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Spin-dependent inertial force and spin current in accelerating systems
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The spin-dependent inertial force in an accelerating system under the presence of electromagnetic fields is
derived from the generally covariant Dirac equation. Spin currents are evaluated by the force up to the lowest
order of the spin-orbit coupling in both ballistic and diffusive regimes. We give an interpretation of the inertial
effect of linear acceleration on an electron as an effective electric field and show that mechanical vibration
in a high-frequency resonator can create a spin current via the spin-orbit interaction augmented by the linear
acceleration.
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I. INTRODUCTION

Studies of inertial effects on electrons have a long history
dating back to the 1910s. Barnett investigated the mag-
netization induced by rotational motion.1 Einstein and de
Haas carried out the reverse experiment.2 They measured the
gyromagnetic ratio and the anomalous g factor of electrons
before modern quantum physics was established. Stewart
and Tolman estimated the electron mass by measuring the
charge accumulation at the rim of a metal due to linearly
accelerating motion.3 Rapid progress in nanotechnology has
allowed us to study the coupling of mechanical motion and
electromagnetism in the quantum-mechanical regime. Effects
of mechanical rotation on nanostructured magnetism are
detected in microcantilevers4,5 and torsional resonators.6 The
quantization of the rotational motion is observed in mag-
netic nanoparticles.7 Single quantum excitations of vibration,
namely, phonons, can be controlled in a piezoelectric acoustic
wave resonator.8 There has been theoretical work on effects
of mechanical rotation on nanostructured magnetism,9–15 the
coupling of nanomechanical vibration and magnetism,16–19

and the phonon-spin coupling related to spin relaxation.20–26

However, the contribution of the spin-orbit interaction (SOI)
in accelerating frames has not been thoroughly studied in
previous papers.

Recent developments in spintronics,27,28 which relies on
not only an electron’s charge but also its spin, have enabled
us to utilize a “spin current,” a flow of spins. In this
context, the coupling of magnetization and spin current is
of great interest in the field of spintronics.29–32 To harness
the spin current, understanding the spin-orbit interaction is
indispensable. Recently, we proposed a fundamental theory
describing the direct coupling of the mechanical rotation and
spin current and predicted the spin-current generation arising
from rotational motion.33,34 Our finding is the first step to
extending the theory of spin current in an inertial frame to that
in a noninertial frame. In this paper, we provide a systematic
approach to study spin-current generation from mechanical
motion, including time-dependent rigid rotation and linear
acceleration. First, we derive the spin-dependent inertial force
in a rotating frame in the presence of an applied magnetic
field. This force is responsible for the generation of a spin

current due to mechanical rotation. Second, we investigate
how linear acceleration generates a spin current. We show that
nanomechanical vibration can create an ac spin current on the
basis of the inertial spin-orbit coupling in accelerating systems.

The outline of the paper is the following. In Sec. II, we
review the Dirac equation in a rotating frame. In Sec. III, the
Pauli-Schrödinger equation in the rotating frame is derived.
In Sec. IV, we derive the full expression for a spin-dependent
force caused by mechanical rotation. Spin-current generation
in the presence of impurity scattering is studied in Sec. V. Spin-
current generation from mechanical vibration is investigated
in Sec. VI. The paper ends with a few concluding remarks
in Sec. VII and three Appendices. Appendix A contains
a short summary of vierbein theory. Details of the Foldy-
Wouthuysen-Tani transformation are given in Appendix B.
Electromagnetic fields in a rotating frame are briefly summa-
rized in Appendix C.

II. DIRAC EQUATION IN A ROTATING FRAME

In this section, we review the Dirac equation in a rotating
frame. According to Einstein’s principle of equivalence,
gravitation can not be locally distinguished from inertial
effects due to acceleration of the frame of reference. In
general relativity, both gravitational and inertial effects are
expressed by a metric and connection in a curved space-time.
The fundamental equation of a spin-1/2 particle in curved
space-time is the generally covariant Dirac equation35

[
γ μ

(
∂μ − �μ − iqAμ

h̄

)
+ mc

h̄

]
� = 0, (1)

where c,h̄,q = −e, and m are the velocity of light, the Planck
constant, the charge and mass of an electron, Aμ = (A0,A) is
the U(1) gauge potential, and �μ the spin connection.35 The
Clifford algebra in the curved space-time γ μ = γ μ(x) satisfies

