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We investigate the ground state of the two-dimensional Heisenberg antiferromagnet on two Archimedean
lattices, namely, the maple-leaf and bounce lattices as well as a generalized J -J ′ model interpolating between
both systems by varying J ′/J from J ′/J = 0 (bounce limit) to J ′/J = 1 (maple-leaf limit) and beyond. We use
the coupled cluster method to high orders of approximation and also exact diagonalization of finite-sized lattices
to discuss the ground-state magnetic long-range order based on data for the ground-state energy, the magnetic
order parameter, the spin-spin correlation functions as well as the pitch angle between neighboring spins. Our
results indicate that the “pure” bounce (J ′/J = 0) and maple-leaf (J ′/J = 1) Heisenberg antiferromagnets are
magnetically ordered, however, with a sublattice magnetization drastically reduced by frustration and quantum
fluctuations. We found that magnetic long-range order is present in a wide parameter range 0 � J ′/J � J ′

c/J

and that the magnetic order parameter varies only weakly with J ′/J . At J ′
c ≈ 1.45J , a transition to a quantum

orthogonal-dimer singlet ground state without magnetic long-range order takes place that is probably of first-order
type, although we cannot rule out that this transition is second order. The orthogonal-dimer state is the exact
ground state in this large-J ′ regime, and so our model has similarities to the Shastry-Sutherland model. Finally,
we use the exact diagonalization to investigate the magnetization curve. We find a 1/3 magnetization plateau for
J ′/J � 1.07 and another one at 2/3 of saturation emerging only at large J ′/J � 3.
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I. INTRODUCTION

The study of two-dimensional (2D) quantum spin-half
antiferromagnetism is an interesting and challenging problem,
in particular, if the magnetic interactions are frustrated.1,2 In
2D systems, the interplay between geometry and quantum
fluctuations may lead to semi-classical ground-state (GS)
phases with conventional magnetic long-range order (LRO)
as well as to new quantum phases without magnetic LRO.3,4

The spin- 1
2 Heisenberg antiferromagnet (HAF) on the eleven

2D Archimedian and related lattices presents an excellent
opportunity to investigate the subtle balance of interactions
and fluctuations and the role of lattice geometry.4 Archimedian
lattices are uniform tilings, and so the distance between
nearest-neighboring sites may be set to one. It is well
established that magnetic LRO is present in the GS of the
spin- 1

2 HAF on bipartite lattices (square,1,4 honeycomb,4–6

1/5-depleted square (or CaVO),4,7,8 and square-hexagonal-
dodecagonal4,9). However, this magnetic order can be weak-
ened or even suppressed by the presence of frustration. The
first investigation of a frustrated quantum HAF goes back to
the early 1970s, when Anderson and Fazekas10,11 considered
the spin- 1

2 HAF on the triangular lattice. They conjectured
a magnetically disordered GS. However, it is now clear that
there is magnetic GS LRO in this system, see, e.g., Refs. 4
and 12–16. The pioneering work of Anderson and Fazekas
has formed the starting point for an intensive investigation of
frustrated quantum magnetism. In particular, it has stimulated
the search for nonmagnetic quantum states in 2D magnetic
systems.

Another well investigated frustrated 2D system is the
HAF on the SrCuBO lattice, which can be transformed by

an appropriate distortion to the Shastry-Sutherland square
lattice model17 with equal strength of all exchange bonds.
Again, the GS is magnetically long-range ordered, see, e.g.,
Refs. 18–22. However, the magnetic LRO may be destroyed
by a modification of bond strengths.17–22

The coordination number z is quite large for the triangular
(z = 6) and SrCuBO (z = 5) lattices, and that might be
responsible for the semiclassical GS LRO found for the HAF
on these frustrated Archimedian lattices. Thus a “nonmag-
netic” quantum GS might be favored for lattices with lower
coordination number z. Indeed, a regular depletion of the
triangular lattice by a factor of 1/4 yields the Archimedian
kagome lattice with coordination number z = 4. Contrary to
the triangular lattice, the GS of the spin- 1

