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We study the subgap spin and charge transport in normal metal-ferromagnet-superconductor trilayers induced
by bias voltage and/or magnetization precession. Transport properties are discussed in terms of time-dependent
scattering theory. We assume the superconducting gap is small on the energy scales set by the Fermi energy and the
ferromagnetic exchange splitting and compute the nonequilibrium charge and spin current response to first order
in precession frequency, in the presence of a finite applied voltage. We find that the voltage-induced instantaneous
charge current and longitudinal spin current are unaffected by the precessing magnetization, while the pumped
transverse spin current is determined by spin-dependent conductances and details of the electron-hole scattering
matrix. A simplified expression for the transverse spin current is derived for structures where the ferromagnet is
longer than the transverse spin coherence length.
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I. INTRODUCTION

Experimental and theoretical studies of spin polarized
transport in hybrid magnetic nanostructures is a frontier
in mesoscopic physics. The most prominent example of
conceptual, technological, and commercial impact is the giant
magnetoresistance effect utilized in magnetic information
storage devices. In order to gain a deeper understanding of spin
and charge transport, and to enhance circuit functionality and
efficiency, more complex structures are fabricated and studied.
In recent years, hybrid nanoscale circuits containing normal
conductors, ferromagnets, and superconductors have been
realized. These structures allow observation and understanding
of competing mechanisms of electron-electron interactions.

The simultaneous existence of ferromagnetism and super-
conductivity is rare. In ferromagnets, the exchange interaction
lifts the spin-degeneracy and induces an itinerant spin polariza-
tion. In-s wave superconductors, on the other hand, electrons
with antiparallel spins form Cooper pairs. In homogenous
conventional ferromagnets (Fe, Ni, Co, and alloys thereof), the
large exchange interaction efficiently dephases electron-hole
pairs and eliminates singlet superconducting correlations over
distances larger than the ferromagnetic coherence length.
This would suggest a short-range superconducting proximity
effect in transition metal ferromagnets.1,2 Such a simple
picture cannot explain recent measurements on Co and Ni
ferromagnets coupled to Al superconductors, however, where
a substantial resistance drop was observed at the onset of
superconductivity.3,4 The simple picture also fails to explain
the long-range superconducting proximity effect recently ob-
served via the Josephson supercurrent through a half-metallic
ferromagnet.5,6 Subsequent theoretical work shows that in-
duced triplet superconducting correlations give rise to long-
ranged proximity effect in transition metal ferromagnets.7,8

Equal spin triplet superconducting correlations are insensitive

to the pair-breaking exchange interaction and exhibit a longer
coherence length, similar to that of superconducting corre-
lations in normal metals. It is now established that spin-flip
processes in a ferromagnet can convert singlet into triplet
pair correlations. A spatially inhomogeneous magnetization
texture9 or magnons10–12 are examples of spin-flip sources
that are able to induce long-ranged triplet correlations.

In this report, we focus our attention on the influence
of magnons on the transport properties in normal metal-
ferromagnet-superconductor systems. Even normal metal-
ferromagnet systems without superconductors exhibit intrigu-
ing physics, and especially the interaction between spin and
charge currents and the magnetic order parameter in such
structures have attracted tremendous interest. For instance,
a noncollinear spin flow toward a ferromagnet exerts a torque
on the magnetization, a spin transfer torque, that can excite
the magnetization and even induce steady-state, precessional
motion of the ferromagnetic order parameter.13,14 The inverse
effect is also of significant interest: a precessing ferromagnet
in electrochemical equilibrium with its environment acts
as a “spin battery” by emitting (or “pumping”) pure spin
currents into neighboring materials.15 When emitted spins
are dissipated in adjacent materials, spin pumping enhances
magnetic dissipation in the precessing ferromagnet and thus
increases observed linewidths in FMR experiments.16

Some ideas from spin transfer physics in normal
metal-ferromagnet structures were recently used to study
superconductor-ferromagnet systems. A FMR experiment17

and the following theoretical analysis18 have shown how spin
pumping can be used to visualize proximity effects and spin
relaxation processes inside the superconductor. In essence,
in metallic contacts, ferromagnetic correlations reduce the
superconducting order parameter close to the layer interface,
enabling pumped sub-gap electrons to enter and deposit spin in
the superconductor. This is a prime example of how the inverse
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proximity effect affects the FMR linewidth broadening when
typical spin-flip lengths are comparable to the superconducting
coherence length.19

