
PHYSICAL REVIEW B 84, 104417 (2011)

Hyperfine characterization and spin coherence lifetime extension in Pr3+:La2(WO4)3
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Rare-earth ions in dielectric crystals are interesting candidates for storing quantum states of photons. A limiting
factor on the optical density and thus the conversion efficiency is the distortion introduced in the crystal by doping
elements of one type into a crystal matrix of another type. Here we investigate the system Pr3+:La2(WO4)3,
where the similarity of the ionic radii of Pr and La minimizes distortions due to doping. We characterize the
praseodymium hyperfine interaction of the ground-state (3H4) and one excited state (1D2) and determine the spin
Hamiltonian parameters by numerical analysis of Raman-heterodyne spectra, which were collected for a range
of static external magnetic-field strengths and orientations. On the basis of a crystal-field analysis, we discuss
the physical origin of the experimentally determined quadrupole and Zeeman tensor characteristics. We show
the potential for quantum memory applications by measuring the spin coherence lifetime in a magnetic field that
is chosen such that additional magnetic fields do not shift the transition frequency in first order. Experimental
results demonstrate a spin coherence lifetime of 158 ms — almost 3 orders of magnitude longer than in zero
field.
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I. INTRODUCTION

Rare-earth ion-doped crystals (REICs) have recently ap-
peared as promising solid-state materials for quantum informa-
tion processing. In the field of quantum computing, achieved
milestones include controlled phase gates1 and single-qubit
arbitrary rotation.2 While these experimental results were
performed on single-qubit and two-qubit systems, scalable
schemes have also been proposed.3 In the field of quantum
memories, devices able to faithfully store and release photonic
quantum states have been proposed and implemented. Using
several different storage-recall protocols,4–7 high-efficiency,8

multiple-photon storage with large bandwidth9,10 and en-
tanglement storage11,12 were demonstrated in REICs. These
results rely on the very long optical coherence lifetimes, e.g.,
4.4 ms lifetimes have been observed in Er3+:Y2SiO5.13

Even longer lifetimes have been reported for rare-earth ion
hyperfine transitions and accordingly, the qubit in REIC-based
quantum computing and memories is generally defined by
selecting two ground-state hyperfine levels. Optical transitions
are used to selectively address qubits or to transfer coherences
from the optical to the rf domain and vice versa. Coherence
lifetimes can be extended to 30 s for a ground-state hyperfine
transition of Pr3+:Y2SiO5 at liquid helium temperature.14 This
was achieved in two steps: First, an external magnetic field
was applied to the sample in order to decouple one hyperfine
transition from magnetic-field fluctuations due to host spin
flips. As these are the main source of dephasing, the zero-field
coherence lifetime of 500 μs was extended in this way to
82 ms15 and later to 860 ms.14 The decoupling was achieved
by minimizing the transition energy dependence with respect
to the magnetic field. This condition is referred as ZEFOZ,

or zero-first-order Zeeman shift transitions.16 The coherence
lifetime was then further increased by rf decoupling pulses
arranged in a Carr-Purcell sequence.14

Y2SiO5 is the most thoroughly studied host in REIC
quantum information processing. It combines long coher-
ence lifetimes, favored by its low-magnetic-moment density,
mainly due to Y nuclear spins, and high oscillator strengths.
A disadvantage of Y-based host material is that doping
with Pr3+ or Eu3+ leads to relatively large inhomogeneous
linewidths at high doping concentrations, which limits the
maximal achievable optical depth. This is an important
concern in high-efficiency quantum memories.17 To overcome
this limitation for Pr3+, we proposed a La-based crystal,
La2(WO4)3. Pr3+ substitutes La3+ in this material, both having
very similar ionic radii (rLa3+ = 1.18 Å, rPr3+ = 1.14 Å).18

Compared to Y2SiO5 (rY3+ = 1.02 Å),18 doping stress is
reduced and the inhomogeneous linewidth is 15 times smaller
for high Pr3+concentrations. However, the magnetic moment
of lanthanum (2.78 μB) is much higher than that of Y3+
(−0.14 μB), and the La2(WO4)3 magnetic-moment density
is 7.5 times higher than in Y2SiO5. It seems that this should be
seriously detrimental to coherence lifetimes, but we measured
a hyperfine lifetime of 250 μs,19 which is only smaller by a
factor of ≈2 compared to the value in Y2SiO5. This allowed us
to measure narrow and efficient electromagnetically induced
transparency in this material.20 This result also suggested
that REICs that could be useful for quantum information
processing are not limited to the few crystals with very
low-magnetic-moment density. However, since applications
require T2 values in the millisecond range, techniques for
increasing the coherence lifetime should be used. In this paper
we show that by using a ZEFOZ transition hyperfine T2 can
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reach 158 ± 7 ms, corresponding to a 630-fold increase. It is
therefore possible to strongly reduce the influence of host spin
flips, even in the case of high-magnetic-moment density.

ZEFOZ transitions appear at specific magnetic field vectors,
which can only be predicted if all parameters of the system
Hamiltonian are known with high precision. In the present
system, the I = 5/2 nuclear spin of 141Pr (100% abundance)
and the C1 site symmetry result in a complicated hyperfine
structure. We therefore used the approach of Ref. 21, which
consists of determining the spin Hamiltonian parameters by
coherent Raman scattering before numerically identifying
ZEFOZ transitions. Finally, the coherence lifetimes of the
hyperfine transitions were measured by optically detected
Raman echoes.

