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Structural and magnetic ground-state properties of γ -FeMn alloys from ab initio calculations
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The magnetic properties of fcc-FeMn alloys, especially at the Fe0.5Mn0.5 composition, have been the subject
of intense experimental and theoretical investigations for several decades. We carry out an ab initio theoretical
study of this system, including simultaneous optimization of structural and magnetic properties, and find that
the ground state is the locally relaxed noncollinear 3Q antiferromagnetic structure. We also show that the two
most frequently used parameterizations of the generalized gradient approximation not only fail to reproduce the
equilibrium lattice constant of FeMn alloys, and consequently the magnetic properties, but also internally yield
qualitatively different results. For practical studies of these alloys, which currently attract great attention, we
propose a set of approximations, which is internally consistent, and brings the equilibrium lattice constant and
magnetic properties in good agreement with the experiment in the whole range of alloy compositions.
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I. INTRODUCTION

FeMn alloys are truly versatile materials in modern tech-
nological applications. Recent advancements in steel research
rely on FeMn alloys with up to 30% Mn for greatly improved
strength and ductility due to twinning- and transition-induced
plasticity (TWIP and TRIP) effects.1,2 In the spin valves
of contemporary computer disk read heads and memories,
stoichiometric fcc-Fe0.5Mn0.5 alloys are standard materials for
pinning ferromagnetic layers due to their antiferromagnetic
(AFM) properties.3,4 To optimize the performance of such
FeMn-based materials, an understanding of their microscopic
properties and realistic computational models are key factors.
For example, the effectiveness of the exchange bias field5

utilized in spin valve structures depends on the type of AFM
ordering,6,7 and the performance of TWIP and TRIP steels
may be related to the stacking-fault energy of the fcc phase.2

Kouvel and Kasper investigated the magnetic state of
chemically disordered bulk fcc-Fe0.75Mn0.25 by means of
neutron diffraction measurements and found long-range AFM
order,8 but the precise nature of the AFM state could not
be unambiguously established. Three kinds of AFM states
compatible with the measurements have been proposed: the
collinear 1Q magnetic state, and the noncollinear 2Q and 3Q

states,8–11 which are illustrated in Fig. 1.
Endoh and Ishikawa constructed a magnetic phase diagram

with approximate composition boundaries containing three
magnetically homogeneous phases.10 In the limits of low
(below 20%) or high (above 65%) Mn concentration, the
1Q state was found. Between these points, the data were
interpreted in favor of the noncollinear 3Q magnetic state.
In contrast, Bisanti et al. concluded from neutron diffraction
and spin-wave measurements in Fe0.66Mn0.34 that the alloy
has a 1Q magnetic state.12 Kennedy and Hicks performed
a Mössbauer spectroscopy study of Fe0.5Mn0.5 which was
claimed to rule out 1Q, and although measurements could
not distinguish between 2Q and 3Q, the 3Q configuration
was favored as the magnetic ground state.13 In a study on
Fe0.54Mn0.46 at very low temperatures, Kawarazaki et al.
claimed to have found definite evidence of 3Q as the ground
state by measuring the anisotropy of γ -ray emission.14

Due to the lack of experimental consensus, it is desirable to
obtain an ab initio description of the system that is independent
of empirical parameters. Being an itinerant antiferromagnetic
system,11 the FeMn alloy still represents a true challenge in
electronic structure theory. Substantial efforts using ab initio
computational methods based on density functional theory
(DFT) have been devoted to finding the magnetic ground state.
However, theoretical results have also turned out to be varying
with the employed methods and approximations.

Kübler et al. considered L10-ordered Fe0.5Mn0.5 com-
pounds using the local spin density approximation (LSDA)
to the DFT exchange-correlation functional, and the atomic
sphere approximation (ASA) to the potential and magnetiza-
tion density. It was found that the 2Q magnetic state is the
more favorable structure.15 This conclusion was supported in
subsequent work by different authors.16,17 Nakamura et al.
went beyond the ASA to include noncollinearity within the
spheres, and found this contribution to stabilize the 3Q

state.18 Spišák and Hafner performed a study where the
magnetic moments were not constrained to the symmetrical
configurations in Fig. 1, but were relaxed to a self-consistent
ground state.19 A new state was then found, consisting of
parallel Fe moments with the Mn moments tilted 68◦ away,
making the net Mn magnetization opposite to that of Fe.

Using the coherent potential approximation (CPA) to
consider the chemically disordered Fe0.5Mn0.5 alloy, Johnson
et al. found that the 1Q-ordered state is more stable than a
magnetically disordered state.20 Later CPA studies, including
also the noncollinear 2Q and 3Q states, found 3Q to be
the most favorable magnetic configuration.17,21 However, in
Ref. 17, the chemically ordered compound with 2Q magnetic
order was, in fact, found to be more stable than the chemically
disordered alloy having the 3Q magnetic configuration. In a
supercell calculation, again relaxing the magnetic moments
self-consistently, Spišák and Hafner found the ground state
of chemically disordered FeMn to be an almost perfect 1Q

magnetic state.19 Stocks et al. performed first-principles spin
dynamics calculations for disordered supercells to recover
the 3Q state as more stable than 1Q, and also demonstrated
the tendency of the magnetic moments to relax locally from
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FIG. 1. (Color online) The three AFM orderings suggested as the
magnetic ground state for fcc-FeMn alloys: 1Q (left), 2Q, (middle),
and 3Q (right).

the ideal 3Q state.22 Common to all theoretical results is
that relative energy differences between the studied magnetic
states are very small, in the order of meV per atom, and as
revealed by the diverse conclusions, small differences in the
computational approximations can qualitatively change the
results.

The purpose of the present work is twofold. First, we pro-
ceed to more accurate methods in the search for the magnetic
ground state of disordered fcc-Fe0.5Mn0.5 by also taking into
account local lattice relaxations as well as local magnetic
reorientations. In addition, as the vast majority of the previous
theoretical work for the disordered FeMn system cited above
is based on the use of the LSDA for the exchange-correlation
functional, in combination with the room-temperature lattice
constant, we also investigate the influence of the unit cell
volume, and the choice of the exchange-correlation functional
parametrization, on the resulting magnetic properties of FeMn
alloys. This is an interesting issue for the FeMn system
since it is well known that for pure Fe, the magnetic
ground state properties are very sensitive to the unit cell
volume.23 In the bcc-based α phase of Fe, the LSDA severely
underestimates the equilibrium volume as compared to exper-
iment, and thus fails to reproduce the ferromagnetic ground
state. However, if the unit cell is fixed to the experimental
volume, correct results are recovered. Using the generalized
gradient approximation (GGA) results in an improved de-
scription of the equilibrium volume and thus correct magnetic
properties.