2 HAF on the kagome
lattice is most likely nonmagnetic, see, e.g., Refs. 4 and 23–27.
Another frustrated model with low coordination number z =
3 having a nonmagnetic quantum GS is the HAF on the
Archimedian star lattice.4,28–30 Moreover, we mention that the
HAF on the (non-Archimedian) square-kagome lattice with
z = 4 has most likely also a nonmagnetic quantum GS.31–34

The above-mentioned depletion of the triangular lattice by a
quarter is clearly not the only possibility. As has been pointed
out by D. Betts,35 a regular depletion of the triangular lattice
by a factor of 1/7 yields another translationally invariant
lattice, namely, the Archimedian maple-leaf lattice.4,36 The
coordination number of this lattice is z = 5 and lies between
those of the triangular (z = 6) and the kagome (z = 4) lattices.
Moreover, there is a frustrated Archimedian lattice with z = 4,
the so-called bounce lattice.4 Both the maple-leaf and the
bounce lattices might be candidates for nonmagnetic GSs.
However, there are indications from previous studies (based on
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FIG. 1. Archimedian lattices: (a) 1/7-depleted triangular (maple-
leaf) lattice and (b) bounce lattice. The six equivalent sublattices for
both lattices are indicated by 1, 2, 3, 4, 5, and 6.

exact diagonalizations of finite-sized lattices) of semiclassical
GS magnetic LRO4,36 in the spin- 1

2 HAF on these lattices.
This conclusion was drawn based on only two finite lattices of
N = 18 and N = 36 sites and therefore the conviction in the
conclusions is lessened.

It is interesting to point out that the discussion of the
magnetic properties of the HAF on Archimedian lattices
is not only a challenging theoretical problem of quan-
tum many-body physics but that it is also strongly rel-
evant to experiment. Indeed, most of these lattices are
found to be underlying lattice structures of the magnetic
ions of various magnetic compounds, such as CaV4O9,37

SrCu2(BO3)2,38 or [Fe3(μ3-O)(μT-OAc)6-(H2O)3][Fe3(μ3-
O)(μ-OAc)7.5]2·7 H2O.39 Recently, the magnetic compound
Mx[Fe(O2CCH2)2NCH2PO3]6 · nH2O (see Ref. 40) with
maple-leaf lattice structure as well as hybrid cobalt hydrox-
ide materials41 with maple-leaf-like lattice structure have
been synthesized, which may stimulate increasing interest
in this lattice. Moreover, in the natural mineral spangolite
[Cu6Al(SO4)(OH)12Cl·3H20], the magnetic copper ions sit on
the lattice sites of the maple-leaf lattice.42,43 In particular, span-
golite is a very interesting magnetic system, since magnetic
copper ions carry spin 1/2 and the experimental data indicate
that strong fluctuations at low temperatures are present that
may prevent magnetic ordering.43 In Ref. 43, Fennell et al.
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FIG. 2. Illustration of the classical GS of J − J ′ model [Eq. (1);
J represented by solid lines and J ′ by dashed lines]. The numbers 1,
2, 3, 4, 5, and 6 denote the six sites in the geometrical unit cell. The
magnetic unit cell contains three geometrical unit cells A, B, and C.
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FIG. 3. The finite maple-leaf lattice of 36 sites imposing periodic
boundary conditions used for the ED calculations. Removing the
dashed J ′ bonds the the exchange pattern corresponds to the bounce
lattice of N = 36 sites.

propose that the spin-half Heisenberg model on the maple-leaf
lattice with five different exchange integrals is the relevant
model for this material.

In this paper, we will discuss the GS properties of the spin- 1
2

HAF on the maple-leaf and the bounce lattices, see Fig. 1.
These lattices are related to each other because the bounce
lattice is equivalent to a bond-depleted maple-leaf lattice, see
Ref. 4 and Fig. 2. Therefore we will consider a generalized
spin- 1

2J -J ′ HAF:

H = J
∑
〈ij〉

si · sj + J ′ ∑
[ij ]

si · sj , J > 0, J ′ � 0, (1)

where 〈ij 〉 runs over all nearest-neighbor (NN) bonds of the
bounce lattice and [ij ] runs over all additional NN bonds
present in the maple-leaf lattice, cf. Figs. 2 and 3.