II. MODEL FOR THE HYPERFINE INTERACTION

A good approximation for the Hamiltonian of many rare-
earth-doped compounds is22

H0 = [HFI + HCF] + [HHF + HQ + HZ + Hz]. (1)

The first two terms, the free ion (including spin-orbit coupling),
and the crystal-field Hamiltonians determine the energies of
the electronic degrees of freedom. The terms in the second
bracket, consisting of the hyperfine coupling, the nuclear
quadrupole coupling, and the electronic and the nuclear
Zeeman Hamiltonian, lift the degeneracy of the nuclear-spin
states.

The site symmetry of our system is low enough that
the electronic states are nondegenerate. As a result of this
“quenching” of the electronic angular momentum, the elec-
tronic Zeeman HZ and hyperfine interaction HHF contribute
only as second-order perturbations. Utilizing this, the four last
terms of Eq. (1) can be well approximated by a nuclear-spin
Hamiltonian22,23:

H1 = �B · M1 · �I + �I · Q1 · �I , (2)

M1 = RM ·

⎡
⎢⎣

gx 0 0

0 gy 0

0 0 gz

⎤
⎥⎦ · RT

M, (3)

Q1 = RQ ·

⎡
⎢⎣

E − 1
3D 0 0

0 −E − 1
3D 0

0 0 2
3D

⎤
⎥⎦ · RT

Q , (4)

where the Ri = R(αi,βi,γi) represent rotation matrices and
Euler angles24 (see Sec. II in Ref. 25), specifying the
orientation of the effective Zeeman tensor M and the effective
quadrupolar tensor Q principal axis system (PAS) [(x ′,y ′,z′)
and (x ′′,y ′′,z′′), respectively] relative to the laboratory-based
reference axis system (x,y,z) (see Sec. III). In general, the M
and Q principal axes are not aligned and accordingly, the RQ

and RM matrices are not identical.
In zero magnetic field, the quadrupole interaction results

in a partial lifting of the nuclear-spin states degeneracy. The
corresponding structures for lowest levels of the crystal-field
multiplets 3H4 and 1D2 were determined by hole-burning
experiments19,26 and are shown in Fig. 1. We label the levels

FIG. 1. Pr3+:La2(WO4)3 level structure of the lowest (0) 3H4 and
1D2 crystal-field manifolds, including their hyperfine structure. The
order of the energy levels follows from previous work,19 whereas the
transition frequencies given above could be measured with higher
precision utilizing zero-field Raman-heterodyne scattering within the
present work. The arrows on the right indicate the range of hyperfine
transitions excited by rf in the separate experiments.

by their projections onto the z′′ principal axes of the Q tensor,
noting that these states are not eigenstates of the nuclear-spin
Hamiltonian. Since the PAS of the Q tensors of different
crystal-field levels do not coincide, their quantization axes are
also different. For the small magnetic fields used to determine
spin Hamiltonian parameters, the hyperfine structure remains
close to the zero-field one, which allows us to identify
resonance lines with transitions between zero-field states.

Since Pr3+ occupies two different subsites in the crystal (see
Sec. III), the Hamiltonian describing the second site includes
different rotation matrices. Utilizing Eq. (2) of site 1 and the
property that both sites are connected by a C2 symmetry we
write

H2 = �B · (
RC2 M1R

T
C2

) · �I + �I · (
RC2 Q1R

T
C2

) · �I . (5)

With

RC2 = RT
C · Rπ · RC,

RC = R(αC2 ,βC2 ,0), Rπ = R(180◦,0,0),

the angles αC2 and βC2 correspond to the spherical coor-
dinates of the C2 axis in the laboratory system. Therefore
in this manuscript the complete nuclear-spin Hamiltonian
of a given crystal-field level depends on 13 parameters:
D,E,αQ,βQ,γQ,gx,gy,gz,αM,βM,γM,αC2 ,βC2 .

III. EXPERIMENT

We used a sample of high optical quality, grown by the
Czochralski method, containing 0.2 at. % Pr3+. The 5 × 5 ×
5 mm crystal was mounted in an optical cryostat and cooled
to liquid helium temperatures. La2(WO4)3 forms a monoclinic
crystal with a C2/c space group, identical to that of Y2SiO5.
The La3+ ions occupy only one crystallographic site of C1

symmetry. In each unit cell (containing four formula units), this
site appears at eight positions which are related by inversion,
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translation, and C2 symmetries. The C2 axes are identical to the
C2 crystal symmetry axis, also denoted by b in the following.
The C2 symmetry divides the La positions into two groups of
four ions, which behave differently, unless the magnetic field
is perpendicular or parallel to the b axis. These two groups
are called subsites in the following. The crystal surfaces were
polished perpendicular to the (X,Y,Z) principal axes of the
optical indicatrix. Optical back reflection at the Z surface and
mechanical alignment of the X and Y surfaces was used to align
the crystal along our reference (x,y,z) axes, defined by the
static magnetic-field coils (see below). Apart from alignment
errors the (X,Y,Z) axes should be a replica of (x,y,z), the
laser propagating along the z/Z and the b/Y axis expected to
be closely aligned to the laboratory-frame y axis.

To obtain the hyperfine spectra of both the electronic
ground-state and the electronically excited state, we used
Raman-heterodyne scattering (RHS).27,28 In this scheme a
resonant rf field creates coherence between two hyperfine
levels. Prior to this, the laser can be used to create initial
population between those states. The laser further serves to
transfer the hyperfine coherence into the optical transition
and can simultaneously be used as the local oscillator for a
heterodyne detection of the excited Raman field, as the latter
is coherently emitted into the same optical mode.