The fcc-based γ phases of Fe and Mn are both ther-
modynamically stable far above room temperature.24 γ -Fe
is found in the range of 1185–1667 K (Ref. 24), but has
been stabilized down to very low temperature (a few K) by
precipitation in a Cu matrix,25,26 alloying,27 or thin film growth
on a metal substrate.28 Below the Néel temperature of ∼ 70 K
(Refs. 29 and 30), it has been found in both experimental31

and theoretical32–34 studies that the magnetic ground state is
strongly dependent on the lattice parameters, which, in turn,
depend on the growth conditions. As a result, both an AFM
state and a spin-spiral state have been reported.35,36

γ -Mn is stable between 1352 and 1416 K (Ref. 24), but was
stabilized by Endoh and Ishikawa down to room temperature
by the addition of copper or carbon.10 In this regime, which is
below the Néel temperature of 540 K, the magnetic state was
concluded to be 1Q AFM. The local magnetic moment has
been extrapolated from room-temperature measurements on
FeMn alloys to be between 1.7 and 2.4 μB (Ref. 23). However,
for fcc-Mn, LSDA has again been found to underestimate the
lattice spacing, and failing to reproduce a nonzero magnetic
moment. In this case, the underestimated lattice spacing is not

corrected by the GGA.37 However, calculations employing
dynamical mean field theory (DMFT) in combination with
the LSDA, which describes the role of Coulomb correlations
beyond a local or semi-local level, have reproduced the
experimental lattice spacing37 and electronic spectrum.38 The
success of such studies, which incorporate strong many-body
effects, underline the importance of 3d-electron correlations
in this system.

Unfortunately, treating strong many-body effects in alloys
would be tremendously expensive from a computational point
of view. The second purpose of this work is therefore to suggest
a computational scheme that is internally consistent to meet
the demand of an efficient yet nonempirical computational tool
for practical simulations of FeMn-based materials.

This article is organized as follows: In Secs. III A and III B
we consider the magnetic ground state of fcc-Fe0.5Mn0.5. In
Sec. III C we include Fe- and Mn-rich alloys, and in Sec. III D
we introduce the proposed computational scheme.

II. COMPUTATIONAL DETAILS

We have employed two complementary methods: the pro-
jector augmented waves (PAW)39,40 technique, implemented in
the Vienna ab Initio simulation package (VASP ),41–43 and the
exact muffin-tin orbitals (EMTO) method44,45 in conjunction
with the full charge density technique (FCD).46 In both
methods we rely on the atomic moment approximation23 for
the description of nonuniformly magnetized systems.

In PAW calculations, chemically disordered fcc-Fe0.5Mn0.5

was modeled using a 64-atom supercell which was con-
structed according to the special quasirandom structure (SQS)
technique,47 as described in Ref. 48. When considering
1Q antiferromagnetic ordering, the magnetic moments were
constrained to be either parallel or antiparallell to the global
quantization axis, allowing only longitudinal relaxations. This
is in contrast to the case of 2Q and 3Q orderings, where
magnetic moments were allowed to relax locally from the
〈110〉 and 〈111〉 directions, respectively. We refer to the locally
relaxed noncollinear states as 2QR and 3QR. In evaluation of
total energy, we employed the tetrahedron method with Blöchl
corrections.49 When relaxing ion positions, the first-order
Methfessel-Paxton method50 was used with the smearing
width parameter σ set to 0.2 eV. We kept the basis set
cutoff fixed to 300 eV and used a 5 × 5 × 5 k-points mesh,
from which special k points were chosen according to the
Monkhorst-Pack scheme.51 We have used several different
approximations to the exchange-correlation functional, in-
cluding the LSDA and the GGA as parametrized by Perdew-
Wang (PW91)52 and Perdew-Burke-Enzerhof (PBE).53 When
employing the PW91 functional we used the recommended
Vosko-Wilkes-Nusair54 interpolation of the Ceperly-Alder
correlation energy density.55

We have used a scalar-relativistic implementation of the
EMTO method which allows us to consider magnetic moments
with arbitrary orientation. This implementation makes use of
the generalized Bloch theorem56 to constrain the magnetic
moments of each atomic sphere to have a certain direction
with respect to the global quantisation axis. Self-consistent
relaxation of magnetic moments is then limited to their
magnitudes. We used a basis set of s,p,d, and f exact
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muffin-tin orbitals and converged absolute total energy to the
order of 0.1 meV/atom with respect to the number of k points.
To model chemical disorder, we have used CPA.57,58 In the
EMTO calculations, we have used the LSDA and PBE-GGA
exchange-correlation functionals.

III. RESULTS

A. Fixed volume calculations fcc-Fe0.5Mn0.5

Assuming different global AFM configurations, we have
calculated total energies of chemically random fcc-Fe0.5Mn0.5

with different levels of approximation to identify the roles
of magnetic and ionic relaxations. We begin by keeping
the unit cell volume fixed to the experimental value and
use the LSDA exchange-correlation functional, which is a
combination of approximations used in previous theoretical
work on this system and was advocated in Ref. 59 for
an accurate description of electronic structure in transition
metals. In line with the literature, we have used the value
3.60 Å for the T = 0 K lattice constant, which was obtained
in Ref. 15 by extrapolation from experimental data, and
corresponds to the unit cell volume of 11.7 Å3. At room
temperature, the lattice constant has been reported to be 3.63 Å
(Refs. 10 and 60), corresponding to the unit cell volume
12.0 Å3.

Using the EMTO-CPA method to consider the ideal fcc
crystal lattice we have calculated total energy as a function of
the tilt angle θ , which determines the type of AFM ordering
as illustrated in Fig. 2. As θ is increased, the magnetic
configuration goes continuously from the 1Q state at θ = 0
through the 3Q state at θ = 0.3π and 2Q at θ = 0.5π .
Figures 3 and 4 show the results obtained at zero- and room-
temperature lattice constants, respectively. We find that the
total energy is minimized by the 3Q configuration, followed
by 2Q and 1Q. Since

E(θ ± π ) = E(θ ), (1)

by symmetry, these calculations for the ideal fcc lattice suggest
that the 3Q state constitutes the only energy minimum, while
2Q and 1Q seem to be unstable against variations in θ .

Using the PAW method on the ideal fcc lattice we include
relaxation of magnetic moments from the ideal 〈111〉 and
〈110〉 directions in noncollinear supercell calculations. As

 θ

 θ
 θ

 θ

FIG. 2. (Color online) Illustration of the tilt angle θ , determining
the type of AFM state. θ = 0 corresponds to 1Q configuration. As θ

is increased, the moments of the magnetic unit cell are tilted toward a
common center, resulting in 3Q at θ = arccos( 1√

3
) ≈ 0.30π and 2Q

at θ = π/2. Dashed lines connect the bases of magnetic moments
that are tilted within a common plane.
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FIG. 3. (Color online) (a) Total energy and (b) average magnetic
moments as a function of the tilt angle θ in chemically disordered fcc-
Fe0.5Mn0.5 at the experimental lattice constant a = 3.60 Å obtained
with the EMTO-CPA (squares) and PAW supercell methods for ideal
(diamonds) and locally relaxed (circles) lattices using the LSDA
functional.

seen in Figs. 3 and 4, these results do not influence the
conclusions derived from EMTO-CPA calculations concerning
the 1Q–2Q–3Q relationships. Comparing Figs. 3 and 4 we
also note that thermal expansion increases the 1Q–3Q energy
difference. The results presented so far are in agreement with
Refs. 17, 21, and 22 although the 1Q–3Q energy difference is
larger in Refs. 21 and 22. However, it should be noted that the
energy scale is very small, and differences in computational
methodology may be responsible for quantitative differences
between earlier results and ours.