A well-established method that can deal effectively with
the GS properties of infinite 2D quantum magnets is given
by the coupled cluster method (CCM) (see, e.g., Refs. 44–48
and references cited therein). The accuracy and effectiveness
of this method in relation to the investigation of frustrated
quantum spin systems has been strongly improved by the
implementation of a parallelized CCM code49 that carries out
high-order CCM calculations. In particular, quantum phase
transitions in 2D quantum spin systems that are driven by
frustration can be studied by this method.

II. THE CLASSICAL GROUND STATE

We start with a brief illustration of the classical GS of
the model (see Fig. 2), i.e., the si are treated as classical
vectors of length s. The classical GSs in the limits J ′ = 1
and J ′ = 0 have already been discussed in Ref. 4. Starting
from the information on the classical GS provided there it
can be found easily for the J − J ′ model. The geometrical
unit cell (hexagon) contains six sites labeled by the running
index n = 1, . . . ,6. The magnetic unit cell is three times
larger. Within one geometrical unit cell the pitch angle α

between neighboring spins (e.g., the spin on sites 1 and
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2) around the hexagon is given by α = π − arctan( J ′√3
4J−J ′ ).

Next-nearest-neighbor spins on a hexagon (e.g., spins on sites
1 and 3) are parallel. Equivalent spins in two neighboring
unit cells are rotated by a fixed angle ±2π/3, see the spin
directions in unit cells A, B, and C shown in Fig. 2. In the
limits J ′ = 0 (bounce lattice), J ′ = 1 (maple-leaf lattice), or
J ′ → ∞, one has α = π and E = −3JNs2/2, α = 5π/6 and
E = −(1 + √

3)JNs2/2, or α → π/3 and E → −J ′Ns2/2,
respectively.

III. THE METHODS

A. Coupled cluster method

We start with a brief illustration of the main features of the
coupled cluster method (CCM). For a general overview on the
CCM, the interested reader is referred, e.g., to Refs. 45,47,48,
and 52, and for details of the CCM computational algorithm for
quantum spin systems (with spin quantum number s = 1/2),
to Refs. 45 and 46. The starting point for a CCM calculation
is the choice of a normalized model or reference state |�〉,
together with a set of mutually commuting multispin creation
operators C+

I , which are defined over a complete set of many-
body configurations I . The operators CI are the multispin
destruction operators and are defined to be the Hermitian
adjoint of the C+

I . We choose {|�〉; C+
I } in such a way that

we have 〈�|C+
I = 0 = CI |�〉, ∀I 
= 0. Note that the CCM

formalism corresponds to the thermodynamic limit N → ∞.
For spin systems, an appropriate choice for the CCM model

state |�〉 is often a classical spin state in which the most general
situation is one in which each spin can point in an arbitrary
direction. We then perform a local coordinate transformation
such that all spins are aligned in the negative z direction in the
new coordinate frame. As a result we have

|�〉 = |↓↓↓ · · · 〉, C+
I = s+

i , s+
i s+

j , s+
i s+

j s+
k , . . . , (2)

(where the indices i,j,k, . . . denote arbitrary lattice sites) for
the model state and the multispin creation operators, which
now consist of spin-raising operators only.

The CCM parametrizations of the ket and bra ground states
are given by

H |�〉 = E|�〉, 〈�̃|H = E〈�̃|,
|�〉 = eS |�〉, S =

∑
I 
=0

SIC
+
I , (3)

〈�̃| = 〈�|S̃e−S, S̃ = 1 +
∑
I 
=0

S̃ICI .