A Coherent 899-21 dye laser, further stabilized by home-
built electronics with respect to intensity and frequency
(linewidth <20 kHz), served as the light source. It was tuned to
the center of the 3H4(0) ↔1D2(0) transition (see Fig. 1). The
laser was focused, from a collimated beam of 1.5 mm diameter,
with a 300-mm lens into the sample. We generated the optical
pulses and frequency chirps by double-pass acousto-optic
modulator setups.

The rf fields were applied to the sample by a ten-turn
6-mm-diameter coil. For continuous-wave experiments
(ground-state), one side of the coil was terminated by a 50-�
load, and the other was attached to an rf driver. For the exited
state spectra, we used a pulsed RHS scheme. Here the coil was
part of an appropriate tuned tank circuit. Figure 2 shows the
sequences used for the two types of experiments.

The frequencies for the rf excitation and the shifting of the
laser frequency were generated by 48-bit, 300-MHz direct
digital synthesizers, yielding very precise frequencies. We
controlled the timing of the pulses and frequency chirps by
a word generator with a resolution of 4 ns. Detection of
the heterodyne beat signal was accomplished by a 100-MHz
balanced photo receiver (Femto HCA-S), a phase-sensitive
quadrature-detection demodulation scheme, appropriate ana-
log and digital filters, and a digital oscilloscope.

The static magnetic field was created by a set of three
orthogonal Helmholtz coil pairs. They are mounted outside
the cryostat and their coil diameters range from 20 to 40 cm,
providing a homogeneous field over the sample volume in their
center. With currents of about 10 A, each coil pair generates
a magnetic field of about 8 mT. To control the field vector
a computer control was set up for the current sources of the
Helmholtz coils. To compensate nonlinearities and drifts, we
used a set of three orthogonal Hall probes as sensors for a
computer-based feedback loop. The absolute error of the field
components is <0.06 mT, and the relative linear error for
the static magnetic field is <0.3%. To minimize the effect of

FIG. 2. RHS pulse sequences. Black lines indicate frequencies
and gray areas the applied optical and rf powers. (a) Continuous-wave
sequence for the ground-state measurements. A low-power laser
probe (Pp = 0.3 mW) and a scanning frequency rf (PRF ≈ 1 W,
τs = 50 ms, ν1 = 7.4, and ν2 = 22.4 MHz for |± 1

2 〉 ↔ |± 3
2 〉 or,

respectively, 17.1 and 32.1 MHz for |± 3
2 〉 ↔ |± 5

2 〉) were applied
to the sample. The optimum temperature of the cold finger for
this scheme was 4.5 K, since still lower temperatures gave such
slow hyperfine level relaxation rates that it would be necessary to
repump the hyperfine level population. (b) Pulsed RHS sequence
for the excited state. Probe and erase beam were overlapped in
the sample at an angle of 0.6◦. To allow for higher repetition rate
the chirped erase laser (	 = 64 MHz, τe = 10 ms, average power
Pe ≈ 20 mW) redistributed the populations. An initial population
difference between hyperfine sublevels was created by the probe beam
(Pp = 1.2 mW, τp = 100 μs) and converted to coherences by an rf
pulse (νRF = 4.94/7.23 MHz (|± 1

2 〉 ↔ |± 3
2 〉 resp. |± 3

2 〉 ↔ |± 5
2 〉),

PRF = 214/287 W, τRF = 4 μs). For optical heterodyne detection
the same probe beam was left active for an additional time τdec. The
temperature of the cold finger for this scheme was 2.4 K.

small background fields (e.g., earth magnetic field), a small
compensation field was used, which minimized the observed
zero-field RHS line splitting and also led to almost perfect
destructive interference.29,30 We used this compensation field
as our zero-field reference in all measurements.

For an optimal determination of the Hamiltonian
parameters, it is important to sample different strengths and
orientations of the magnetic field. In our experiments we used
a spiral on the surface of an ellipsoid21:

�B(t) =

⎛
⎜⎝

Bx

√
1 − t2 cos (6πt)

By

√
1 − t2 sin (6πt)

Bzt

⎞
⎟⎠ . (6)

Here, we use

t = −1 + (N − 1)
2

Ntot − 1
, N = 1,2, . . . ,Ntot

to represent the discrete coordinate along the trajectory. For
the ground-state series, we measured Ntot = 101 orientations,
with magnetic-field amplitudes [Bx,By,Bz] = [7,8,9] mT
and for the excited state we used Ntot = 251 and
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MARKO LOVRIĆ et al. PHYSICAL REVIEW B 84, 104417 (2011)

13 14 15 16 17
0.0

0.5

1.0 g , ± 1
2

↔ g , ± 3
2

N = 15

22 24 26 28
0.00

0.05

0.10

g , ± 3
2

↔ g , ± 5
2

N = 15

4.6 4.8 5.0 5.2
0.0

0.5

1.0 e, ± 1
2

↔ e, ± 3
2

N = 211

7.1 7.2 7.3 7.4
0.0

0.1

0.2

0.3

0.4 e, ± 3
2

↔ e, ± 5
2

N = 211

|gN = 1-101

0 100 200 300 400

1
2
↔ 3

2

3
2
↔ 5

2

|eN = 1-251

0 30 60

1
2
↔ 3

2

3
2
↔ 5

2

N
or

m
al

iz
ed

 a
bs

. v
al

. R
H

S
−

si
gn

al
 [a

rb
. u

ni
ts

]

R
el

at
iv

e 
oc

cu
rr

en
ce

 [a
rb

. u
ni

ts
]