As mentioned in Sec. II, to distinguish the magnetic
states with local moments deviating from the ideal 2Q and
3Q orientations, we refer to them as 2QR and 3QR. We
have calculated the magnitude of the local reorientations by
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FIG. 4. (Color online) Same quantities as in Fig. 3 but calculated
at the room-temperature lattice constant of 3.63 Å.

computing the average angle between the ideal and relaxed
orientations of the moments:

〈α〉 = 1

N

N∑
i=1

arccos
mi · mR

i

|mi |
∣∣mR

i

∣∣ , (2)

taken over the N = 64 atoms of the supercell. For the 3QR

state, the average deviation is 9◦ for both Fe and Mn moments
at zero temperature, as well as for the room-temperature
volume; this is in agreement with the results obtained in the
spin dynamics calculations by Stocks et al.22 The magnitudes
of the magnetic moments obtained with the CPA and supercell
methods are in good agreement, as seen in Fig. 3(b). Average
Fe and Mn magnetic moments are close in magnitude and
take their largest values in the 3Q magnetic state. Previous
theoretical work for disordered fcc-Fe0.5Mn0.5 using the
present set of approximations have reported Fe moments in
the range of 1.48–1.79 μB and Mn in the range of 1.58–
2.17 μB, which typically is the largest.17,19,21,22 In the exper-
iment of Endoh and Ishikawa, the moments were reported to

be significantly lower, only 1 μB for both Fe and Mn atoms at
the stoichiometric composition.

Including also local relaxations of the ions from the ideal
fcc lattice sites has the effect of lowering the total energy by an
amount approximately equal to the 1Q–3QR energy difference
itself. However, the shift is rather independent of magnetic
configuration, and for 3QR the ion drift is, on average, 0.02 Å,
and 0.03 Å, for Fe and Mn, respectively. The average angle
of reorientation for 3QR is again found to be approximately
9◦ at both lattice constants. As seen in Fig. 3(b), the magnetic
moments are shifted to lower values with the inclusion of
local lattice relaxations, bringing them in closer agreement
with experiment. Nevertheless, the internal relations between
the 1Q, 2Q, and 3Q configurations are well captured even
in the absence of local environment effects, and CPA-based
methods may be used with confidence for practical purposes.

Based on the above results we conclude 3QR to be the
magnetic ground state of fcc-Fe0.5Mn0.5, in line with the results
in Ref. 22 for chemically disordered FeMn. We will next
investigate the ground state magnetic configuration including
unit cell optimization.

B. Unit cell optimization for γ -Fe0.5Mn0.5

1. Lattice constant of cubic structure

Using the LSDA functional, we find from EMTO-CPA
calculations the equilibrium unit cell volume of 10.0 Å3 for
fcc-Fe0.5Mn0.5. The equilibrium volume, which corresponds to
the lattice constant of 3.42 Å, is thus severely underestimated
compared to the experimental value of 11.7 Å3. This failure of
LSDA is not unexpected since it is known to overbind both Fe
and Mn, as discussed in Sec. I.

Total energy for the 1Q, 2Q, and 3Q magnetic config-
urations are very close around the equilibrium, but the 1Q

magnetic state is lower than the 2Q and 3Q states by 0.5 and
0.8 meV, respectively. At ∼11.3 Å3, we find the total energy
of the 1Q, 2Q, and 3Q configurations to be degenerate, and
with increasing volume we find the 3Q configuration to be the
more favorable state, as in the previous section.

In Fig. 5(a) we show the total energy as a function of unit
cell volume and lattice constant, calculated with the PBE-
GGA functional for the one-electron potential and the total
energy. The equilibrium volume is 11.1 Å3, assumed for the
1Q configuration, which corresponds to the lattice constant
of 3.54 Å, which is 1.7% smaller than the 0 K experimental
value. In other words, although the GGA improves the lattice
constant, it does not correct the overbinding of the LSDA,
and the magnetic configuration at equilibrium is the same as
obtained with LSDA. We also see in Fig. 5(a) that, at the
experimental volume, 3Q is again more favorable, in line with
the LSDA results.

In Figs. 5(b) and 5(c) we show magnetic moments calcu-
lated with the PBE-GGA functional, which are seen to be larger
as compared to the LSDA results in Fig. 3(b), and consequently
in worse agreement with the experiment. This may be expected
as the GGA functional overestimates magnetic energy.59

Using the PAW method with the PBE-GGA functional on
the ideal fcc lattice to include local magnetic relaxations, we
obtain results in good agreement with EMTO-CPA, favoring
the 1Q magnetic state at the equilibrium lattice parameter
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FIG. 5. (Color online) (a) Total energy and magnetic moments for
(b) Fe and (c) Mn atoms in Fe0.5Mn0.5, calculated with the EMTO-
CPA method and the PBE-GGA exchange-correlation functional
for cubic fcc structure assuming 1Q (red diamonds), 2Q (black
circles), and 3Q (blue squares) magnetic structure, as a function
of unit cell volume (lower horizontal scale) and the lattice constant
(upper horizontal scale). The red triangle shows the total energy for
the tetragonally distorted fct structure assuming 1Q ordering at the
ground state volume. In this case, it is very close to the ground state
volume obtained for 1Q order in fcc. The experimental unit cell
volume corresponding to 0 K is shown as a vertical dashed line.

3.53 Å, but holding 3QR more favorable at larger volume, as
shown in Fig. 6(a). Average magnetic moments, presented in
Figs. 6(b) and 6(c), are also in very good agreement with those
found with the EMTO-CPA method. We also note that local
lattice relaxations lower the Fe magnetic moments and increase
the Mn moments, but do not change the 1Q–3QR energy
relationship or the theoretical equilibrium lattice constant
significantly.

The average angles of magnetic moment deviations from
the ideal 〈111〉 orientations on the relaxed lattice, defined
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FIG. 6. (Color online) (a) Total energy and average magnetic
moments for (b) Fe and (c) Mn atoms in fcc-Fe0.5Mn0.5, assuming
the 1Q and 3QR magnetic states calculated with the PAW supercell
method using the PBE-GGA exchange-correlation functional. Solid
lines/filled symbols represent calculations on a static lattice and
dashed lines/open symbols represent calculations including local
lattice relaxations. In (a), red diamonds indicate 1Q state and blue
squares indicate the 3QR state. The experimental unit cell volume
corresponding to 0 and 300 K are shown as dash-dotted and dashed
vertical lines, respectively.

in Eq. (2), are between 9◦ and 10◦, depending on volume.
We find 80% of the magnetic moments within 16◦ of the
ideal 〈111〉 orientations. These results are close to what
was obtained in the preceding section using LSDA at the
experimental lattice constant.