We direct our attention to a different aspect of the interplay
between magnetization and carrier dynamics in ferromagnet-
superconductor structures. In contrast to the works mentioned
above, where the magnetization dynamics have been the
primary concern, we will consider how a precessing magneti-
zation and an applied voltage bias induce spin and charge cur-
rents in a normal metal-ferromagnet-superconductor (N|F|S)
trilayer. The computed charge currents can be measured
directly, whereas spin currents can possibly be measured
by its dissipative effect on the precessing ferromagnet, its
spin transfer torque effect on a second ferromagnet, or via
spin-filtering as a charge buildup on another ferromagnet.15

Related to our work, sub-gap transport properties have recently
been studied in a normal metal-ferromagnetic superconductor
structure.20 In ferromagnetic superconductors, magnetic and
electron-hole correlations coexist, which can result in novel
transport and dynamical magnetic phenomena. It was shown
how superconducting correlations, namely Andreev reflections
at the layer interface, add features to the results of spin and
charge pumping in normal metal-ferromagnet systems. In this
report, we also consider how pumping in the N|F|S trilayer
is related to pumping in the normal metal-ferromagnetic
superconductor system as studied in Ref. 20.

We employ the scattering theory to compute the transport
properties.22 Scattering theory has proven most useful in the
study of stationary charge and spin currents in magnetoelec-
tronic structures,23 and the time-dependent generalization has
successfully been applied to describe parametric pumping of
charge24–26 and spin currents.15 For the N|F|S structure under
consideration, we derive charge- and spin currents in the
normal metal conductor in response to a slowly precessing
ferromagnetic exchange field and applied bias voltage. We
focus on subgap energies and how Andreev scattering con-
tributes to the conductivites of the currents. In electrochemical
equilibrium, we make contact with the results for pumping
in normal metal-ferromagnetic superconductor structures.20

We proceed by detailing how time and energy gradients
of the total scattering matrix contribute to nonequilibrium
pumped currents and find that both charge and longitudinal
spin currents are unaffected by the precessing magnetization.
Finally, we consider nonequilibrium charge and spin currents
for trilayers where the ferromagnetic region is longer than the
transverse spin coherence length.

This paper is organized in the following way: The N|F|S
system is described in Sec. II. In Sec. III, we use time-
dependent scattering theory to derive general expressions for
charge and spin currents to first order in pumping frequency.
The total scattering matrix for the system is then invoked
in Sec. IV to obtain nonequilibrium pumped currents. Our
conclusions are in Sec. V.

II. MODEL DESCRIPTION

The system is sketched in Fig. 1. It consists of a su-
perconductor (S) in series with a ferromagnet (F) and a
normal metal lead (N1). N1 is ideally coupled to a normal
metal reservoir (Nres). We assume Nres and S to be in local

F
m(t)

SN2N1

Nres

b

a

FIG. 1. (Color online) A ferromagnetic scattering region (F) is
connected to a superconductor (S) and a normal metal reservoir (Nres)
via two normal metal leads (N1 and N2). Amplitudes of outgoing
(incoming) carrier states are given by b (a).

thermal equilibrium, and denote a possible chemical potential
difference between the normal and the superconducting side
as μN − μS = eV . Spin-orbit interactions are disregarded,
and the ferromagnetic order parameter is assumed to be
homogeneous and with a fixed magnitude �xc inside F. Its
direction is along the time-dependent unit vector m(t) =
[sin θ (t) cos �t, sin θ (t) sin �t, cos θ (t)]. The precessing mag-
netization serves as the pumping parameter in the system.

We focus on subgap transport properties. Thus, possible
scattering processes include Andreev reflections at the F|S
interface27 and spin-dependent normal scattering inside F.
Following a standard procedure,28 the scattering problem
is greatly simplified by utilizing spatially separated regions
where scattering processes occur. This is achieved by inserting
a fictitious normal metal lead (N2) between F and S. We assume
that N2 is longer than the Fermi wavelength, so that asymptotic,
plane-wave solutions are applicable in this region. The total
scattering matrix is a concatenation of the scattering matrices
for N1|F|N2 and for Andreev reflections at the N2|S interface.
Transport between F and S is mediated by the ballistic N2 lead.