Frequency [MHz] Frequency [kHz]

FIG. 3. (Color online) Representative ground- (cw) and exited-state (pulsed) RHS spectra. Both spectra from the ground-state (|g,i ↔ j〉)
are recorded at �B = (2.60,−5.27,−5.76) mT. For the excited state spectra, we used �B = (4.62,1.19,4.42) mT. The normalization is relative to
the largest line from ground- or excited state spectra, respectively. The |g,i ↔ j〉 spectra shown here resolve all 8 + 8 possible RHS transitions,
while in the |e,i ↔ j〉 spectra not all lines are resolved. The histograms on the right show the distributions of fitted FWHM RHS linewidths
for all recorded data (see Sec. IA in Ref. 25), plotted separately for the two hyperfine transitions (|g/e,i ↔ j〉, i/j = ± 1

2 /± 3
2 or ± 3

2 /± 5
2 ). For

both the ground- and the excited state, the ± 3
2 ↔ ± 5

2 linewidths are bigger (see Sec. V C). The mean linewidths are |g,± 1
2 ↔ ± 3

2 〉 ≈ 105 kHz,
|g,± 3

2 ↔ ± 5
2 〉 ≈ 301 kHz, |g,all〉 ≈ 196 kHz and |e,± 1

2 ↔ ± 3
2 〉 ≈ 18.3 kHz, |e,± 3

2 ↔ ± 5
2 〉 ≈ 26.3 kHz, |e,all〉 ≈ 22.3 kHz.

Bx = By = Bz = 6.5 mT. Figure 3 shows some typical
experimental spectra for the ground- and excited states.

IV. THE FITTING PROCEDURE

As described in Sec. II, 13 parameters are necessary to
fully characterize the spin Hamiltonian in the laboratory.
Using those it is possible to compute the line positions in
the RHS spectra. By minimization of the the rms deviation
[see Eq. (14) in Ref. 25] between calculated and experimental
line positions, the spin Hamiltonian parameters can be derived.
Due to the large number of parameters and their complicated
interdependency, gradient-based algorithms are not efficient,
as they tend to stick to local minima. In our case the
combination of first running a probabilistic and then a direct
search yielded the best convergence to the global minimum.
As in the work of Longdell et al.,16,21 we used simulated
annealing31 for the first step. It allows for robust convergence to
a global minimum when using appropriate settings. The latter
typically cause simulated annealing to converge relatively
slowly, although being already close to the global minimum
in advanced phases. Therefore we switch to a pattern search32

algorithm in this situation. We provide additional details of the
fitting procedure in the supplementary material.25

The underlying symmetry of the crystal-field and the
structure of the spin Hamiltonian cause some ambiguity if
only RHS spectra are used to determine the Hamiltonian
parameters.33 Important for our investigation is the fact that
the RHS spectra do not depend on the signs of D, E, and the
gyromagnetic factors gx , gy , and gz. In addition, different sets
of Euler angles correspond to the same tensor orientations.
As a consequence, different runs with random initial values
lead to apparently different solutions. We checked that these
solutions are related by the symmetry operations mentioned
above and thus verified that we really found a unique global
minimum.

V. RESULTS

A. Electronic ground-state

Figure 4(a) shows the experimental data for Ntot = 101
different external magnetic fields. Several fit trails reliably led
to the parameters shown in Table I and represented by the
solid lines in Fig. 4(a). All quoted Euler angles are given in
the “zyz” convention.24

With these parameters, the rms deviation between all
accounted line positions and the fit is ≈32 kHz, significantly
smaller than the average linewidth of the ground-state RHS
lines of ≈196 kHz (see Fig. 3), indicating that it is dominated
by statistical error. At the end of the fitting procedure,
L = 1218 of the total 1221 experimental lines could be
unambiguously assigned (see Sec. I B in Ref. 25) to calculated
resonance line positions.

To estimate the uncertainty of the fitted parameters, we
sampled the parameter space in the vicinity of the global
minimum by repeating the probabilistic part of the fitting
procedure using a fixed, low-temperature Tσ . Such a procedure
can be shown to be rigorous if the only source of error is
Gaussian noise in the line positions.21,33 To estimate this noise
we used the mean ratio of fitted linewidths σi to the individual
signal-to-noise ratio (SNRi) for all contributing RHS lines:

νσ = 1

L

L∑
i=1

σi

SNRi

.

For the ground-state data we found νσ = 1.4 kHz. According
to this we chose the fixed temperature Tσ , so that a single
parameter change from its optimum value by Tσl

(see Sec. I B
in Ref. 25) resulted in an increase of the rms deviation by
νσ . After 2 × 106 iterations the histograms of the accepted
parameters all showed a Gaussian shape, whose 1σ widths are
given as fit error in Table I.