The correlation operators S and S̃ contain the correlation
coefficients SI and S̃I that we must determine. Using the
Schrödinger equation, we note that H |�〉 = Eg|�〉, and so
we see from the above equations that HeS |�〉 = Ege

S |�〉.
Hence, after some rearrangement and the application of 〈�| to
both sides of this equation, we find that E = 〈�|e−SHeS |�〉.
We now need to determine the ket-state coefficients SI ,
often within some approximation. The interested reader is
referred to Ref. 48 for a very detailed discussion of the
CCM method and how is it applied in practice (e.g., a full
LSUB2 calculation is performed explicitly and in detail).
The magnetic order parameter (sublattice magnetization) is

given by Ms = − 1
N

∑N
i 〈�̃|sz

i |�〉, where sz
i is expressed in

the transformed coordinate system. (Note that all magnetic
sublattices carry the same sublattice magnetization.)

To find the ket-state and bra-state correlation coefficients,
we require that the expectation value H̄ = 〈�̃|H |�〉 is a
minimum with respect to the bra-state and ket-state correlation
coefficients, such that the CCM ket- and bra-state equations
are given by

〈�|C−
I e−SHeS |�〉 = 0, ∀I 
= 0, (4)

〈�|S̃e−S[H,C+
I ]eS |�〉 = 0, ∀I 
= 0. (5)

The problem of determining the CCM equations now becomes
a pattern-matching exercise of the {C−

I } to the terms in
e−SHeS in Eq. (4). Equation (4) yields NF nonlinear coupled
polynomial equations for the CCM ket-state coefficients SI

only [i.e., no S̃I terms in Eq. (4)]. By contrast, Eq. (5) yields
similarly coupled equations that are also polynomial in SI but
are linear only in S̃I .

The CCM formalism is exact if we take into account all
possible multispin configurations in the correlation operators
S and S̃. This is, however, generally not possible for quantum
many-body models including that studied here. We must
therefore use the most common approximation scheme to
truncate the expansion of S and S̃ in Eqs. (4) and (5),
namely, the LSUBn scheme where we include only n or fewer
correlated spins in all configurations (or lattice animals in the
language of graph theory), which span a range of no more
than n adjacent (contiguous) lattice sites (for more details
see Refs. 46 and 52). For instance, one includes multispin
creation operators of one, two, three, or four spins distributed
on arbitrary clusters of four contiguous lattice sites for the
LSUB4 approximation. The number of these fundamental
configurations can be reduced exploiting lattice symmetries.
In the CCM-LSUB8 approximation, we have finally NF =
330 369 fundamental configurations.

Since the LSUBn approximation becomes exact for n →
∞, it is useful to extrapolate the “raw” LSUBn data in
the limit n → ∞. An appropriate extrapolation rule for the
order parameter of systems showing GS magnetic LRO is
given by Ms(n) = a0 + a1(1/n) + a2(1/n2) (see, e.g., Refs. 46
and 47) where the results of the LSUB2,4,6,8 approximations
are used for the extrapolation. For the GS energy per spin,
E(n)/N = b0 + b1(1/n2) + b2(1/n4) is a well-tested extrap-
olation ansatz.46,47

Although in quantum mechanics, one normally assumes
that the bra state is the Hermitian conjugate of the ket state,
this is not the case for the CCM. Here, one parametrizes the
bra and ket states separately, although they are clearly not
independent. One loses therefore the property of a variational
upper bound on the ground-state energy, although in practice
one often finds at a given level of approximation that the
ground-state energy does indeed lie above the value for
the “true” ground-state energy for the system. There are,
however, a number of advantages that compensate for this
loss of Hermiticity between the bra and ket states. Firstly, the
Goldstone linked-cluster theorem is obeyed and so we obtain
results in the infinite-lattice limit from the outset at any level of
approximation. This is a strong point in favor of the method.
Secondly, we do not have to resum explicitly an otherwise
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infinite set of (Goldstone) diagrams. These diagrams are
contained “for free” by the exponential character of the wave
function, e.g., for the ket state via eS |�〉. It is crucial to note
that S contains only creation operators, which allows us to do
this. The exponential nature of eS also means that the number
of diagrams in the ground-state wave function are counted
correctly. The basic problem inherent to the CCM now boils
down to the expansion of the similarity transform e−SHeS |�〉,
which generally terminates to finite order. As mentioned
above, we then “pattern-match” C−

I to e−SHeS |�〉, which
is ideally suited to the computational solution to high-orders
of approximation. Again, these points are also strongly in
favor of the method. Finally, the important Hellmann-Feynman
theorem44 is obeyed, and so we may evaluate the properties of
expectation values of any operator A (such as those results for
the order parameter presented here) by using Ā = 〈�̃|A|�〉,
where 〈�̃| and |�〉 are the usual CCM bra and ket states at
a given level of approximation used also for the ground-state
energy. Again, the interested reader is referred to Ref. 44 for a
full exposition of the basic formalism underpinning the CCM
method. However, no method is perfect and a comparison
of results of the CCM to those results of the best of other
approximate methods is given in Ref. 48.