{γ μ(x),γ ν(x)} = 2gμν(x), (2)

where gμν(x) (μ,ν = 0,1,2,3) is the inverse of the coordinate-
dependent metric gμν(x). The coordinate transformation from
a rigidly rotating frame to an inertial frame is given by

dr′ = dr + (� × r)dt, (3)
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where the rotation frequency with respect to an inertial frame
is �(t). Here, we assume that the rotation velocity � × r is
much less than the speed of light. The space-time line element
in the rotating frame is

ds2 = gμνdxμdxν

= [−c2 + (� × r)2]dt2 + 2(� × r)dt dr + dr2. (4)

Thus, the metric in the rotating frame becomes

gμν =

⎛
⎜⎝

−1 + u(x)2 ux(x) uy(x) uz(x)
ux(x) 1 0 0
uy(x) 0 1 0
uz(x) 0 0 1

⎞
⎟⎠ , (5)

with

u(x) = �(t) × r/c. (6)

This metric leads to the Clifford algebra and the spin
connection in a rotating frame as

γ 0(x) = iβ, γ i(x) = iβαi − ui(x), (7)

�0 = � · �

2c
, �i = 0, (8)

where

β =
(

I O

O −I

)
, α =

(
O σ

σ O

)
(9)

are the Dirac matrices and � is the spin operator for a four-
spinor defined by

� = h̄

4i
α × α = h̄

2

(
σ O

O σ

)
(10)

with the Pauli matrix σ (details of the spin connection are
given in Appendix A). From Eqs. (1)–(8), the Dirac equation
in a rotating frame is written as

ih̄
∂�

∂t
= H�, (11a)

H = βmc2 + cα · π + qA0 − � · (r × π + �) , (11b)

where π = p − qA is the mechanical momentum and r is the
position vector from the origin at the rotation axis.

In classical mechanics, the Hamiltonian in the rotating
frame has the additional term � · (r × π ), which reproduces
the inertial effects: Coriolis, centrifugal, and Euler forces.36

The term � · � is called the spin-rotation coupling.37–39 The
last term of Eq. (11b), � · (r × π + �), can be regarded as
a quantum-mechanical generalization of the inertial effects
obtained by replacing the mechanical angular momentum
r × π with the total angular momentum r × π + �.

III. PAULI-SCHRÖDINGER EQUATION IN A
ROTATING FRAME

The Dirac equation is an equation of a four-spinor wave
function, which contains the up- and down-spin electron and
positron components. As the energy gap between the electron
and positron state is much larger than the energy levels of
condensed matter systems, we take the low-energy limit of the
Dirac equation to obtain the Pauli-Schrödinger equation of up-
and down-spin electrons. Following the low-energy expansion

and block diagonalization of the Dirac Hamiltonian developed
by Foldy, Wouthuysen,40 and Tani,41 we derive the Pauli-
Schrödinger equation in a rotating frame (see Appendix B for
the details of the derivation). The Hamiltonian (11b) is divided
into the block-diagonal and off-diagonal parts denoted by E
and O, respectively:

H = βmc2 + E + O, (12)

with

E = qA0 − � · (r × π + �), (13a)

O = cα · π . (13b)

By successive Foldy-Wouthuysen-Tani transformations, the
Hamiltonian up to the order of 1/m2 becomes

H = β

[
mc2 + O2

2mc2

]
+ E − 1

8m2c4
[O,[O,E] + ih̄Ȯ].

(14)

Neglecting the rest-energy term in Eq. (14), the Pauli-
Schrödinger equation for the upper component of a Dirac
spinor, namely, the two-component electron wave function,
is obtained in the rotating frame as33

ih̄
∂ψ

∂t
= HPRψ, (15)

HPR = HK + HZ + HI + HS + HD, (16)

where

HK = 1

2m
π2 + qA0, (17a)

HZ = μBσ · B, (17b)

HI = −� · (r × π + S), (17c)

HS = qλ

2h̄
σ · (π × E′ − E′ × π), (17d)

HD = −qλ

2
divE′, (17e)

with

μB = qh̄

2m
, λ = h̄2

4m2c2
, S = h̄

2
σ , (18)

and

E′ = E + (� × r) × B. (19)

The Hamiltonian in Eq. (15), HPR, is a 2 × 2 matrix
operator, and ψ is the two-spinor wave function of a single
electron.