Apart from the statistical error, we also consider systematic
errors. The most important contribution is due to the calibration

104417-4



HYPERFINE CHARACTERIZATION AND SPIN COHERENCE . . . PHYSICAL REVIEW B 84, 104417 (2011)

M
ag

ne
tic

 fi
el

d 
or

ie
nt

at
io

n 
 N

13 14 15 16 17

10

20

30

40

50

60

70

80

90

100

20 22 24 26 28

M
ag

ne
tic

 fi
el

d 
or

ie
nt

at
io

n 
 N

4.7 4.8 4.9 5.0 5.1 5.2

50

100

150

200

250

6.8 7.0 7.2 7.4 7.6

(a) (b)

Frequency [MHz] Frequency [MHz]

FIG. 4. RHS spectra of the |± 1
2 〉 ↔ |± 3

2 〉 and |± 3
2 〉 ↔ |± 5

2 〉 hyperfine transitions. (a) 3H4(0) ground-state cw RHS spectra. (b) 1D2(0)
excited state pulsed RHS spectra. In both cases the solid lines represent the fit results and the shaded background the absolute value of the
experimental spectra. For each field orientation, the spectrum was normalized to the maximum signal amplitude.

error of the magnetic field. We estimate its precision to
≈0.65%, which translates to the same fractional uncertainty
of the gyromagnetic ratios gx , gy , and gz. As the parameters
are given in the laboratory-fixed reference frame (x,y,z), a
misalignment of the crystal does not contribute to the error but
is expressed by the αC2 and βC2 values not being exactly 90◦.
The only systematic contribution in the angles arises from the
nonorthogonality of the coils, which is <1◦. The uncertainty
of the alignment of the crystal relative to our reference (x,y,z)
and that of the crystal surfaces to the optical indicatrix (X,Y,Z)
results in an error of ≈ 5◦ for the angles seen relative to the
crystal axis system.

B. Excited state

With the optimal fit parameters, we found an rms deviation
of 3.1 kHz between theoretical and experimental frequency
values, using L = 2345 of the 2353 measured lines in Ntot =
251 spectra. Compared to the mean experimental full width at

TABLE I. Ground-state spin Hamiltonian parameters.

Parameter Value Fit error Unit

D −6.3114 0.0027 MHz
E −0.8915 0.0021 MHz
αQ 20.4 3.3 deg.
βQ 147.7 1.4 deg.
γQ 10.2 1.4 deg.
gx −51.7 3.6 MHz/T
gy −23.5 1.1 MHz/T
gz −146.97 0.75 MHz/T
αM 30.1 3.8 deg.
βM 146.59 0.55 deg.
γM 13.09 0.69 deg.
αC2 88.34 0.47 deg.
βC2 92.45 0.31 deg.

half maximum (FWHM) of 22.3 kHz, the rms deviation is even
better than for the ground-state. We mainly attribute this to the
higher quality of pulsed RHS spectra, with fewer line-shape
artifacts. Figure 4(b) and Table II show the results.

For the determination of the fit errors here we found νσ =
136 Hz. The systematic errors are again dominated by the
calibration error of the magnetic field. We note that although
the crystal was remounted between this and the ground-state
experiments, the resulting orientation of the C2 axis deviates
less than our estimated alignment accuracy. As the Zeeman
tensor is almost axially symmetric, gx ≈ gz, its orientation
relative to the quadrupole tensor or to the ground-state tensor
orientations cannot be determined accurately.

C. Discussion

Examining Tables I and II, it appears that the principal
values for the Q and M tensors are similar to those found in
other hosts like Y2SiO5,21 LaF3, or YAlO3.

22 Especially, the

TABLE II. Excited state spin Hamiltonian parameters.

Parameter Value Fit error Unit

D 1.90705 0.00023 MHz
E 0.35665 0.00014 MHz
αQ −18.51 0.71 deg.
βQ 73.83 0.48 deg.
γQ −84.22 0.37 deg.
gx −17.22 0.27 MHz/T
gy −14.39 0.10 MHz/T
gz −18.37 0.14 MHz/T
αM −23.7 2.4 deg.
βM 88.5 4.1 deg.
γM −80.1 1.8 deg.
αC2 88.63 0.25 deg.
βC2 92.69 0.24 deg.
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ground-state gyromagnetic tensor is anisotropic with one large
component, in contrast to the excited state which also exhibits
smaller values. To get some insight into these properties, we
compared these results with calculations derived from crystal-
field calculations.

In a previous work34 we found that quadrupolar D and
E values for ground- and excited states could be very well
reproduced starting from electronic wave functions obtained
by a crystal-field analysis. The latter was done assuming
a C2v site symmetry, which is higher than the actual one
(C1). In this higher symmetry, the Q tensors for different
crystal-field levels are colinear, in clear contradiction with our
results. Nevertheless, it seems that the additional crystal-field
parameters of C1 symmetry have little effect on the Q principal
values. In the following we present the calculations of the M
tensor principal values.

In C2v orthorhombic symmetry, the spin Hamiltonian of
Eq. (2), expressed in the (xc,yc,zc) crystal-field axes, reads

H′′ =
∑

i=xc,yc,zc

BigiIi

+D

(
I 2
zc

− I (I + 1)

3

)
+ E

(
I 2
xc

− I 2
yc

)
, (7)

where the gi are related to a tensor �23:

gi = −2AJ gJ μB�ii − gIμN. (8)

The � tensor is given by

�αβ =
2J+1∑
n=1

〈0|Jα|n〉〈n|Jβ |0〉
En − E0

(9)

and can be calculated from the electronic wave functions
|n〉. The latter were found using a free ion and crystal-field
Hamiltonian whose parameters were fitted to experimentally
determined crystal-field levels En.34 In this calculation, we
use arbitrary permutations of the (xc,yc,zc) axes. This results
in different sets of E and D values, which give the same
hyperfine energy levels. We subsequently fix the choice of the
axis system such that the convention 0 � 3E/D = η � 1[35]
is fulfilled, thereby resolving ambiguous sets of parameters,
such as (in megahertz) D = −1.8184, E = 3.6014 and D =
−6.3114, E = −0.8915, which describe identical ground-
state zero-field hyperfine structures and correspond to an
exchange of xc with zc. With this convention, we fix the
permutation of the axes and thus the values for D and E for
both electronic states. The crystal-field parameters we used
and the corresponding E and D values for the ground- and
excited states are listed in Table III.36 The electronic wave
function of the excited 1D2(1) level is used instead of that of
1D2(0) to take into account a wrong ordering in the calculated
crystal-field levels of this multiplet.34,37

Comparing Tables I and II with Table III shows that a
reasonable agreement is found between experimental and cal-
culated principal values of ground- and excited state M tensors.
Again, this suggests that additional parameters appearing in
calculations using C1 symmetry mainly determine the relative
orientation between the different tensors. Calculated values
especially reproduce the two features mentioned above: the
very large value of gz for the ground-state and the smaller gi

TABLE III. Crystal-field parameters Bij , calculated Q and M
tensor principal values, and second-order hyperfine interaction
parameters.