The singlet superconductor is described by the BCS
Hamiltonian

Ĥ =
∑

σ=↑,↓

∫
dr �̂†

σ (r)H0(r)�̂σ (r)

+
∫

dr [�(r)�̂†
↑(r)�̂†

↓(r) + �∗(r)�̂↓(r)�̂↑(r)], (1)

where H0 is the normal state, single-particle Hamiltonian
and �(r) the superconducting gap. We model the gap by
a step function, �(r) = �eiφ�(x), where the phase φ is
constant, and x is the coordinate perpendicular to the N2|S
interface. We take the Fermi energy EF to be the largest
energy scale and focus on the low-energy transport properties
in regimes when the superconducting gap is much less than
the exchange interaction in the ferromagnet �xc, eV � � �
�xc,EF . The Hamiltonian Eq. (1) is diagonalized by the
following Bogoliubov transformation29

�̂σ (r) =
∑

n

[γ̂nun(r,σ ) + γ̂ †
n v∗

n(r,σ )], (2)
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where γ̂
(†)
n are quasiparticle annihilation (creation) operators

that satisfy the fermionic anti-commutation relation

{γ̂m,γ̂ †
n } = δm,n. (3)

The transformation Eq. (2) results in a matrix equation for the
quasiparticle eigenfunctions un and vn:[

H0(r) i�(r)σy

−i�∗(r)σy −H ∗
0 (r)

][
un(r)

vn(r)

]
= εn

[
un(r)

vn(r)

]
. (4)

The quasiparticle excitation energy εn is measured with respect
to the chemical potential of the superconductor, which is set
to zero. σy is a Pauli matrix operating in spin space. The
Bogoliubov-de Gennes Hamiltonian Eq. (4) is the starting
point when we in Sec. III B derive the appropriate reflection
amplitudes for quasiparticles impinging on the superconductor
interface.

III. TIME-DEPENDENT SCATTERING THEORY

We now focus on the time-dependent scattering theory for
the N|F|S structure in Fig. 1, apply the general framework
established in Refs. 15,24–26, and 30 and make use of the
scattering theory for hybrid superconductor-normal metal
structures discussed in Refs. 28 and 31. We find it most
convenient to study a slowly precessing magnetization by a
scattering matrix expressed in the Wigner representation,21

making the derivation of pumped currents similar to that
carried out for normal systems in Refs. 32 and 33.

In order to describe a scattering potential of arbitrary time-
dependence, we start by considering the two-time scattering
matrix S(t,t ′), which relates annihilation operators between
states outgoing and incoming from the scattering region:

b̂α(t) =
∑

β

∫
dt ′Sαβ(t,t ′)âβ(t ′). (5)

As indicated in Fig. 1, b̂α : (âα) annihilates the outgoing
(incoming) state α. α labels electron-hole Nambu space
index, spin, and transverse wave-guide number. We assume
that the reservoirs connected to the scattering region are in
local thermal equilibrium and that incoming carriers from the
normal metal reservoir fulfill

〈â†
α(ε)âα′ (ε′)〉 = δα,α′δ(ε − ε′)fα(ε), (6)

where the brackets indicate a quantum and statistical average,
and

fe(h)(ε) = f0(ε − σ e(h)eV ) = [1 + e(ε−σ e(h)eV )/kBTel ]−1, (7)

where σ e(h) = +(−)1, and fe(h)(ε) is the Fermi-Dirac distri-
bution of incoming electrons (holes) at a charge bias eV and
electron temperature Tel . We will eventually consider electron
temperature to be lower than the superconducting gap. We
will now proceed by computing charge and spin currents in
the system.