A. Lowest order of the expansion

In the lowest order of the expansion, the Hamiltonian to the
order of 1/m is given by HK + HZ + HI. The spin-independent
HK contains the kinetic energy and the potential energy. The
Zeeman energy HZ contains the g factor of the electron equal
to 2. Combining HK with HZ, the coupling with the magnetic
field,

q

2m
(r × π + 2S) · B (20)
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is obtained, which contrasts with Eq. (17c): the mechanical
rotation couples to the total angular momentum of the electron

r × π + S. (21)

The inertial effects, namely, the Coriolis, centrifugal, and Euler
forces, are reproduced by the first term of HI as mentioned
above. The second term of HI is the spin-rotation coupling
term. Introducing the “Barnett field”

B� = (m/q)�, (22)

we can combine the spin-rotation coupling with the Zeeman
term, leading to a different form:

μBσ · (B + B�). (23)

Equation (23) shows that the spin-rotation coupling can be
interpreted as a correction to the Zeeman effect with an
effective magnetic field B�.

Previous theoretical work9–15 has been done on the basis of
the Barnett field. In the following sections, we study inertial
effects on a spin current using the spin-orbit interaction HS,
which is obtained from the second order of the expansion.

B. Second order of the expansion

The expansion of the order of 1/m2 yields the SOI and
Darwin terms with the mechanical rotation HS and HD. In
the absence of rotation � = 0, these terms reproduce the
conventional SOI and Darwin terms in the rest frame. In the
presence of rotation, we find that the electric field E in the
two terms in the inertial frame is modified by an additional
term (� × r) × B. This result is consistent with a general
coordinate transformation of electromagnetic fields between
the rest frame and the rotating frame42 (the derivation of the
transformation is given in Appendix C).

C. Renormalization of SOI

The contribution of HS to HI in vacuum is negligible since
the dimensionless spin-orbit coupling parameter

ηSO = λ(mv)2

h̄2 =
(

v

2c

)2

� 1 (24)

with the electron velocity v being much less than the speed
of light. However, the spin-orbit coupling is enhanced in
metals and semiconductors such as Pt.45,46 The renormaliza-
tion depends on detailed electronic structures and electron
correlations.47,48 In this paper, we do not go into detail
about this procedure. Nevertheless, the results obtained in
this paper are universal in nature. One can start with an
effective Hamiltonian, e.g., a Luttinger49 or Rashba50 model,
which treats the electromagnetic field (19) in a rotating frame.
Replacing the momentum mv with the Fermi momentum
h̄kF , the coupling ηSO becomes λ̃k2

F , where λ̃ is an enhanced
spin-orbit coupling parameter. The coupling ηSO of Pt is
estimated as 0.59 by the nonlocal measurement of the spin Hall
effect.45,46 Electrons in a noninertial frame can not distinguish
the inertial effect originating from the mechanical rotation
(� × r) × B in Eq. (17d) from conventional electric field E.
Thus, the new effect due to the SOI with the mechanical

rotation can be significant in large SOI systems, as shown
in the following sections.

IV. SPIN-DEPENDENT INERTIAL FORCE IN A
ROTATING FRAME

Let us consider semiclassical equations of motion for an
electron based on the Pauli-Schrödinger equation in a rotating
frame. A quantum-mechanical analog of “force” F is defined
by

F = 1

ih̄
[mṙ,HPR] + m

∂ ṙ
∂t

, (25)

with ṙ = [r,HPR]/ih̄. From Eq. (15), the spin-dependent
velocity including the effect of mechanical rotation is obtained
as

ṙ = v + vI + vσ , (26)

with

v = 1

ih̄
[r,HK] = π

m
, (27a)

vI = 1

ih̄
[r,HI] = −� × r, (27b)

vσ = 1

ih̄
[r,HS] = eλ

h̄
σ × E′. (27c)

The “force” F = F0 + F1 + F2 + Ft is obtained as

F0 = q[E′ + v × (B + 2B�)] + m� × (� × r), (28a)

F1 = −q2λ

h̄
{(σ × E′) × (B + B�) − [(B + B�) × σ ] × E′}

+ qmλ

h̄
[σ · (� × v)B + 2(B · �)σ × v − (B · v)σ × �

+� · (r × B)σ × � − (B · �)σ × (� × r)], (28b)