Bij (cm−1) Ground-state Excited state Unit

B20 375 D −6.1 2.0 MHz
B22 −93 E −0.63 0.30 MHz
B40 768 gxc

−32 −18 MHz/T
B42 445 gyc

−22 −4 MHz/T
B44 1027 gzc

−151 −18 MHz/T
B60 267 AJ 937 697 MHz
B62 −402 gJ 0.81 1.03
B64 −61 �xcxc

0.0280 0.0066 cm
B66 −52 �ycyc

0.0140 −0.0090 cm
�zczc

0.2000 0.0069 cm

values for the excited state compared to the ground-state. A
qualitative understanding of these properties can be obtained
from the crystal-field analysis by looking at the different
factors entering in Eq. (8) (see Table III). We first note that
the isotropic and crystal-field independent nuclear Zeeman
contribution to gi equals –12.2 MHz/T. Differences in gi

values are mainly linked to the � tensors, since the products
AJ gJ vary by only 4% between ground- and excited states.
The � tensors involve the �J matrix elements and the energy
differences appearing as denominators in Eq. (9). We first
discuss the ground-state case. The electronic wave function of
interest [3H4(0)] has the following form:

|0〉 = −0.62|3H4,−4〉 − 0.62|3H4,4〉 − 0.4|3H4,0〉,
where brackets on the right-hand side are written as
|2S+1LJ ,MJ 〉 and only terms with a coefficient larger than
0.15 have been kept. The larger Jzc

matrix element is found
between |0〉 and |1〉, since the latter is nearly only composed
of |3H4,±4〉 states. The |〈0|Jzc

|1〉| matrix element equals 3.6
close to the maximum value of |〈3H4,±4|Jzc

|3H4,±4〉| = 4.
Moreover, this large matrix element is found for levels close
in energy (65 cm−1 Ref. 34), resulting in a large �zczc

. On
the other hand, |0〉 couples to crystal-field levels containing
|3H4,±3〉, |3H4,±1〉 by Jxc

or Jyc
operators. The correspond-

ing matrix elements do not exceed 2.4 in absolute value. As
expected, this is close to the average value of matrix elements
of the form 〈3H4,±4|Ji |3H4,±3〉 and 〈3H4,±1|Ji |3H4,±2〉
(where i = xc or yc), which is at most 1.9. The levels with the
largest matrix elements are located at high energies (E3 = 143
and E5 = 349 cm−1 for Jyc

and Jxc
, respectively), resulting in

low �xcxc
and �ycyc

. This in turn explains the small values of
gxc

and gyc
compared to gzc

.
A similar analysis can be performed for the excited state.

As mentioned above, the level of interest is 1D2(1) and is found
to be equal to

|1〉 = 0.67|1D2,−2〉 − 0.67|1D2,2〉,
with the same convention as above. This state gives a
Jzc

matrix element equal to 2 with the state |4〉, lo-
cated 441 cm−1 higher than |1〉. Maximum average values
for matrix elements of Jxc

and Jyc
can be estimated as

above for levels containing |1D2 ± 1〉 states, resulting in
|〈0|Jxc

|1〉| ≈ |〈1|Jxc
|2〉| ≈ 1. The corresponding energies are
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E0 − E1 = −82 cm−1 and E2 − E1 = 113 cm−1. The com-
bination of matrix elements and energy differences results
in smaller values for �ii compared to the ground-state. This
can also partly explain the isotropy of the excited state gi

values, which are closer to the nuclear Zeeman contribution.
As pointed out above, several Pr3+-doped compounds exhibit
the same behavior so that the discussion given above could
also be applied to them.

We now turn to the principal axes of the spin Hamiltonian
tensors. The oscillator strengths are assumed to be proportional
to the square of the overlap of the nuclear wave functions,22 the
latter being given by the ground- and excited state Hamiltoni-
ans, which is reasonable since the hyperfine interactions are a
small perturbation to the electronic wave functions. Thus we
can check the relative oscillator strengths following from our
(αQ,βQ,γQ,D,E) parameters against values from zero-field
spectral tayloring experiments.19 The results are gathered in
Table IV. A good agreement is found, showing that indeed
the orientation of the quadrupole tensors was determined
correctly. In Pr3+:Y2SiO5, significant discrepancies were
found between calculated and experimental values.38,39 This
was tentatively attributed to additional selection rules due to
superhyperfine coupling with Y ions. In our case, it seems that
although superhyperfine coupling may also be observed (see
Sec. V D), relative optical transition matrix elements can still
be determined from the overlap of the nuclear wave functions.