A. Matrix current

We seek the right-going charge and spin currents in normal
metal lead 1 and start by introducing the matrix current34

Î1,αβ (t) = 2πeτ z
αβ [â†

β(t)âα(t) − b̂
†
β(t)b̂α(t)], (8)

where e is the electronic charge, and τ z is a Pauli matrix in
electron-hole space:

τ z =
(

1 0

0 −1

)
. (9)

Charge and spin currents are obtained from the matrix current
Eq. (8) as follows:

Ic(t) =
∑

α

〈Î1,αα(t)〉, (10)

and

I s(t) = 1

2e

∑
α,β

ραβ〈Î1,βα(t)〉, (11)

respectively. Summations run over electron-hole, spin, and
mode space, and ρ is a matrix with diagonal structure in
electron-hole space:

ραβ ≡
(

σ αβ 0

0 σ ∗
αβ

)
, (12)

with a vector of the Pauli matrices and their complex
conjugates as the diagonal elements.

For a slowly oscillating scatterer, it is convenient to express
the scattering matrix in the Wigner representation21,32,33

Sαβ(t,t ′) =
∫ ∞

0

dε

2π
e−iε(t−t ′)Sαβ

(
ε;

t + t ′

2

)
. (13)

In this representation, the matrix current is

〈Î1,αβ (t)〉 = e

2π
τz
αβ

{
δα,β

∫ ∞

0
dε fα(ε)

−
∑

γ

∫ ∞

−∞
dτ dT

∫ ∞

0

dε1 dε2

2π
fγ (τ )

× e−iε1(T −τ/2)eiε2(T +τ/2)Sαγ

(
ε2; t + T + τ/2

2

)

×S∗
βγ

(
ε1; t + T − τ/2

2

)}
. (14)

The current is expressed in terms of the center and relative time
coordinates T = (t ′ + t ′′)/2 and τ = t ′′ − t ′, and the Fourier
transform of the distribution function

fγ (τ ) ≡
∫ ∞

0

dε

2π
e−iετ fγ (ε). (15)

When the scattering matrix S(ε; t) is a concatenation of
multiple time-dependent scattering elements, the Wigner rep-
resentation of S will also be an infinite sum of time and energy
gradients.21 The magnetization dynamic is slow compared to
the time an electron spends in the scattering region. In the
adiabatic approximation, we assume the scattering matrix
evolves on a much longer timescale than the typical dwell
times of particles inside the scattering region. In this regime,
we formally expand S as35

S(ε; t) = S0(ε; t) + A(ε; t) + O
(
∂2
t S0

)
, (16)

where S0 is the “frozen” or instantaneous scattering matrix, and
the matrix A represents all first-order gradient corrections to S0

resulting from the concatenation of time-dependent scattering
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elements that describe the device. Unitarity of S to all orders
in time- and energy-gradients implies35

S0A
† + AS

†
0 = i

2
(∂tS0∂εS

†
0 − ∂εS0∂tS

†
0) ≡ 1

2
P {S0; S†

0}, (17)

where a Poisson bracket P {.; .} has been defined to ease the
notation. In the following, scattering matrix arguments (ε; t)
are omitted in places where there is no risk of confusion.

To obtain a local (in time) expression for the matrix current
(14), we Taylor expand S to first order in time derivatives, and
obtain the matrix current

〈Î1,αβ (t)〉 = e

2π
τz
αβ

∑
γ

∫ ∞

0
dε

{
(fα(ε) − fγ (ε))

(
S0,αγ S∗

0,βγ

+Aαγ S∗
0,βγ + S0,αγ A∗

βγ − 1

2
P {S0,αγ ; S∗

0,βγ }
)

+ i

2
(−∂εfγ (ε))(S0,αγ ∂tS

∗
0,βγ − ∂tS0,αγ S∗

0,βγ )

}
+O

(
∂2
t S0

)
, (18)

where Eqs. (16) and (17) have been used. The matrix current
in Eq. (18) is exact to first order in frequency of the pumping
parameter.

Finally, we observe that in the absence of a voltage
bias, the gradient corrections to the frozen scattering matrix,
represented by A, vanish from the matrix current. In electro-
chemical equilibrium, when V = 0, fe(ε) = fh(ε), the first
line of Eq. (18) vanishes, and the pumped current is determined
by the frozen scattering matrix. Naturally, the same is also
true for the time-dependent theory based on Floquet scattering
matrices.26

B. Scattering matrix for a N|F|S structure

In this section, the scattering matrix formalism derived for
N|S structures28 is applied to our N|F|S trilayer. As described
in Sec. II, the scattering description of a N|F|S structure is
greatly simplified by inserting a fictitious normal metal lead
(N2) between the two scattering regions, thereby spatially sep-
arating spin-dependent scattering in F and Andreev reflection
at the N2|S interface.28 The scattering matrix SF , describing
the disordered ferromagnetic region, is block-diagonal in
electron-hole space. We write SF as

SF (ε; t) =
[

sF (ε; t) 0

0 sF (−ε; t)∗

]
, (19)

where the diagonal elements are

sF =
(

r11 t12

t21 r22
.