F2 = mq2λ2

h̄2

(
2

h̄
(σ · E′)mv × E′

+ i[(σ · E′)B × � − (σ · B)E′ × � + (B · �)E′ × σ ]

+ (E′ × B) × � + 2(B · �)E′
)

, (28c)

Ft = mr × ∂�

∂t
+ qmλ

h̄
σ ×

[(
r × ∂�

∂t

)
× B

]
. (28d)

The spin-independent F0 consists of the electromagnetic force
in a rotating frame q(E′ + v × B), Coriolis force qv × 2B� =
2mv × �, and centrifugal force m� × (� × r). The first term
in Ft is the Euler force. The other terms in F with the spin
operator σ are responsible for spin-dependent transport of
electrons. The full expression of the spin-dependent force in a
rotating frame in the presence of electromagnetic fields is one
of the principal results of this paper. In the absence of rotation
� = 0, the above expression of F reproduces the previous
results in an inertial frame.51

To have a better understanding of the spin-dependent
force, we study the case of � = (0,0,�),B = (0,0,B),
E = 0,|B|/|B�| � 1 and neglect the terms of the order of
η2

SO,|�/ωc|2 with the cyclotron frequency

ωc = qB

m
. (29)
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FIG. 1. (Color online) (a) Spin-dependent electric field Eσ and
drift velocity vd

σ are illustrated. An external magnetic field B is
applied along the rotation axis (z direction). For the z-polarized spins,
the electric field E+ (E−) is induced in the radial outward (inward)
direction. (b) The drift velocities vd

± in opposite directions result in
the spin current J φ

s in the azimuthal direction.

F is decomposed into the xy and z components F⊥ and F‖.
Thus, we have

F⊥ ≈ q(Er + Eσ + v × B), (30)

with

Er = (B · �)r, (31a)

Eσ = −qλ

h̄
(B · σ )(B · �)r. (31b)

Here, Er is an electric field induced in the rotating frame with
an applied magnetic field B, and Eσ is an “effective spin-
dependent electric field” induced by the SOI HS. Coexistence
of electric and magnetic fields E and B yields the E × B drift,
which is the motion of the guiding center of a charged particle
with the drift velocity43

vd = E × B
B2

. (32)

From Eq. (30), we obtain two types of drift motion for an
electron wave packet: one is the charge drift motion

vd
c = Er × B

B2
, (33)

and the other is the spin-dependent drift motion

vd
σ = Eσ × B

B2
. (34)

Figure 1(a) illustrates the relation of the rotation, magnetic
field, induced spin-dependent field, and drift velocity. In a
ballistic regime, the latter produces the spin current in the
azimuthal direction

Js = enTrσzvd
σ = 2neκωcReφ, (35)

where R is the distance from the rotation axis, eφ the unit
azimuthal vector, n the electron density, and the dimensionless
parameter

κ = λ̃k2
F · h̄�

εF

(36)

with Fermi energy εF .33 Setting B = 1 T, � = 1 kH, λ̃k2
F ≈

0.6, kF ≈ 1010 m, and R = 10 mm, |Js | is estimated to be
about 108 A/m2.

Next, we consider fluctuation of the rotating axis, caused
by a high-speed rotor in operation. Such fluctuation effects on
spin current come from the � dependence of Eσ in Eq. (31b) as
well as the time-derivative of � in the second term of Ft . If the
rotation frequency has a time-dependent written component as

�(t) = �0 + δ�(t), (37)

where

δ�(t) = δ�⊥(t) + δ�‖(t), (38)

with δ�⊥ ⊥ �0, δ�‖ ‖ �0, and |δ�| � |�|, a time-dependent
drift motion is induced:

δvd
σ = δEσ × B

B2
(39)

with

δEσ = −qλ

h̄
(σ · B)(B · δ�)r, (40)

and the fluctuation of the spin current is obtained as

δJs(t) = 2ne2λBR

h̄
δ�‖(t)eφ. (41)

The time derivative of Eq. (38) is divided into the xy and z

components

∂δ�

∂t
=

(
∂δ�

∂t

)
⊥

+
(

∂δ�

∂t

)
‖
. (42)

From the second term of Ft , we have an additional effective
spin-dependent electric field created in the xy plane δE′

σ given
by

δE′
σ (t) = qmλ

h̄
(σ · B)r ×

(
∂δ�

∂t

)
‖
. (43)

This yields the spin current in the azimuthal direction

δJ′
s(t) = 2nemλR

h̄

(
∂δ�

∂t

)
‖

eφ. (44)

The ratio |δJ ′
s/δJs | is equal to | ∂δ�

∂t
|/|δ�ωc|. The time scale

of the fluctuation of rotation is usually much smaller than that
of the cyclotron frequency. Thus, the contribution from Ft to
the spin-current fluctuation is negligible.