Hyperfine transition linewidths were also determined dur-
ing the fit procedure. The data show (see Fig. 3) that the
transitions with the larger splittings also show the larger
linewidths. For example, the ground-state |± 3

2 〉 ↔ |± 5
2 〉 tran-

sitions at 24.44 MHz have an average linewidth of 301 kHz,
whereas the |± 1

2 〉 ↔ |± 3
2 〉 transitions at 14.87 MHz have

a width of only 105 kHz. This becomes reasonable if we
focus on the dominant part of the Hamiltonian (Eq. (7)),
H′′ ≈ D[I 2

zc
− I (I + 1)/3]. In this case, the transition energies

become | 1
2 〉 ↔ | 3

2 〉 ≈ |2D| and | 3
2 〉 ↔ | 5

2 〉 ≈ |4D|. Crystal-
field variations from one ion position to another correspond
to a distribution of crystal-field parameters and therefore of
the D parameter. The hyperfine linewidths should then be
proportional to the transition energies. This is qualitatively
in agreement with the experimental values. The excited state

TABLE IV. Relative optical oscillator strengths between 3H4(0)
and 1D2(0) hyperfine levels. Experimental19 and calculated values,
using Tables I and II, are being compared. Rows correspond
to transitions starting from the ground-state hyperfine levels and
columns correspond to transitions to different excited state hyperfine
levels (see Fig. 1).

|e,± 1
2 〉 |e,± 3

2 〉 |e,± 5
2 〉

Exp. 0.09 ± 0.01 0.28 ± 0.01 0.63 ± 0.01〈g,± 1
2 |

Calc. 0.08 ± 0.01 0.24 ± 0.02 0.67 ± 0.02

Exp. 0.33 ± 0.01 0.39 ± 0.01 0.28 ± 0.02〈g,± 3
2 |

Calc. 0.31 ± 0.02 0.45 ± 0.02 0.24 ± 0.02

Exp. 0.55 ± 0.01 0.36 ± 0.01 0.09 ± 0.01〈g,± 5
2 |

Calc. 0.60 ± 0.02 0.31 ± 0.02 0.09 ± 0.01

linewidths are also smaller than the ground-state ones, which
suggests that the D distribution width is also proportional to D.

D. Experimental verification of a ZEFOZ transition

As mentioned earlier, the coherence times for ZEFOZ
transitions are expected to be much longer than at zero or
arbitrary magnetic field. To our best knowledge this was
demonstrated experimentally only for Pr3+:Y2SiO5.14,15 To
verify our hyperfine characterization and also the usefulness
of the ZEFOZ technique for other compounds, we present
experimental data of a ZEFOZ transition of Pr3+:La2(WO4)3

in the following. Using our ground-state parametrization we
sought for magnetic-field configurations and transitions that
satisfy the ZEFOZ conditions15:

�SI ( �Bopt) =
(

∂νi( �Bopt)

∂Bx

,
∂νi( �Bopt)

∂By

,
∂νi( �Bopt)

∂Bz

)
= �0.

We identified the points �Bopt by numerical minimization of
| �SI ( �B)| for all transitions νi within a magnetic-field grid.
Several of the identified ZEFOZ transitions showed a low
curvature, e.g., small second-order coefficients

SII
jk ( �B) = ∂2νi( �B)

∂Bj∂Bk

∣∣∣∣ �B
. (10)

We studied the ZEFOZ transition at ν4 = 12.6 MHz and
�Bopt = (57.5, 4.0, −36.1) mT. As the setup at TU Dortmund,
described in Sec. III, was not designed for magnetic fields
of more than 12 mT per axis, we carried out the ZEFOZ
experiments at Lund University. This allowed for verification
of the Hamiltonian parameters and predicted ZEFOZ points
in an independent laboratory. The static magnetic-field vector
was provided by a set of three orthogonal superconducting
coils, suitable to generate the elevated field. Whereas the x and
z coils could provide a resolution of ≈4 μT, the y-axis control
was limited to a step size of 1 mT. To fit into the homogeneous
region of the coils we cut the previously characterized crystal
into a 5 × 5 × 1 mm piece. This and the construction of the
sample holder limited our alignment of the optical indicatrix
to the coil frame to a precision of about 10◦ for the x and
y axes. We could adjust the z axis much more precisely,
aligning the reflection from the crystal surface normal to Z

to be parallel with the incident laser. To find the ZEFOZ point
experimentally we had to consider the alignment precision, the
accuracy of the Hamiltonian parameters, and the calibration
of the coils. In a first step we adjusted the magnetic field to
get a good overlap between observed cw RHS spectra and the
calculated line positions following from Table I and �Bopt. Close
to the ZEFOZ condition, the transition frequency becomes an
insensitive tuning parameter for the field. Thus, in a second
step we fine tuned the magnetic-field components by looking
at the achieved spin coherence lifetime directly. For this we
used a Raman-echo sequence40 and tuned the field in order to
maximize the echo signal for long evolution times (rf pulse
separations). Figure 5 shows the longest-lived Raman-echo
decay curves we could achieve. These demonstrate hyperfine
coherence times of up to T2( �Bopt) = 158 ± 7 ms, representing
a 630-fold increase compared to the zero-magnetic-field
situation.20 The decay curves at magnetic fields slightly
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FIG. 5. (Color online) Raman-echo decays at the ZEFOZ point
and with magnetic detunings of −0.2 and −0.5 mT for the z

component.

detuned from the ZEFOZ point show slow modulations with
a frequency of νM = 24.5 ± 1.7 Hz.41 This could be due
to a superhyperfine interaction with La nuclei, but a clear
explanation is lacking at the present time. This point will be
investigated in further experiments. As we moved the magnetic
field away from the ZEFOZ point �Bopt by −0.2 mT in the z
component, this resulted in a decrease of the coherence time to
T2(−0.2 mT) = 133 ± 16 ms and a shift by −0.5 mT resulted
in T2(−0.5 mT) = 97 ± 19 ms.