)
(20)

Here, rii and tij are matrices in spin-space that describe
reflection of an incoming electron in lead i, and transmission
of an electron from lead j to lead i, respectively.

Electrons and holes with opposite spins are coupled by
Andreev reflection at the superconductor interface, where an
incoming electron (hole) is reflected as a hole (electron) with
reversed spin direction. The reflection amplitudes are derived
by matching propagating wave functions in N2 with evanescent

wave functions in the superconductor. The resulting scattering
matrix reads28,36

rA =
(

0 rA
eh

rA
he 0

)
=

(
0 iασyeiφ

−iασye−iφ 0
,

)
(21)

where α = exp[−i arccos(ε/�)].
The total scattering matrix of the N|F|S structure is a

concatenation of SF and rA, and in terms of the frozen
scattering matrices, we obtain the familiar results28,31

See
0 (ε; t) = r11(ε)

+ t12(ε)rA
eh(ε)r∗

22(−ε)Me(ε)rA
he(ε)t21(ε), (22a)

Shh
0 (ε; t) = r∗

11(−ε)

+ t∗12(−ε)rA
he(ε)r22(ε)Mh(ε)rA

eh(ε)t∗21(−ε), (22b)

Seh
0 (ε; t) = t12(ε)Mh(ε)rA

eh(ε)t∗21(−ε), (22c)

She
0 (ε; t) = t∗12(−ε)Me(ε)rA

he(ε)t21(ε), (22d)
where time arguments are omitted on the right-hand side of the
equations for sake of notation. Multiple reflections between S
and F, mediated by propagations through N2, are described by

Me(ε) = [
1 − rA

he(ε)r22(ε)rA
eh(ε)r∗

22(−ε)
]−1

, (23)

Mh(ε) = [
1 − rA

eh(ε)r∗
22(−ε)rA

he(ε)r22(ε)
]−1

. (24)

From Eqs. (22), and using rA
eh(−ε)∗ = rA

he(ε), one obtains the
following symmetry relations for the total scattering matrix:

See(ε; t) = [Shh(−ε; t)]∗, (25a)
Seh(ε; t) = [She(−ε; t)]∗. (25b)

Additionally, since there is no magnetic field acting on the
orbitals in our model, time-reversal symmetry for each spin
channel independently in the scattering matrix SF of Eq. (20)
dictates that

See(ε; t)T = See(ε; t) , (26a)
Shh(ε; t)T = Shh(ε; t), (26b)

and
e−iφSeh(ε; t)T = eiφShe(ε; t), (26c)

where the superscript T denotes the transpose (both in orbital
and spin channel indices) of the matrix.

The frozen scattering matrices in Eqs. (22) are all time-
dependent due to the slowly varying magnetization in the
ferromagnet. Arguably, the easiest way to evaluate the ma-
trix current is to perform a spinor rotation that aligns the
spin quantization axis with the instantaneous magnetization
direction.15,20 The total scattering matrix

S0(ε; t) =
(

See
0 Seh

0

She
0 Shh

0

)
(27)

can be related to the total scattering matrix S in the rotating
frame by the spinor rotations

S0(ε; t) = W †(t)S(ε)W (t), (28)
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where W (t) = V (t)U (t), with

U (t)=
[U(t) 0

0 U†(t)

]
=

[
exp

(
i�t
2 σ z

)
0

0 exp
(− i�t

2 σ z
)
]
,

(29)

and

V (t)=
[V(t) 0

0 V(t)

]
=

[
exp

( iθ(t)
2 σy

)
0

0 exp
( iθ(t)

2 σy
)
]

. (30)

In the rotating frame, See
0 and Shh

0 are both diagonal in spin
space, while Seh

0 and She
0 , which mix spin σ electrons with spin

−σ holes, only have off-diagonal elements.
Now that the matrix current and relevant scattering matrices

are derived, we proceed to study pumped charge and spin
currents for a voltage-biased trilayer structure.