V. EFFECTS OF IMPURITY SCATTERING

In this section, we discuss spin-current generation in the
presence of impurity scattering. We consider a Pt thin film
attached to a rotating disk with a uniform magnetic field
parallel to the rotation axis, as shown in Fig. 2. Spin-dependent
transport in a system with a strong SOI can be described by
semiclassical equations52

ṙ = v + vσ0, (45a)

h̄k̇ = −e (E + ṙ × B) . (45b)

Here, v = h̄k/m represents the normal velocity, k is the wave
vector, and E and B are applied electric and magnetic fields.
The anomalous velocity vσ0, originating from the SOI in an
inertial frame, is written as

vσ0 = eλ

h̄
σ × E. (46)
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R1 R2R

B JS R( )
s

r

φ

Pt

FIG. 2. (Color online) The z-polarized radial spin current is
converted to the inverse spin Hall voltage in the azimuthal direction
eφ . The rotation frequency � and the magnetic field B are applied
along the z axis. The z-polarized spin current Js(R) is induced in the
radial direction er . Here, the spin polarization vector is denoted by s.

It is straightforward to extend the equations in an inertial
frame to a rotating frame using Eqs. (25) and (26):

ṙ = v + vI + vσ , (47a)

h̄k̇ = F . (47b)

We consider spin-current generation in a rotating normal metal
with large spin-orbit coupling such as Pt in the presence of
spin-independent impurity scattering. The electron distribution
function depends on spins because of the spin dependence of
the semiclassical equations (47). In this case, the transport
equation of nonequilibrium steady states is written as

ṙ · ∂fσ

∂r
+ k̇ · ∂fσ

∂k
= −fσ − f0

τ
, (48)

where fσ = fσ (r,k) is the spin-dependent distribution func-
tion, f0 = f0(ε) is the Fermi-Dirac distribution function, and
τ is the relaxation time.

Combining the semiclassical equations (47) with Eq. (48)
and setting E = 0, we obtain

F = F⊥ ≈ −e[Er + Eσ + v × B], (49)

the solution of which is

fσ = f0 + ev · τ
E′

σ + τωc × E′
σ

1 + (τωc)2

∂f0

∂ε
, (50)

with

ωc = eB
m

(51)

and

E′
σ = Er + Eσ . (52)

The solution (50) contains two “electric fields”: the spin-
independent part Er and the spin-dependent part Eσ as
discussed in Sec. IV. The spin-independent part yields the
conventional Hall effect in the rotating frame. If the ends
in the radial (longitudinal) direction of a Pt film attached
to the rotating disk (see Fig. 2) are electrically connected,
the Hall voltage is obtained in the azimuthal (transverse)
direction, while the spin-dependent part causes the spin-
current generation.53

The z-polarized spin current generated by the mechanical
rotation can be evaluated by

Js = −e

∫
dk Tr [σzfσ (r,k)ṙ] , (53)

which leads to the explicit form of the spin current

Js(R) = J r
s (R)er + J φ

s (R)eφ, (54)

with

J r
s = τωc

1 + (τωc)2
J 0

s , (55a)

J φ
s = (τωc)2

1 + (τωc)2
J 0

s . (55b)

Here, er (eφ) is the unit vector of the radial (azimuthal) direction
as indicated in Fig. 2, and J 0

s is given by

J 0
s (R) = 2neκωcR. (56)

In the large ωcτ limit, the radial spin current J r
s vanishes, and

we have

J φ
s → J 0

s . (57)

This reproduces the ballistic case, Eq. (35). Putting ωcτ � 1,
the radial spin current becomes much larger than the azimuthal
one:

J r
s � J φ

s . (58)

VI. LINEAR ACCELERATION

In this section, we discuss spin-current generation by linear
acceleration in the absence of electromagnetic fields. The
Dirac Hamiltonian in a linearly and rotationally accelerating
frame without electromagnetic fields was derived by Hehl and
Ni (Ref. 39):

