 −0.131753 4 0.061759 3
7 12727 −4.663902 4 0.032182 5
6 27742 −8.608201 3 0.035204 4
5 52624 −11.932667 4 0.040381 4
4 87802 −14.679508 5 0.011089 3
3 129844 −16.920343 5 0.007569 4
2 171106 −18.566489 3 0.013245 4
1 201643 −19.506298 5 0.007972 5
0 212941 −19.839976 3 0.034983 3

quantum effects, as can be seen most easily for the square:
here the classical ground state would be a FM or AFM
state in the direction perpendicular to the plane, because in
this case all couplings are satisfied and the spin directions
are all perpendicular to the anisotropy axes as required.
However, Hani introduces a spin-flip process in the system
and as a consequence the ground state becomes the linear
combination of states with different magnetization. Hence a
strong reduction in correlations is observed in the presence
of anisotropy term at low temperatures. This reduction of
correlations becomes negligible at higher temperatures, and
correlations decrease as usual. While the nearest-neighbor
correlations in the AFM square [Fig. 11(d)] are negative, the
second nearest-neighbor correlations are positive, because the
square is not frustrated.

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

Magnetic field B
 z

-10.0

-5.0

0.0

5.0

10.0

M
ag

ne
tiz

at
io

n 
M

 z

D =  0.0
D = -5.0
D =  5.0

AFM

FIG. 12. (Color online) Variation of magnetization Mz as a
function of the external magnetic field Bz (measured in units of |J |)
for different values of the radial uniaxial anisotropy D for the spin-1
AFM icosahedron.

V. SPIN-1 ICOSAHEDRON

Finally we present the results for the spin-1 icosahe-
dron with the Hamiltonian described in Eq. (6). Now the
Hamiltonian matrix has 313 = 1594323 columns and rows.
For vanishing anisotropy, it can be decomposed into block
matrices whose sizes are the trinomial numbers ( 13

k )2 for
−13 � k � 13, given in Table III together with the lowest
eigenvalues of each Sz block. From these results we compute
the hysteresis curve shown in Fig. 12 as a black line. The
curve is similar to the spin-1/2 case, since for fields below
|Bz| � 6 the magnetization varies with nearly constant step
size from −11 to 11. The plateaus at Sz = ±11 mark the
saturated outer shell, where only the central spin still points
antiparallel to the external field. At larger fields also �s0 aligns
with the field in two steps, one from 〈sz

0〉 = −1 to 0 at Bz = 12
and one from 〈sz

0〉 = 0 to 1 at Bz = 13. This behavior already
shows characteristics of the classical limit, in which the steps
vanish and the magnetization varies continuously with field.
Nevertheless, also in this limit we find a plateau at Mz = 11
with reversed central spin, which rotates toward the field
direction in the range 11 < Bz < 13.

The ground-state spin correlation functions for the AFM
case of ICO with spin 1 are plotted in Fig. 5 (see the filled
squares). This shows again similar qualitative behavior to the
spin-1/2 case and shows antiferromagnetic order in the AFM
case; interestingly, now the anticorrelation between the third-
neighbor atoms is larger than the nearest-neighbor value. This
shows that the correlation approaches toward the classical limit
−1, as shown in Fig. 5 (the dashed line). On the other hand, for
the FM case, the correlation functions for all shell neighbors
become unity for the ICO.

Additionally, we calculated the hysteresis for the icosahe-
dron with radial uniaxial anisotropy according to Eq. (10).
For these calculations it was again necessary to work with
the whole Hamiltonian matrix, because the anisotropy term
does not commute with the interaction term and thus destroys
the block structure of H. Nevertheless, we could calculate
the smallest eigenvalues and eigenvectors using a Lanczos
scheme. The resulting curves are shown in Fig. 12 as magenta
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(D = −5) and brown (D = +5) lines, they are similar to the
results for the tetrahedron with anisotropy shown in Figs. 10(a)
and 10(b).

VI. SUMMARY AND OUTLOOK

We employed the exact diagonalization technique for small
spin clusters with 4 and 13 vertices using the quantum-
mechanical nearest-neighbor Heisenberg model and calcu-
lated the full energy spectrum numerically as well as the
ground-state energies of the 13-atom systems analytically.
The magnetic and thermodynamic properties as well as
the spin-spin correlation functions are derived from these
results. The ground-state magnetization shows discontinuities
accompanied by a magnetization plateau as a function of the
magnetic field for the antiferromagnetic exchange interac-
tion. These magnetization plateaus vanish for temperatures
around T � 0.1|J |. The ground-state correlations suggest that
the icosahedron is less frustrated than the cuboctahedron,
since a regular + − +− oscillation is found for the ICO, while
the CUBO has irregular correlations with smaller values in the
third- and fourth-neighbor shells, see Fig. 5.

We have shown that the dipolar interaction plays a signif-
icant role in the magnetization in case of AFM interactions
of the ICO. Our investigations show that dipolar interactions
have a strong influence on the magnetization of surface
atoms in an external magnetic field, while the field-dependent
magnetization of the center atom remains nearly unchanged
by the dipolar interactions.

The field dependence of magnetization and temperature
dependence of the correlation function on the tetrahedron
and square for s = 1 indicate that the influence of radial
anisotropies on the magnetic properties strongly depends on
the structural symmetry of the cluster.

Finally, we investigated the 13-atom icosahedron with
s = 1, which involves quite large Hamiltonian matrices
of dimensions 313 × 313 that cannot be decomposed into
smaller block matrices if the local uniaxial anisotropy
axes are present. Using Lanczos methods we calculated
the lowest eigenvalues and corresponding eigenvectors of
these large matrices, determined correlation functions and
hysteresis curves, and compared these results to the spin-1/2
cases.

Regarding any comparison of this exact diagonalization
calculation with experiments one has to first of all note that
this requires tiny negative exchange couplings to observe
the quantum effects (such as steps) in reasonable magnetic
fields. Nevertheless, a few examples exist in nature such as
Mn12-acetate and Mn4-dimer molecules embedded in organic
ligands, which fulfill this condition; see, for instance, Refs. 1
and 2. Another interesting point is a collection of quantum
clusters showing long-range order at low temperatures. For
such calculations, exact diagonalization results can be used as
a basis. This is left for future studies.
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16C. Schröder, H.-J. Schmidt, J. Schnack, and M. Luban, Phys. Rev.

Lett. 94, 207203 (2005).
17J. Schnack, R. Schmidt, and J. Richter, Phys. Rev. B 76, 054413

(2007).

18J. Schnack and O. Wendland, Eur. Phys. J. B 78, 535 (2010).
19J. van Slageren, P. Rosa, A. Caneschi, R. Sessoli, H. Casellas, Y. V.

Rakitin, L. Cianchi, F. Del Giallo, G. Spina, A. Bino, A.-L. Barra,
T. Guidi, S. Carretta, and R. Caciuffo, Phys. Rev. B 73, 014422
(2006).

20O. Ciftja, M. Luban, M. Auslender, and J. H. Luscombe, Phys. Rev.
B 60, 10122 (1999).

21O. Ciftja, Physica A 286, 541 (2000).
22D. Coffey and S. A. Trugman, Phys. Rev. Lett. 69, 176 (1992).
23A. Honecker and M. E. Zhitomirsky, J. Phys. Conf. Ser. 145, 012082

(2009).
24S. R. White, Phys. Rev. B 48, 10345 (1993).
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