In the following we will use this measured T2( �B) values to
estimate the magnetic-field fluctuation at the Pr3+ site. These
fluctuations cause frequency shifts and thereby broaden the
hyperfine transition. For this purpose, we expand the hyperfine
transition frequency νi on a deviation Boff from a given
field �B:

νi | �B = νi( �B) + s1 Boff + s2

2
B2

off .

For �B = �Bopt the first derivative vanishes (s1 = 0) and the
frequency change due to small shifts is

	ν = s2

2
B2

off . (11)

If the offset from the ZEFOZ condition is due to some random
field 	B, this leads to a line broadening instead of a frequency
shift. The linewidth may then be written as

T −1
2 = s2

2
(	B)2. (12)

With the experimentally obtained value of T2 = 158 ms and
s2 ≈ 12 kHz/mT2, calculated from the maximum eigenvalue
of the derivative matrix Eq. (10), using the parameters from
Table I we thus estimate the magnetic-field fluctuations
as 	B ≈ 32 μT.In Pr3+:Y2SiO5 	B = 14 μT14,16 (s2 ≈
3−6 kHz/mT2) was found, representing the only ZEFOZ
testbed experimentally investigated up to date. Thus both 	B

are of the same order and their values are compatible with
the observed zero-field T2 relaxation times [Pr3+:La2(WO4)3≈
250 μs vs Pr3+:Y2SiO5≈ 500 μs], noting that their gi factors
and thus their s1(B = 0) are comparable too.

When the deviation from �Bopt becomes large compared to
the fluctuations, Boff 
 	B, Eq. (11) changes to

	ν = s2

2

(
B2

off + 2	B Boff
)
. (13)

The first term describes the line shift, the second a line
broadening. For 	B ≈ 32 μT Eq. (13) yields a broaden-
ing corresponding to decay times T2(0.2 mT) ≈ 13 ms and
T2(0.5 mT) ≈ 5 ms. Both T2 values are significantly shorter
than the experimental values. We account this to wrong
assumptions for the model.

The most likely explanation for this discrepancy is that the
relaxation at our reference field is not entirely due to magnetic-
field fluctuations and that the reference field does not exactly
fulfill the ZEFOZ condition. Both effects lead to additional
contributions to the dephasing rate. We therefore write the
total dephasing rate as

T −1
2 = T −1

2,0 + s1 	B + s2 	B Boff . (14)

Here T −1
2,0 describes those contributions that are not due to

magnetic-field fluctuations, such as phonons, while s1 	B

accounts for a possible deviation of the experimental �Bopt

from the exact ZEFOZ condition. Both terms are independent
of Boff and are therefore indistinguishable in the available
experimental data.

Using s2 ≈ 8.2 kHz/mT2, which corresponds to the pro-
jection of Eq. (10) into the z direction, we now use Eq. (14)
to estimate the magnetic-field fluctuations. The result of a
linear fit of T −1

2 vs Boff yields 	B ≈ 1 μT. Applying the same
analysis to the Pr3+:Y2SiO5 data (estimated from Fig. 2 in
Ref. 14) gives 	B ≈ 1.3 μT. This also reduces the estimate
for 	B by approximately 1 order of magnitude compared to
the analysis where the minimum dephasing rate is assumed to
originate entirely from the quadratic term of the magnetic-field
fluctuations.16

For a complete analysis of all contributions to the relaxation,
further measurements are necessary. Phononic contributions
to T2 could be determined from measurements at different
temperatures, since s1 and s2 are independent of the latter.
Measurements of T2 at several deviations �Boff could help to
estimate the numerical value of s1 	B.

VI. CONCLUSION

We characterized the spin Hamiltonian of Pr3+:La2(WO4)3

for the electronic ground-state and one electronically excited
state utilizing RHS spectra. Using a crystal-field analysis, we
indicated the reasons for the measured tensor principal values
and orientations. The relative oscillator strengths between the
3H4(0) and 1D2(0) hyperfine levels derived from our data
agree well with those measured in earlier work.19 Using our
characterization we could predict the magnetic-field value at
which a ZEFOZ transition occurs. We verified this condition
experimentally in a second laboratory. By investigating the
coherence properties of the ZEFOZ transition we estimated the
order of magnetic fluctuations at the Pr3+ site (	B) and found
evidence that it is smaller than expected. Besides observing
characteristics similar to superhyperfine interaction, we could
achieve an up to 630-fold increase of the coherence lifetime
compared to zero field. The demonstrated T2 = 158 ± 7 ms
and the relatively low second-order Zeeman coefficient show
that even crystal systems with high-magnetic-moment density
can have a high potential for quantum memory and information
applications.
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and S. Kröll, Phys. Rev. A 79, 33809 (2009).

21J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. B 66,
35101 (2002).

22R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids
Containing Rare Earth Ions, Modern Problems in Condensed
Matter Sciences, edited by A. A. Kaplyanskii and R. M. Macfarlane
(North Holland, Amsterdam, 1987), Vol. 21, pp. 51–184.

23M. A. Teplov, Sov. Phys. JETP 26, 872 (1968).
24H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics

(Addison Wesley, San Francisco, 2002) p. 638.
25See Supplemental Material at http://link.aps.org/supplemental/

10.1103/10.1103/PhysRevB.84.104417 for more details on conven-
tions and the fitting procedure.
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