H = βmc2 + cα · p + 1

2c
[(a · r)(p · α) + (p · α)(a · r)]

+βm(a · r) − � · (L + S), (59)

with the linear acceleration a and the angular momentum
L = r × p. In the low-energy limit of this Hamiltonian up
to the order of 1/m2, one has the Hamiltonian of the
Pauli-Schrödinger equation of the electron’s two-spinor wave
function in the accelerating frame39

H = p2

2m
+ ma · r − � · (L + S)

+ h̄

4mc2
σ · (a × p), (60)

where the rest-mass energy and the redshift effect of the kinetic
energy39 are neglected. We note that the last term, the so-
called “inertial spin-orbit interaction,” does not contain the
mechanical rotation because of the absence of the magnetic
field. It should be emphasized that the inertial effect of the
linear acceleration on the electron can be interpreted as an
“effective electric field.” Introducing the “electric field”

Ea = (m/q)a, (61)

the inertial SOI can be rewritten as

HS,a = λ

h̄
σ · (p × qEa). (62)

Together with the second term of Eq. (60), ma · r = qEa · r,
the inertial effects of the linear acceleration without rotation on
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the large spin-orbit interacting system can be analyzed by the
same framework as the conventional Hamiltonian with SOI:

H = p2

2m
+ U + λ

h̄
σ ·

[
∂U

∂r
× p

]
(63)

with the potential U = qEa · r.
The electron velocity in the linearly accelerating frame is

given by

ṙ = p
m

+ vσ ,a, (64)

where

vσ ,a = eλ

h̄
σ × Ea. (65)

We focus on the inertial effects of linear acceleration. The
anomalous velocity vσ ,a yields the mechanical analog of the
spin Hall effect in a ballistic regime. The i-polarized spin
current (i = {x,y,z}) generated by the linear acceleration is
estimated as

Ji
s = enTr[σivσ ,a] = 2nemλ

h̄
si × a. (66)

When the acceleration is induced by the harmonic oscillation
with the frequency ωa and amplitude u in the x direction as

a = uω2
ae

iωatex, (67)

the z-polarized spin current is created in the y direction

Jz
s = 2nemλ

h̄
uω2

ae
iωatey. (68)

Assuming the Pt film vibrates with ωa = 10 GHz and u =
10 nm, the ac spin current is estimated to be J z

s ≈ 107 A/m2

(see Fig. 3). It is a future challenge to probe the ac spin
current in a high-frequency mechanical resonator.54 In such
a noninertial system, it is straightforward to extend the results
in the ballistic regime to those in the diffusive regime using a
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FIG. 3. (Color online) Spin-current generation in a linearly
accelerating frame. (a) When a Pt film is attached to a mechanical
resonator and vibrates along the x axis, the z-polarized ac spin current
is created in the y direction. (b) The amplitude of J z

s is plotted as a
function of ωa at u = 10 nm. (c) The amplitude is plotted as a function
of u at ωa = 10 GHz.

well-established framework of the spin Hall effect by replacing
the usual electric field E with the effective one Ea.

VII. CONCLUSION

In this paper, we have investigated theoretically the gen-
eration of spin currents in both rotationally and linearly
accelerating systems. The explicit form of the spin-dependent
inertial force acting on electrons in a rotating frame in the
presence of electromagnetic fields was derived from the
generally covariant Dirac equation. We have shown that the
force is responsible for the generation of spin currents by
mechanical rotation in the first order of the spin-orbit coupling.
For future experimental analysis, we discussed the effect of
fluctuation of the rotation axis on the spin current using the
time-dependent part of the force.

We have also studied the spin-current generation from the
mechanical oscillation. The spin current can be created in a
uniformly oscillating conductor with a large spin-orbit cou-
pling because of the inertial spin-orbit interaction originating
from the linear acceleration. We gave a concise interpretation
of the inertial effect of linear acceleration on an electron as an
effective electric field. This allows us to use the conventional
theory of the spin Hall effect to describe the spin-current
generation due to the linear acceleration by simply substituting
the effective electric field for an ordinary one.