IV. PUMPED CURRENTS OUT OF EQUILIBRIUM

A complication that arises when the system is driven out
of equilibrium is that time and energy gradients of the frozen
scattering matrix must be evaluated. Before presenting the
detailed expressions for charge and spin currents in the normal
metal lead, we derive the required gradient corrections. Due to
the symmetry Eq. (25), it is sufficient to consider only Ahe in
the gradient correction.

A. Gradient correction matrix

In the following, we determine Ahe by a formal gradient
expansion of the corresponding scattering matrix She, whose
full time and energy dependence of She is given by [see
Eq. (22a)

She(ε; t) = (
t∗12 ◦ Me ◦ rA

he ◦ t21
)
(ε; t). (31)

Evaluating the convolutions in the Wigner representation can
be done by systematically expanding the exponentials:21

(A ◦ B)(ε; t) = ei(∂A
ε ∂B

t −∂A
t ∂B

ε )/2A(ε; t)B(ε; t), (32)

where the superscripts indicate which matrix the operator
works on. A significant simplification of the final result is
achieved when the superconducting gap is much less than the
exchange energy, � � �xc,EF . The energy dependence is
then only determined by the energy dependence of the Andreev
reflection. Since we are evaluating the energy gradients close
to the Fermi level, ∂εsF � ∂εr

A, and we obtain the simplified
expression for the gradient matrix Ahe:

Ahe(ε; t) ≈ − i

2
∂ε∂tS

he
0 + it∗12∂ε

(
Mer

A
he

)
∂t t21

+ it∗12∂ε∂tMer
A
het21 + it∗12∂tMe∂εM

−1
e Mer

A
het21

− it∗12Mer
A
he∂t r22∂εr

A
ehr

∗
22Mer

A
het21

≡ − i

2
∂ε∂tS

he
0 + �he. (33)

Here, She
0 is the frozen scattering matrix from Eq. (22a), and

before evaluating the currents, we observe that �he in the
rotating frame is diagonal in spin space. This fact, which is

important when evaluating nonequilibrium pumped charge and
spin currents, can be seen from

�he = UV†�heVU, (34)

with

�he = i

2
t∗12∂ε

(
Mer

A
he

)
�(t21↑ − t21↓)

+ i

2
t∗12(Me↑ − Me↓)∂ε

(
rA
he�r22r

A
eh

)
r∗

22Mer
A
het21

− i

2
t∗12Mer

A
he(r22↑ − r22↓)�∂εr

A
ehr

∗
22Mer

A
het21

− i

2
t∗12∂ε(Me↑ − Me↓)rA

he�t21, (35)

where

� ≡ VU∂t (m · σ )U†V† = ∂tθσ x + sin θ�σy. (36)

Multiplying rA
he, which is ∼ σy , with �, and given that the

other components in the equation are all diagonal, brings us
to the conclusion that �he is diagonal in spin space. Finally,
we note that �he → 0 for a vanishing ferromagnetic ordering
parameter.

Once the gradient corrections to the frozen scattering matrix
are derived, one can obtain nonequilibrium pumped currents
to first order in pumping frequency.

B. Pumped charge current

According to Eq. (10), the charge current is obtained by
tracing the matrix current Eq. (18) over electron-hole, spin,
and mode space. Making use of the symmetries from Eq. (25),
and using that both Tr{∂tS

ee
0 S

ee†
0 } = 0 and Tr{∂tS

he
0 S

he†
0 } = 0,

one finds that the pumped charge current is determined by

Ic(t) = e

2π

∫ ∞

−∞
dε

(
[fe(ε) − fh(ε)] Tr

{
She

0 S
he†
0

+AheS
he†
0 + She

0 Ahe† − 1

2
P

{
She

0 ; She†
0

}})
, (37)

to first order in pumping parameter frequency. Using that
Ahe = − i

2∂ε∂tS
he
0 + �he, the current Eq. (37) simplifies to

Ic(t) = e

2π

∫ ∞

−∞
dε

(
[fe(ε) − fh(ε)]

× Tr
{
She

0 S
he†
0 + �heS

he†
0 + She

0 �he†}). (38)