Changing the parametrization of the GGA functional from
PBE to PW91, the situation concerning 1Q–3QR becomes
slightly different. For the ideal fcc lattice we obtain 3QR

as the ground state at approximately the same equilibrium
lattice constant as found using the PBE parametrization,

104423-5



M. EKHOLM AND I. A. ABRIKOSOV PHYSICAL REVIEW B 84, 104423 (2011)

3.50 3.52 3.54 3.56 3.58 3.60

a [ Å ]

10.72 10.9 11.09 11.28 11.47 11.66

0

5

10

15

20

25

30

V [ Å3 ]

ΔE
 [ 

m
eV

 / 
at

om
]

1Q static lattice
1Q relaxed lattice
3Q

R
 static lattice

3Q
R
 relaxed lattice

a
exp

 0 K

(a)

1

1.5

2

(b)

10.72 10.9 11.09 11.28 11.47 11.66
1

1.5

2

V [ Å3 ]

|m
| [

 μ
B
 ]

1Q static
1Q relaxed
3Q

R
 static

3Q
R

 relaxed

(c)

FIG. 7. (Color online) Same quantities as in Fig. 6 but calculated
with the PW91 exchange-correlation functional.

as seen in Fig. 7, though with slightly smaller magnetic
moments. Including local lattice relaxations results in a
slight preference of 3QR, but the minima are so close that
they must be considered degenerate. Thus, there is a clear
discrepancy between the results from the PBE- and PW91-
GGA functionals, which is also observed in fcc-Fe (Ref. 61).
However, we also note that at experimental volumes, 3QR

solution is again obtained as the magnetic ground state, in
agreement with all other computational methods considered
so far.

These facts—that by using the PBE-GGA functional we
obtain the 1Q configuration as the magnetic ground state
at equilibrium volume, but using instead the PW91-GGA
functional we find the 3Q state to be degenerate with the 1Q

state, or even more favorable depending on if local lattice
relaxations are included—point out the intricate magnetic
effects of this system, which apparently are not adequately

described by DFT methods based on local (LSDA) or semi-
local (GGA) exchange-correlation functionals.

2. Spin spiral states

As our PBE-GGA calculations assuming the 1Q, 2Q, and
3Q states fail to reproduce the experimental lattice constant in
fcc-Fe0.5Mn0.5, and indicate the 1Q state as the ground state
magnetic configuration, we have calculated the total energy of
various planar spin-spiral states, which includes the 1Q state.

In an experimental study of pure γ -Fe, Tsunoda et al.
reported a state with wave vector q along the line connecting
the X and W points of the fcc Brillouin zone.36 Theoretical
work has subsequently found several other metastable spin-
spiral states along the �–X line, depending sensitively on
volume.32–34

Using the EMTO method, we have restricted q along lines
connecting certain points of interest in the Brillouin zone, and
optimized the lattice constant for each value of q with the PBE-
GGA functional. For comparison, we have also performed
calculations using the LSDA functional at the experimental
lattice constant corresponding to 0 K.

Figure 8 shows results for the cubic fcc-Fe0.5Mn0.5 alloy.
GGA and LSDA results are in good agreement and indicate the
total energy to be minimized at the X point, which corresponds
to the 1Q magnetic configuration, with large Fe and Mn
moments. We also find several metastable states, at the K

and L points, as well as on the �–X, �–K , and L–� lines.
A further inspection of Fig. 8(b), reveals that the � point
actually corresponds to a collinear disordered ferrimagnetic
state, where the randomly distributed Fe and Mn atoms have
magnetic moments antiparallel to each other.

The most significant feature seen in Fig. 8(a) is, however,
that the energy difference between the X point and the other
spin spiral states investigated in this work is very large
compared to the 1Q–3Q energy difference. We may therefore
exclude these spin spiral states from further discussion of the
magnetic ground state.

3. Tetragonal distortions

Due to the tetragonal symmetry of the 1Q AFM state, it
may be associated with tetragonal distortions of the underlying
lattice from cubic symmetry. In γ -Fe stabilized below the Néel
temperature, the crystal structure of the 1Q-ordered phase has
indeed been found to show tetragonal distortions.62 Theoretical
calculations for pure 1Q-Fe using LSDA at the experimental
unit cell volume have yielded (c/a)0 = 1.08 (Refs. 63 and
64). With the EMTO method, we obtain the unit cell volume
of 10.9 Å3 for pure fct-Fe, which is close to what has been
reported in previous GGA calculations.65 The c/a ratio is 1.09,
which is in good agreement with previous work employing
LSDA at the experimental lattice constant,63,64 and with GGA
at equilibrium.65

For pure γ -Mn at room temperature, Endoh and Ishikawa
found the value (c/a)0 = 0.945 and the 1Q AFM configura-
tion. The local magnetic moment extrapolated to 0 K was found
to be 2.1 μB. A theoretical explanation for the relation between
the magnetic ordering and the distortion has been provided by
Oguchi and Freeman,66 and the observed contraction along
the AFM planes of γ -Mn has been reproduced several times
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FIG. 8. (Color online) (a) Total energy and (b) magnetic moments
in the Fe0.5Mn0.5 alloy calculated for planar spin spirals along lines
connecting certain high symmetry points of the fcc Brillouin zone.
In (a), total energy obtained using PBE-GGA exchange-correlation
functional is shown by blue squares and solid line, while LSDA results
are shown by red diamonds and dashed line. In (b), the magnetic
moments, for Fe are given by red triangles pointing up, while Mn
moments are given by blue triangles pointing down. The magnetic
moments shown are calculated with the LSDA functional.

in calculations,64,67–69 However, the experimental volume is
significantly underestimated in calculations based on LSDA
and GGA.37,68,69 We obtain the unit cell volume of 11.5 Å3

and (c/a)0 = 0.93, and the magnetic moment 2.2 μB. These
results are in reasonable agreement with previous theoretical
studies employing comparable methods.69 Theory is thus able
to reproduce the experimental c/a ratio, although the unit cell
volume is underestimated compared to the experimental value
of 12.9 Å3 (Ref. 10).

Since the end compounds show tetragonal contraction and
expansion it is interesting to investigate if the ground state
of the stoichiometric alloy deviates significantly from cubic
fcc structure. We have therefore relaxed the c/a ratio and

volume of 1Q fct-Fe0.5Mn0.5 using the EMTO-CPA method
with the PBE-GGA functional. As seen in Fig. 5(a), we obtain
a slight tetragonal distortion with (c/a)0 = 1.01 at the unit cell
volume of 11.1 Å3. However, total energy for fct is lower than
for fcc by less than 0.5 meV/atom, which is very little, and we
conclude that tetragonal distortions are of lesser importance at
this composition.

C. Off-stoichiometric compositions

Having performed a detailed analysis of our calculations
for the γ phase of the Fe0.5Mn0.5 alloy, we will now consider
the concentration dependence of the obtained results. We have
chosen compositions in the two 1Q fields of the magnetic
phase diagram of Ref. 10. Calculations were carried out
using the EMTO-CPA method, which readily allows any
composition to be considered.