The framework proposed here offers a new route to study
the inertial effects on electron transport phenomena, leading to
an innovative combination of microelectromechanical systems
(MEMS) and spintronics.
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APPENDIX A: METRIC, VIERBEIN, AND SPIN
CONNECTION IN A ROTATING FRAME

In Sec. II, we use the vierbein representation of the Dirac
equation. The relation of the matrices between curved and flat
space-time is given by the vierbein (or tetrad) field e

μ

(α)(x),
the indices μ and (α) of which label the curved space-time
coordinates and local flat space-time coordinates, respectively.
The vierbein is a local orthonormal base {eμ

(α)}α=0,1,2,3 and a
kind of square root of the metric tensor gμν(x):

e
μ

(α)(x)ηαβe
μ

(β) = gμν(x), (A1)

with the Lorentz metric ημν = diag(−1,1,1,1). Starting with
the metric tensor

g00 = −1 + u2, g0i = gi0 = ui, gij = δij , (A2)

the inverse tensor is

g00 = −1, g0i = gi0 = ui, gij = δij − uiuj , (A3)
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where ui = (� × r/c)i and u2 = u2
1 + u2

2 + u2
3. The vierbein

in the frame is obtained from Eqs. (A1) and (A3):

e0
(0) = 1, e0

(j ) = 0,
(A4)

ei
(0) = −ui, ei

(j ) = δi
j .

We also have the inverse of the vierbein e(α)
μ (x) =

gμν(x)ηαβeν
(β):

e
(α)
0 = δα

0 + ηαiui, e
(α)
i = δα

i . (A5)

The Clifford algebra in curved space-time can be written as
γ μ(x) = gμν(x)e(α)

ν (x)γ̄α with γ̄0 = iβ,γ̄i = −iβαi . Thus, we
have the algebra in the rotating frame

γ 0(x) = −γ̄0 = −iβ,
(A6)

γ i(x) = uiγ̄0 + γ̄i = iβui − iβαi,

where

β =
(

I O

O −I

)
, α =

(
O σ

σ O

)
. (A7)

In the vierbein representation, the spin connection �μ(x) is
expressed as

�μ(x) = − 1
4 γ̄αγ̄βe(α)

ν gνλ
(
∂μe

(β)
λ − �σ

μλe
(β)
σ

)
, (A8)

where the affine connection �λ
μν is defined by

�λ
μν = 1

2gλσ (∂νgσμ + ∂μgσν − ∂σ gμν). (A9)

Substituting (A2) into (A9),

�0
00 = �0

i0 = �0
ij = �i

jk = 0,
(A10)

�i
00 = εijk�juk

c
+ ∂0ui, �i

j0 = −εijk�k

c
.

From the affine connection, Clifford algebra, and vierbein in
the rotating frame, we arrive at the spin (spinor) connection

�0(x) = γ̄i γ̄j εijk�l

4c
= i� · �

2c
, (A11a)

�i(x) = 0. (A11b)

APPENDIX B: FOLDY-WOUTHUYSEN-TANI
TRANSFORMATION

In Sec. II, we derive Pauli-Schrödinger equation in a
rotating frame by Foldy-Wouthuysen-Tani transformations
(FWTTs). The details of the derivation are shown below.
FWTT is a unitary transformation and a block-diagonalization
method of the Dirac Hamiltonian. First of all, we define the
even and odd parts of the Hamiltonian as

H = βmc2 + E + O, (B1)

with

E = qA0 − � · (r × π + �), (B2a)

O = cα · π . (B2b)

The even part E is the block-diagonal part of the Hamiltonian,
whereas the odd part O is the block–off-diagonal part. FWTT

is defined by

H ′ = UHU † − U∂tU
† (B3)

with

U = exp

(
− iβO

2mc2

)
= exp

(
− iβcα · π

2mc2

)
. (B4)

A low-energy expansion of the Hamiltonian H ′ into an
exponential series of 1/m gives a systematic expansion in
such a way that odd parts of H ′ vanish in any order. Up to the
order of 1/m2, Eq. (B3) is reduced to

H ′ = β

[
mc2 + O2

2mc2

]
+ E − 1

8m2c4
[O,[O,E] + ih̄Ȯ].