Any nonequilibrium pumped contributions to the current are
determined by the remainder �he from Eq. (35). However, as
pointed out at the end of Sec. IV A, �he is a diagonal matrix
in spin space. From Eq. (22a), we know that She

0 is strictly
off-diagonal in spin space. This implies that Tr{�heS

he†
0 } = 0,

and the charge current is reduced to the stationary result:

Ic = e

2π

∫ ∞

−∞
dε [fe(ε) − fh(ε)] g̃(ε), (39)

where the total conductance is defined as

g̃(ε) ≡
∑
m,n

{∣∣She
↓↑,mn

∣∣2 + ∣∣She
↑↓,mn

∣∣2
}

. (40)

The symmetries of the scattering matrix in Eqs. (25) and (26)
imply that the conductance is symmetric g̃(ε) = g̃(−ε). The
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result in Eq. (39) shows that there is no pumped charge
current in N|F|S structures, even when there is an additional
bias voltage driving the system, e.g., there are no bilinear
contributions proportional to the bias voltage and the FMR
frequency. The stationary result is similar to that obtained in
FS|N structures,20 a result that indicates that the total scattering
matrix for a disordered region coupled to a ferromagnetic
superconductor is structurally equivalent to that of a disordered
ferromagnetic region coupled to a superconductor. The two
structures have different scattering matrices, however, and
therefore the expressions for the conductances differ.

C. Pumped spin current

We proceed by evaluating the pumped spin current to first
order in pumping parameter frequency. Utilizing the symmetry
relations for the total scattering matrix Eq. (25), we obtain

I s(t) = 1

4π

∫ ∞

−∞
dε (fe(ε) − fh(ε))

[
Tr

{
σ ∗(She

0 S
he†
0

+�heS
he†
0 + She

0 �he†)} + ∂εImTr
{
σ ∗∂tS

he
0 S

he†
0

}]
+ 1

4π

∫ ∞

−∞
dε (−∂εfe(ε))

[
ImTr

{
σ∂tS

ee
0 S

ee†
0

}
− ImTr

{
σ ∗∂tS

he
0 S

he†
0

}]
. (41)

Introducing the generalized mixing conductance20

g̃↑↓ ≡
∑
m,n

{
δm,n − See

↑,mnS
ee∗
↓,mn + She

↓↑,mnS
he∗
↑↓,mn

}
, (42)

we find the following expression for the spin current:

I s(t) = − 1

4π

∫ ∞

−∞
dε (fe(ε) − fh(ε))

× ( − Tr
{
σ ∗(�heS

he†
0 + She

0 �he†)})
+ 1

4π

∫ ∞

−∞
dε ∂εfe(ε)

(
m × ∂t mReg̃↑↓ + ∂t mImg̃↑↓)

,

(43)

where a number of terms canceled upon invoking the sym-
metries in Eqs. (25b) and (26c). The terms in the third line
of Eq. (43) are similar to those derived previously within
electro-chemical equilibrium pumping theory for F|N15, and
FS|N structures20. However, we ask the reader to note that
the generalized mixing conductance in Eq. (3) in Ref. 20
is valid for triplet superconductors only; the correct mixing
conductance for a singlet superconductor is given by Eq. (42)
above. The remaining terms on the right hand side of Eq. (43)
are non-equilibrium, pumped contributions to the spin current.
They depend on pumping parameter frequency via ∂t m and
the � term from Eq. (36), which is contained in the gradient
remainder �he.

Finally, we would like to point out that there are no pumped
contributions to the longitudinal spin current I

||
s ≡ m · I s .

The terms in the second and third line of Eq. (43) are
transverse with respect to the magnetization m, so this leaves
only a possible gradient remainder contribution coming from
�he. However, due to the particular matrix structure of �he
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2
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∂

t
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·I
s
/Ω

(1
0−

2
2
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FIG. 2. (Color online) Exact (red solid line) and approximate
(blue dashed line) (a) spin current along the direction of ∂t m and
(b) spin current along the direction of m × ∂t m for a ballistic N-F-S
structure as functions of length of the ferromagnetic region. In the
plot, EF = 10 eV, �xc = 9EF /16, � = EF /160, eV = �/2, and
� ≡ |∂t m|=0.2 GHz.

mentioned in Sec. IV A, m · Tr{σ ∗�heS
he†
0 } vanishes. This

observation implies that the longitudinal spin current vanishes.
Thus, to first order in precession frequency:

I ||
s = m(t) · I s(t) = 0. (44)

In the following, we will investigate pumped charge and spin
currents when the ferromagnetic region is longer than the
typical transverse spin coherence length.