Starting on the Fe-rich side of the phase diagram, we
have calculated total energy as a function of volume for
Fe0.9Mn0.1, which is displayed in Fig. 9. The results indicate
that the 3Q configuration is the magnetic ground state, which
is not in agreement with the magnetic phase diagram in
Ref. 10. Comparing with the room-temperature experimental
volume 11.5 Å3, obtained from interpolation of the data in
Refs. 10 and 60, we may conclude that our value of 10.8 Å3

is also an underestimation. Due to the contracted volume,
magnetic moments, shown in Figs. 9(b) and 9(c), are also
clearly underestimated at the equilibrium volume, compared
to the experimental average value of 2.0 μB, which was found
by extrapolation to 0 K (Ref. 10). However, magnetic moments
obtained at the experimental volume agree quite well.

Although Endoh and Ishikawa found the crystal structure
to be cubic fcc at this composition (with the addition of other
elements),10 we have relaxed the c/a ratio while assuming
the 1Q magnetic state. We find that as the cubic constraint
is removed, the lattice goes through nonnegligible tetragonal
distortions, ending at (c/a)0 = 1.08 at the unit cell volume of
10.9 Å3, as shown in Fig. 9. Clearly, the energy gain from
tetragonal distortions is greater than the 1Q–3Q difference,
and we find that 1Q-fct is more stable than 3Q-fcc at the
theoretical equilibrium volume. This is in agreement with the
experimental magnetic phase diagram, although the unit cell
volume is still strongly underestimated.

On the Mn-rich side of the phase diagram, we have
considered the Fe0.2Mn0.8 alloy. Calculations for the cubic fcc
crystal structure, shown in Fig. 10, yield the equilibrium unit
cell volume of of 11.3 Å3, and the 1Q magnetic state. Although
the obtained magnetic configuration agrees with Ref. 10, we
again observe a large discrepancy when comparing with the
reported unit cell volume, which is 12.3 Å3. Relaxing the
c/a ratio we obtain (c/a)0 = 0.97 at the volume 11.3 Å3, and
although the 1Q-fct state is lower than any cubic fcc-state we
have considered at this composition, the gain in total energy is
not as dramatic as on the Fe-rich side.

Table I summarizes our results for the lattice constant of
cubic fcc-FeMn alloys, which are compared with experimental
values. Allowing tetragonal distortions in the 1Q state leads
to new ground states at c/a ratios in good agreement with
experiment. However, it is also clear at this stage that
the present parametrizations of the GGA functional do not
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FIG. 9. (Color online) (a) Total energy and magnetic moments for
(b) Fe and (c) Mn atoms in Fe0.9Mn0.1, calculated with the EMTO-
CPA method and the PBE-GGA exchange-correlation functional
for cubic fcc structure assuming 1Q (red diamonds), 2Q (black
circles), and 3Q (blue squares) magnetic structure, as a function
of unit cell volume (lower horizontal scale) and the lattice constant
(upper horizontal scale). The red triangle shows the total energy
for the tetragonally distorted fct structure assuming 1Q ordering
at the ground state volume. The experimental unit cell volume
corresponding to 300 K is shown as a vertical dashed line.

accurately reproduce experimental values for the unit cell
volume of FeMn alloys, and that the disagreement worsens
with the increased concentration of Mn.

D. A practical scheme for calculations of FeMn alloys

As the unit cell volumes determined in the preceding
sections are consistently underestimated using both the
EMTO-CPA and PAW supercell methods, employing the
LSDA, PBE-GGA, and PW91-GGA functionals, we conclude
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FIG. 10. (Color online) (a) Total energy and magnetic moments
for (b) Fe and (c) Mn atoms in Fe0.2Mn0.8, calculated with the EMTO-
CPA method and the PBE-GGA exchange-correlation functional
for cubic fcc structure assuming 1Q (red diamonds), 2Q (black
circles), and 3Q (blue squares) magnetic structure, as a function
of unit cell volume (lower horizontal scale) and the lattice constant
(upper horizontal scale). The red triangle shows the total energy
for the tetragonally distorted fct structure assuming 1Q ordering
at the ground state volume. The experimental unit cell volume
corresponding to 300 K is shown as a vertical dashed line.

that state-of-the-art local and semi-local exchange-correlation
functionals may not be sufficiently accurate to describe the
FeMn alloy system. However, due to the industrial importance
of FeMn alloys, and the great need to find a theoretical
description beyond empirical models that is internally con-
sistent and agrees with experiment, we will demonstrate a
computational scheme that is free of adjustable parameters
and that reproduces experimental data, at least for the lattice
parameter and magnetic properties. This scheme consists of
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TABLE I. Calculated equilibrium lattice parameters for cubic fcc-
Fe1−xMnx alloys, and comparisons with experimental values.

a0 [Å]

EMTO +
x PAW EMTO frozen-core experiment

0.8 3.56 3.65 3.67a

0.5 3.53 3.54 3.63 3.60b, 3.63c

0.1 3.51 3.58 3.58d

0.0 3.50 3.50 3.56 3.58e

a300 K, Ref. 10 and extrapolation from values in Ref. 60.
bExtrapolation to 0 K Ref. 15.
c300 K, Refs. 10 and 60.
d300 K, extrapolation from values in Refs. 10 and 60.
e70 K, Refs. 62 and 76.

two choices of approximations, one concerns the description
of magnetism and the other one total energy.

In Secs. III D 1 and III D 2 we will show the individual
impact of each approximation on the equilibrium structural
and magnetic properties, before we demonstrate in Sec. III D 3
their performance when combined in the actual scheme.

1. Using LSDA charge density in the GGA functional
for total energy

As we have seen in Sec. III B 1, the total energy obtained
with GGA results in a better description of equilibrium volume
than that obtained by LSDA. At the same time, we have
also demonstrated in Sec. III A, that the self-consistent charge
density generated by the LSDA provides a better description of
magnetic moments, and presumably even the magnetic ground
state, if used in combination with the experimental lattice
parameter.

In this section we demonstrate that it is possible to
improve the variation of LSDA energy with volume by
including gradient corrections, by means of using LSDA to
calculate self-consistent charge density, nLSDA

0 , and degree of
magnetization. This charge density can then be used to evaluate
the exchange-correlation contribution to the total energy as

Exc =
∫

d3rf
(
nLSDA

0,↑ ,nLSDA
0,↓ ,∇nLSDA

0,↑ ,∇nLSDA
0,↓

)
. (3)

This methodology was successfully applied to FeNi alloys in
Ref. 70, where it was also explicitly demonstrated that the
scheme leads to very similar values of lattice parameters as
compared to fully self-consistent GGA calculations.

We have therefore recalculated equilibrium properties of
FeMn alloys with the EMTO method using the LSDA func-
tional during the Kohn-Sham iterations to find the nonspherical
charge density and magnetic moments, and then evaluating
total energy on that charge density, using the PBE form of the
function f .