(B5)

Using the relation

αiαj = δij + iεijkσk, (B6a)

[πi,πj ] = ih̄qεijkBk, (B6b)

the second term of Eq. (B5) becomes

βO2

2mc2
= βαiαjπiπj

2m
= β

(
π2

2m
− qh̄

2m
σ · B

)
. (B7)

Next, we focus on [O,[O,E] + ih̄Ȯ]:

[O,E] + ih̄Ȯ = [cα · π , − qA0] + cα · (−iqh̄)∂tA

+ [cα · π , − � · (� + r × π)]

= −ih̄cqα · (−∇A0 − ∂tA)

−ih̄cα · (� × π ) + ih̄cα · (� × π )

−ih̄cqα · (� × r) × B = ih̄cα · qE′ (B8)

with

E′ = −∇A0 − ∂tA + (� × r) × B. (B9)

Thus, we have

− 1

8m2c4
[O,[O,E] + ih̄Ȯ]

= − 1

8m2c4
[cα · π , − ih̄cα · qE′] = ih̄

8m2c2
αiαj [πi,qE′

j ]

= qh̄2

8m2c2
divE′ + qh̄

8m2c2
σ · (π × E′ − E′ × π ). (B10)

From Eqs. (B7) and (B10), we obtain the Hamiltonian HPR in
Sec. III by neglecting the rest-energy term.

APPENDIX C: ELECTROMAGNETIC FIELDS IN A
ROTATING FRAME

In this appendix, we give a brief review of the general
relativistic transformation of electromagnetic fields.

Electromagnetic fields in the rotating frame are related to
those in the rest frame by

E′ = E + (� × r) × B, (C1a)

B′ = B, (C1b)

when the rotation velocity is much less than the speed of light
|� × r| � c, where E′ and B′ are electromagnetic fields in the
rotating frame.
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Equations (C1) are not Lorentz transformations in special
relativity but a general coordinate transformation in general
relativity. The Lorentz transformations of the electromagnetic
fields are written as43

E′′/c = γ (E/c + β × B) − γ 2

γ + 1
(β · E/c)β, (C2a)

B′′ = γ (B − β × E/c) − γ 2

γ + 1
(β · B)β, (C2b)

with

γ = 1√
1 − β2

, β = v0

c
. (C3)

Here, E′′ and B′′ are the electromagnetic fields in the inertial
frame, which has a uniform velocity v0 relative to the
rest frame. Replacing v0 with v(x) = � × r in Eqs. (C2)
can never reproduce the correct transformation between the
rotating frame and the rest frame (C1). The special relativistic
transformations (C2) have an apparent symmetry for E/c and
B, whereas the relations (C1) do not. Such an asymmetry in
(C1) originates from the space-time asymmetry of a general
coordinate transformation that relates physical quantities in a
rotating frame to those in a rest frame.

When the rotation axis is parallel to the z axis, the
transformation between the rest frame and the rotating frame
is expressed as

x ′μ = Lμ
ν xν (C4)

with

Lμ
ν =

⎛
⎜⎜⎝

1 0 0 0
0 cos �t sin �t 0
0 − sin �t cos �t 0
0 0 0 1

⎞
⎟⎟⎠ , (C5)

where rotating coordinates carry the prime. Equation (C4)
leads to a general coordinate transformation42,43

R = ∂xα

∂x ′β =

⎛
⎜⎜⎝

1 0 0 0
�y/c cos �t sin �t 0

−�x/c sin �t cos �t 0
0 0 0 1

⎞
⎟⎟⎠ . (C6)

According to the principle of general covariance, electromag-
netic fields are components of a second-rank tensor in general
coordinate transformations. Electromagnetic tensors in the rest
frame F and those in the rotating frame F ′ are related by

F ′ = LRT FRLT , (C7)

in which T denotes the transpose matrix, and

F =

⎛
⎜⎜⎝

0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

⎞
⎟⎟⎠ . (C8)

Equations (C7) and (C8) lead to

E′
x = Ex + x�Bz, (C9a)

E′
y = Ey + y�Bz, (C9b)

E′
z = Ez − �(xBx + yBy), (C9c)

B ′
x = Bx, (C9d)

B ′
y = By, (C9e)

B ′
z = Bz. (C9f)

Thus, we obtain the relations (C1) in Sec. III B. The relations
shown in this section hold for |� × r| � c. Generalized rela-
tions for electromagnetic fields in a more rapidly rotating frame
should include a Lorentz factor γ = 1/

√
1 − (� × r/c)2.42

We omit discussion on Maxwell’s equations in a rotating
frame. The subject is originally studied by means of generally
covariant Maxwell’s equations.44
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