D. Long ferromagnet limit

When the length LF of the ferromagnet is longer than the
transverse spin coherence length,

LF > λF ≡ π

kF↑ − kF↓
, (45)

where kFσ is the Fermi wave vector of a spin σ electron,
we expect to find a mixing conductance that is determined
by the properties of the N-F subsystem, characterized by the
spin-dependent conductances15

gσσ ′ =
∑
m,n

(δm,n − rσ,mnr
∗
σ ′,mn). (46)

Indeed, in the limit Eq. (46), one can disregard “mix-
ing transmission” terms,

∑
m,n tσ,mnt

∗
−σ,mn → 0, so that
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∑
m,n She

↓↑,mnS
he∗
↑↓,mn → 0. Disregarding interference terms be-

tween reflected and transmitted electronic wave functions, one
obtains ∑

m,n

See
↑,mnS

ee∗
↓,mn →

∑
m,n

r11↑,mnr
∗
11↓,mn (47)

for a long ferromagnet. This implies that g̃↑↓ → g↑↓, while
the total conductance g̃ and the conductance polarization p̃

remain unchanged. Since the mixing conductance is now
determined by properties of the N-F structure, energy gradients
of the mixing conductance should be disregarded in the limit
� � �xc,EF , as described in Sec. IV A. Finally, by an explicit
calculation, one can show that Tr{�heS

he†
0 σ ∗} ∼ tσ t∗−σ , which

vanishes when Eq. (46) holds. To summarize, when the
ferromagnet is longer than the transverse spin coherence
length, the charge current and longitudinal spin current are
still given by Eqs. (39) and (45) while the transverse spin
current is simplified to

I⊥
s (t) = − 1

4π

(
Reg↑↓(EF )m × ∂t m + Img↑↓(EF )∂t m

)
.

(48)

since the spin-dependent conductances of Eq. (47) are indepen-
dent on the energy under the assumption that T ,V � EF ,�xc.
The spin current in Eq. (48) is identical to that found in N-F
systems,15 as should be expected. In this situation, emission
of spins from the long ferromagnet into the normal metal are
unaffected by the superconductor.

To compare the exact result of Eq. (43) with the long
ferromagnet approximation of Eq. (48), we plot in Fig. 2

the spin current along ∂t m for a ballistic N|F|S trilayer, as a
function of the ratio between the ferromagnet length (LF ) and
the transverse spin coherence length (λF ) defined in Eq. (45).
When LF � λF , nonnegligible “mixing transmission” terms
combine with energy gradients of the scattering matrix and
produce large deviations between the two equations. As LF

exceeds λF , the fit improves and the exact result oscillates
toward the spin current obtained by the approximate Eq. (48).

V. CONCLUSION

In conclusion, we have derived nonequilibrium pumped
charge and spin currents to first order in pump frequency,
using time-dependent scattering theory. Magnetization
precession induces transverse spin currents but neither charge
nor longitudinal spin currents, which are both given by their
stationary values. The currents are expressed in terms of
generalized, spin-dependent conductances, which include
spin-dependent scattering in the ferromagnet and Andreev
reflection at the F|S interface. Finally, we consider trilayers
where the ferromagnetic region is longer than the transverse
spin coherence length and derive an approximate expression
for the transverse spin current. Numerical calculation of the
spin current in a ballistic trilayer shows good agreement
between exact and approximate spin currents for ferromagnets
whose layer thicknesses exceed the transverse spin coherence
length. The interplay between magnetization dynamics and
Andreev reflection can thus only be manifested when the
ferromagnetic film is thin enough on the scale of the transverse
spin coherence length in the ferromagnet.
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22M. Büttiker, Phys. Rev. B 46, 12485 (1992).
23A. Brataas, G. E. W. Bauer, and P. J. Kelly, Phys. Rep. 427, 157

(2006).
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