The total energy obtained in this way for the fcc-Fe0.5Mn0.5

alloy is shown in Fig. 11(a), which may be compared with
the energy presented in Fig. 5(a), obtained with the standard
implementation of using the same exchange-correlation po-
tential for evaluating both charge density and total energy.
Equilibrium volumes for the 1Q, 2Q, and 3Q magnetic states
are essentially the same. However, total energy for the 1Q state
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FIG. 11. (Color online) (a) Total energy and magnetic moments
for (b) Fe and (c) Mn atoms in Fe0.5Mn0.5, calculated with the
EMTO-CPA method, using the LSDA functional to compute the self-
consistent charge density and magnetic moments, and then evaluating
total energy using this charge density in the GGA functional. In
(a) the total energy is shown for the cubic fcc structure assuming 1Q

(red diamonds), 2Q (black circles), and 3Q (blue squares) magnetic
structure, as a function of unit cell volume (lower horizontal scale) and
the lattice constant (upper horizontal scale). The red triangle shows
the total energy for the tetragonally distorted fct structure assuming
1Q ordering at the ground state volume. The experimental unit cell
volume corresponding to 0 K is shown as a vertical dashed line.

is shifted up with respect to 2Q and 3Q. This means that 3Q is
obtained as the magnetic ground state at equilibrium volume
followed by 2Q, in agreement with LSDA results obtained
at the experimental volume. The magnetic moments, which
are evaluated on the LSDA spin-dependent charge density,
are smaller than those shown in Figs. 5(b) and 5(c), bringing
the results in better agreement with the experimental value
of 1 μB.
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It is also interesting to note that with this set of approxi-
mations, we obtain Fe and Mn magnetic moments closer to
each other, which is in line with the measurements reported in
Ref. 10. Relaxing the c/a ratio for the 1Q state, we obtain the
same small tetragonal distortion as with fully self-consistent
GGA; (c/a)0 = 1.01, albeit with a small expansion in volume
to 11.2 Å3. As indicated in Fig. 11(a), this state is comparable
in energy to the fcc 3Q state, the difference being only
0.1 meV/atom.

Using the same approximation scheme for the Fe0.9Mn0.1

alloy, we obtain the results shown in Fig. 12. Comparing
equilibrium volumes and magnetic states with those presented
in Fig. 9, we find these results to be in close agreement,
except for a slightly increased tetragonal distortion of 1.09.
The difference lies in the magnetic moments, which again
are lower within this approximation. For Fe0.2Mn0.8 alloy, we
again find the tetragonal 1Q fct state to be lower in energy
than the 1Q state on the cubic fcc lattice, as shown in Fig. 13.
Magnetic moments are again significantly lower in magnitude
than those shown in Fig. 10.

Thus, for the off-stoichiometric compositions considered
in Sec. III C, we obtain within this approximation the same
equilibrium volumes and magnetic ground states as found
in Sec. III C from unconstrained EMTO-CPA calculations.
However, we observe a lower value of the magnetic moments,
which is more in line with experiment than what was obtained
in Secs. III B 1 and III C.

The method of using LSDA for the calculation of charge
density—and hence magnetic properties—in combination
with the GGA for the evaluation of total energy, may thus
be used in calculations of FeMn alloys. This combination of
approximations gives the same bonding properties as fully
self-consistent GGA calculations, but an improved description
of magnetism. It should be noted that the approximation
demonstrated in this section is based on physical arguments.
However, it does not solve the major shortcoming of either
the LSDA or the GGA functional, namely the severely
underestimated lattice parameters. In the following section
we shall demonstrate the next level of approximation in our
suggested scheme.

2. EMTO-calculations within the frozen-core approximation

We have tested the so-called frozen-core approximation
for FeMn alloys in combination with the EMTO basis set.
In this section we use the PBE-GGA functional for both the
charge density and total energy calculations to compare with
the results obtained in Sec. III B 1 for volumes and Sec. III A
for magnetic properties.

Our results for Fe0.5Mn0.5 in the 1Q, 2Q, and 3Q magnetic
states are shown in Fig. 14. For the cubic fcc lattice, the
lattice parameter obtained within this approximation is 3.63 Å,
corresponding to the unit cell volume of 12.0 Å3. The lattice
constant is less than 1% larger than the experimental value
deduced for 0 K, which is a typical result of a GGA calculation,
and is in better agreement with experiment than any other
approximation used in this work. Equilibrium values of the
lattice parameters using the EMTO method in combination
with the frozen-core approximation are also summarized in
Table I. The magnetic ground state at equilibrium volume is
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FIG. 12. (Color online) (a) Total energy and magnetic moments
for (b) Fe and (c) Mn atoms in Fe0.9Mn0.1, calculated with the
EMTO-CPA method, using the LSDA functional to compute the self-
consistent charge density and magnetic moments, and then evaluating
total energy using this charge density in the GGA functional. In
(a) the total energy is shown for the cubic fcc structure assuming 1Q

(red diamonds), 2Q (black circles), and 3Q (blue squares) magnetic
structure, as a function of unit cell volume (lower horizontal scale)
and the lattice constant (upper horizontal scale). The red triangle
shows the total energy for the tetragonally distorted fct structure
assuming 1Q ordering at the ground state volume. The experimental
unit cell volume corresponding to 300 K is shown as a vertical dashed
line.

also found to be 3Q—in agreement with LSDA and GGA
calculations at the experimental volume and the majority of
the experimental work. Interestingly, at smaller volumes, close
to our previous EMTO or PAW equilibrium volumes, the 1Q

magnetic configuration is lower in energy by a small amount.
However, the frozen-core approximation corrects the lattice
constant and therefore also the magnetic properties.
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FIG. 13. (Color online) (a) Total energy and magnetic moments
for (b) Fe and (c) Mn atoms in Fe0.2Mn0.8, calculated with the
EMTO-CPA method, using the LSDA functional to compute the self-
consistent charge density and magnetic moments, and then evaluating
total energy using this charge density in the GGA functional. In
(a) the total energy is shown for the cubic fcc structure assuming 1Q

(red diamonds), 2Q (black circles), and 3Q (blue squares) magnetic
structure, as a function of unit cell volume (lower horizontal scale) and
the lattice constant (upper horizontal scale). The red triangle shows
the total energy for the tetragonally distorted fct structure assuming
1Q ordering at the ground state volume. The experimental unit cell
volume corresponding to 300 K is shown as a vertical dashed line.

Relaxing the c/a ratio for the 1Q magnetic state we again
find a slight tetragonal distortion, and the ground state value
(c/a)0 = 1.02, but as indicated in Fig. 14(a), this state is not
lower in energy than the 3Q state on the cubic fcc lattice. It
may also be pointed out that the unit cell volume obtained with
this approximation, 11.8 Å3, is also in rather good agreement
with the experimental volume of 11.7 Å3.
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FIG. 14. (Color online) (a) Total energy and magnetic moments
for (b) Fe (b) and (c) Mn atoms in Fe0.5Mn0.5, calculated with the
EMTO-CPA method within the frozen-core approximation, using the
PBE-GGA exchange-correlation functional. In (a) the total energy is
shown for cubic fcc structure assuming 1Q (red diamonds), 2Q (black
circles), and 3Q (blue squares) magnetic structure, as a function of
unit cell volume (lower horizontal scale) and the lattice constant
(upper horizontal scale). The red triangle shows the total energy
for the tetragonally distorted fct structure assuming 1Q ordering
at the ground state volume. The experimental unit cell volume
corresponding to 0 K is shown as a vertical dashed line.

For fcc-Fe0.9Mn0.1, we obtain the lattice parameter 3.58 Å
for the cubic fcc structure, as shown in Fig. 15(a), corre-
sponding to the volume 11.5 Å3. This is in good agreement
with the experimental value, and also represents a significant
improvement over the results reported in Sec. III C. However,
the obtained ground state magnetic configuration is 3Q also
with this approximation, which does not agree with the results
reported in Ref. 10. Including tetragonal distortions in the 1Q

magnetic state, the equilibrium volume increases slightly to
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FIG. 15. (Color online) (a) Total energy and magnetic moments
for (b) Fe (b) and (c) Mn atoms in Fe0.9Mn0.1, calculated with the
EMTO-CPA method within the frozen-core approximation, using the
PBE-GGA exchange-correlation functional. In (a) the total energy is
shown for cubic fcc structure assuming 1Q (red diamonds), 2Q (black
circles), and 3Q (blue squares) magnetic structure, as a function of
unit cell volume (lower horizontal scale) and the lattice constant
(upper horizontal scale). The red triangle shows the total energy
for the tetragonally distorted fct structure assuming 1Q ordering
at the ground state volume. The experimental unit cell volume
corresponding to 300 K is shown as a vertical dashed line.

11.6 Å3 with (c/a)0 = 1.09, and this state is clearly lower in
energy than 3Q-fcc, as seen in Fig. 15(a).

Using the frozen-core approximation for fcc-Fe0.2Mn0.8

brings the lattice parameter to 3.65 Å for the 1Q magnetic
state, as seen in Fig. 16(a), which is also in good agreement
with experiment.10 Allowing tetragonal relaxations, we find
(c/a)0 = 0.98, close to what was obtained in Fig. 10 without
the frozen-core approximation, and the unit cell volume of
12.1 Å3. This puts the EMTO frozen-core results in good
agreement with the work of Endoh and Ishikawa,10 who
reported the unit cell volume of 12.3 Å3.
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FIG. 16. (Color online) (a) Total energy and magnetic moments
for (b) Fe (b) and (c) Mn atoms in Fe0.2Mn0.8, calculated with the
EMTO-CPA method within the frozen-core approximation, using the
PBE-GGA exchange-correlation functional. In (a) the total energy is
shown for cubic fcc structure assuming 1Q (red diamonds), 2Q (black
circles), and 3Q (blue squares) magnetic structure, as a function of
unit cell volume (lower horizontal scale) and the lattice constant
(upper horizontal scale). The red triangle shows the total energy
for the tetragonally distorted fct structure assuming 1Q ordering
at the ground state volume. The experimental unit cell volume
corresponding to 300 K is shown as a vertical dashed line.

In summary, we find that although the shape of the unit
cell is slightly different to what was obtained in Secs. III B
and III C, the frozen-core approximation in combination with
the EMTO basis set corrects the alloy equilibrium volume and
consequently the magnetic ground state configurations. For
all the compositions considered in this work, the magnitude
and volume dependence of the magnetic moments obtained
within the frozen-core approximation are very similar to
what was found with full EMTO calculations in Secs. III B
and III C. The most probable reason for this is a somewhat
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better cancellation of the errors obtained with this set of
approximations. However, the cancellation is systematic, and
is observed at all alloy compositions. But because of the
increase of the unit cell volume, magnetic moments are clearly
overestimated at equilibrium, as compared to experiment and
LSDA calculations (Sec. III A) at the experimental volume. It
should therefore be emphasized that, in contrast to the method
proposed in Sec. III D 1, the approximation suggested in this
section constitutes a pure computational simplification, which
corrects the equilibrium volumes.

As the magnitudes of the ground state magnetic moments
are overestimated within this scheme, we will now demonstrate
how the frozen-core approximation in combination with the
procedure outlined in the previous section may be combined in
order to give accurate results for both magnetic and structural
properties.

3. Proposed computational scheme for accurate theoretical
simulations of Fe-Mn alloys

Having established the better description of equilibrium
volumes within the frozen-core approximation (Sec. III D 2)
and the better description of magnetic properties provided by
the combined LSDA and GGA scheme (Sec. III D 1), we will
now show that the two approximation sets can be used in a
single scheme that accurately describes FeMn alloys in the
complete composition interval. This scheme has previously
been successfully used for calculations of elastic constants and
thermodynamic properties in paramagnetic and AFM Fe-Mn
alloys,71–75 and will now be given its formal justification.

In Fig. 17(a) we show the total energy as a function of
lattice constant for the Fe0.5Mn0.5 alloy. We again see that the
experimental lattice constant is reproduced quite well, and the
ground state magnetic configuration is again 3Q, as obtained
with LSDA and GGA when the lattice constant is fixed to this
value in Secs. III B 1 and III C. The results concerning volume
obtained with the present method thus agree with the scheme
used in Sec. III D 2, where the GGA functional was used to
obtain both charge density and total energy [Fig. 14(a)] in
combination with the frozen-core approximation. Magnetic
moments are, however, lower since the LSDA is used for
charge density, and thus magnetization. This improves the
agreement with experiment.

For the Fe0.9Mn0.1 alloy, the results for the total energy
are presented in Fig. 18. In the case of cubic fcc structure,
the system adopts the noncollinear 3Q order and the room-
temperature lattice constant is well reproduced. Allowing
tetragonal distortions leads to the overall ground state in the
1Q configuration, with the unit cell volume 11.6 Å3, which is
close to the experimental volume of the fcc phase.

In the Mn-rich alloy Fe0.2Mn0.8, we recover 1Q as the
ground state magnetic configuration in the cubic fcc phase,
as shown in Fig. 19. The lattice constant is close to the
experimental value. Allowing tetragonal distortions correctly
contracts the lattice along the direction of the spin density
wave, while essentially preserving the unit cell volume. For
both of the off-stoichiometric compositions, we again observe
how the magnetic moments are lower compared with what is
shown in Figs. 15 and 16.

For pure fct-Mn we obtain the unit cell volume of 12.2 Å3

in the 1Q magnetic configuration with (c/a)0 = 0.94, which is
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FIG. 17. (Color online) (a) Total energy and magnetic moments
for (b) Fe (b) and (c) Mn atoms in Fe0.5Mn0.5, calculated with the
EMTO-CPA method within the frozen-core approximation, using
the LSDA functional to compute the self-consistent charge density
and magnetic moments, and then evaluating total energy using this
charge density in the GGA functional. In (a) the total energy is shown
for cubic fcc structure assuming 1Q (red diamonds), 2Q (black
circles), and 3Q (blue squares) magnetic structure, as a function
of unit cell volume (lower horizontal scale) and the lattice constant
(upper horizontal scale). The red triangle shows the total energy
for the tetragonally distorted fct structure assuming 1Q ordering
at the ground state volume. The experimental unit cell volume
corresponding to 0 and 300 K are shown as dash-dotted and dashed
vertical lines, respectively.

a significant improvement compared with earlier results. The
magnetic moment is 2.3 μB, which is within the experimental
interval, as reported in Ref. 23. In cubic 1Q-ordered fcc-Fe we
find the unit cell volume 11.3 Å3, and allowing tetragonal dis-
tortions we find the volume 11.6 Å3 with (c/a)0 = 1.1, which
is close to the value of 11.4 Å3 that has been reported in low-
temperature measurements.62,76 Thus, the proposed scheme
can be used in the entire composition interval of FeMn alloys.
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FIG. 18. (Color online) (a) Total energy and magnetic moments
for (b) Fe (b) and (c) Mn atoms in Fe0.9Mn0.1, calculated with the
EMTO-CPA method within the frozen-core approximation, using
the LSDA functional to compute the self-consistent charge density
and magnetic moments, and then evaluating total energy using this
charge density in the GGA functional. In (a) the total energy is
shown for cubic fcc structure assuming 1Q (red diamonds), 2Q

(black circles), and 3Q (blue squares) magnetic structure, as a
function of unit cell volume (lower horizontal scale) and the lattice
constant (upper horizontal scale). The red triangle shows the total
energy for the tetragonally distorted fct structure assuming 1Q

ordering at the ground state volume. The experimental unit cell
volume corresponding to 300 K is shown as a vertical dashed
line.

In summary, we see that the results concerning the ground
state volumes are very similar to those obtained in Sec. III D 2
using the frozen-core approximation but with the GGA
functional for both charge density and total energy. However,
an important difference is found when comparing Figs. 17–19
(b),(c), showing the magnetic moments, which are in closer
agreement with experimental data than what was found using
the GGA in Figs. 14–16 (b),(c). This is not surprising
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FIG. 19. (Color online) (a) Total energy and magnetic moments
for (b) Fe (b) and (c) Mn atoms in Fe0.2Mn0.8, calculated with the
EMTO-CPA method within the frozen-core approximation, using
the LSDA functional to compute the self-consistent charge density
and magnetic moments, and then evaluating total energy using this
charge density in the GGA functional. In (a) the total energy is
shown for cubic fcc structure assuming 1Q (red diamonds), 2Q

(black circles), and 3Q (blue squares) magnetic structure, as a
function of unit cell volume (lower horizontal scale) and the lattice
constant (upper horizontal scale). The red triangle shows the total
energy for the tetragonally distorted fct structure assuming 1Q

ordering at the ground state volume. The experimental unit cell
volume corresponding to 300 K is shown as a vertical dashed
line.

since we have previously seen that GGA overestimates
magnetic moments. Especially since use of the frozen-core
approximation in EMTO calculations increases equilibrium
volumes, improving their agreement with experimental data,
it is essential to use the LSDA functional for charge density,
which gives a better description of magnetic properties at fixed
volume.
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IV. SUMMARY AND CONCLUSION

We have investigated the magnetic ground state of γ FeMn
alloys taking into account simultaneous global, as well as local,
relaxations of the crystal lattice and magnetic moments. Using
complementary state-of-the-art ab initio electronic structure
codes, we find the magnetic ground state to depend strongly
on the lattice constant used in the calculation. For Fe0.5Mn0.5

at experimental volumes, we obtain the 3Q magnetic state
as the ground state, regardless of the approximation for the
exchange-correlation functional, or if local lattice relaxations
and local magnetic reorientations are included.

Similar to previous studies of Fe and γ -Mn (Refs. 37
and 77), we find that the LSDA functional severely un-
derestimates the equilibrium volumes. However, use of the
GGA functional does not remedy the problem as it does for
bcc-Fe, and consequently, the obtained magnetic properties
at the theoretical volumes differ from those found at the
experimental lattice spacing. In fact, the results for magnetic
properties depend not only on the type of exchange-correlation
functional (LSDA or GGA), but also on the particular choice
of GGA parametrization. Using the PBE parametrization we
find the 1Q state to be the ground state, while the PW91
parametrization favors 3QR magnetic configuration on the
ideal fcc lattice and makes 1Q and 3QR states degenerate
if local lattice relaxations are included. This sensitivity to
the GGA parametrization has also been reported for fcc-Fe
(Ref. 61). By varying the composition of the alloy, we find
that the error in the lattice parameter increases with increasing
Mn concentration. Since electron correlations in 1Q fcc-Mn
have been shown to be inaccurately described by the local or
semi-local DFT exchange-correlation functionals, causing the
lattice constant to be drastically underestimated,37,77 one may
conclude that correlation effects, although less dramatic than

in f -electron systems, are still very important in Fe-based
3d systems and that the FeMn alloy may not always be
accurately described using standard ab initio computational
techniques.

Therefore, due to the need for efficient computational
tools for modeling of FeMn alloys and steels, we have
suggested a practical computational scheme which may be
successfully used for the FeMn system without the tremen-
dous computational cost of considering strong many-body
effects. The scheme is based on a combination of physical
arguments and methodological simplifications, which gives
very good cancellation of errors in the entire composition
interval. In the proposed scheme, the LSDA functional is used
to self-consistently calculate the nonspherical ground state
charge density, which is then used in the GGA functional
for evaluation of total energy. This approach reproduces the
energetics given by the GGA, and has the LSDA accuracy for
magnetic properties. In addition, we employ the frozen-core
approximation in combination with the EMTO basis set, which
corrects the lattice parameters in the entire composition range,
and recovers the magnetic ground state obtained using LSDA
or GGA at the experimental lattice constants. We therefore
suggest that this scheme can be used for practical purposes
in modeling of FeMn alloys without any further adjustable
parameters.
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2G. Frommeyer, U. Brüx, and P. Neumann, ISIJ International 43,
438 (2003).

3J. Kools, IEEE Trans. Magn. 32, 3165 (1996).
4B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R.
Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991).

5J. Nogués and I. K. Schuller, J. Magn. Mag. Mat. 192, 203
(1991).

6C. Mitsumata, A. Sakuma, and K. Fukamichi, IEEE Trans. Magn.
39, 2738 (2003).

7C. Mitsumata, A. Sakuma, and K. Fukamichi, J. Phys. Soc. Jpn. 76,
024704 (2007).

8J. S. Kouvel and J. S. Kasper, J. Phys. Chem. Solids 24, 529 (1963).
9H. Umebayashi and Y. Ishikawa, J. Phys. Soc. Jpn. 21, 1281 (1966).

10Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn. 30, 1614 (1971).
11K. Tajima, Y. Ishikawa, Y. Endoh, and Y. Noda, J. Phys. Soc. Jpn.

41, 1195 (1976).
12P. Bisanti et al., J. Phys. F 17, 1425 (1987).
13S. J. Kennedy and T. J. Hicks, J. Phys. F 17, 1599 (1987).

14S. Kawarazaki, Y. Sasaki, K. Yasuda, T. Mizusaki, and A. Hirai,
J. Phys. Condens. Matter 2, 5747 (1990).

15J. Kubler, K. H. Hock, J. Sticht, and A. R. Williams, J. Phys F 18,
469 (1988).

16S. Fujii, S. Ishida, and S. Asano, J. Phys. Soc. Jpn. 60, 4300 (1991).
17A. Sakuma, J. Phys. Soc. Jpn. 69, 3072 (2000).
18K. Nakamura, T. Ito, A. J. Freeman, L. Zhong, and J. Fernandez-

de-Castro, Phys. Rev. B 67, 014405 (2003).
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