B. Exact diagonalization

The Lanczos exact diagonalization (ED) is a
well-established many-body method, see, e.g., Refs. 4,23,24,
and 53–56. Hence, we can restrict our discussion of the
method to some specific features relevant for our problem.
The ED method has been successfully applied to 2D frustrated
quantum spin systems, see, e.g., Refs. 4,24,54,55, and 56.
Here, we follow along the lines of Ref. 4. For the system
under consideration, there are only two appropriate finite
lattices, namely, one with N = 18 (see Fig. 2 of Ref. 36) and
another one with N = 36 (see Fig. 3). Note that these finite
lattices do not have the full lattice symmetry of the infinite
lattice. Moreover, the unit cell of these lattices is fairly large,
namely, it contains six sites. Hence, we consider the ED data
as a complementary information to confirm or to question
the CCM results corresponding to the thermodynamic limit
N → ∞. For the finite-size order parameter, we use4

m+ =
√

(M+)2

N2
=

⎛
⎝ 1

N2

N∑
i,j

|〈sisj 〉|
⎞
⎠

1/2

. (6)

We extrapolate the GS energy and the order parameter as
described in Ref. 4 (see also Refs. 54 and 56, and references
therein). However, the results of these ED extrapolations have
to be taken with caution, since they are based only on two
data points.

IV. RESULTS

Henceforth, we set J = 1 and we consider J ′ as the active
parameter in the model of Eq. (1). We apply high-order
CCM up to LSUB8 and these infinite-lattice results are
complemented by ED results of N = 18 and 36 sites, see Fig. 3.
We choose the classical canted state illustrated in Sec. II to be
the CCM reference or model state. As quantum fluctuations

TABLE I. CCM results for the spin-1/2 HAFM on the bounce
(J ′ = 0) and on the maple-leaf (J ′ = 1) lattices. E/N is the GS
energy per spin and Ms is the sublattice magnetization. The LSUBn

results are extrapolated using E(n)/N = b0 + b1(1/n2) + b2(1/n4)
for the GS energy and Ms(n) = a0 + a1(1/n) + a2(1/n2) for the
sublattice magnetization.

Bounce E/N Ms

LSUB2 −0.521 631 0.404 343
LSUB4 −0.546 866 0.339 357
LSUB6 −0.553 763 0.298 249
LSUB8 −0.556 998 0.265 252
Extrapolated CCM −0.5605 0.1657

maple-leaf E/N Ms

LSUB2 −0.483 470 0.405 622
LSUB4 −0.512 309 0.338 483
LSUB6 −0.520 378 0.297 499
LSUB8 −0.523 861 0.265 768
Extrapolated CCM −0.5279 0.1690

may lead to a “quantum” pitch angle that is different from the
classical case, we consider the pitch angle α in the reference
state as a free parameter. We then determine the quantum pitch
angle αqu by minimizing ELSUBn(α) with respect to α in each
order n.

We start with the case of the perfect Archimedian bounce
and maple-leaf lattices, and so we set J ′ = 0 and J ′ = 1,
respectively. Results for the GS energy and sublattice mag-
netization are given for both lattices in Table I. GS energies
agree well with the previously reported data.4,36 Furthermore,
we confirm the previous findings that the GS is magnetically
ordered. However, due to quantum fluctuations and frustration,
the sublattice magnetization is drastically reduced. Using
our extrapolated CCM data (see Table I) we find that the
sublattice magnetizations are only 33% of the classical value
for the bounce lattice and 34% of the classical value for
the maple-leaf lattice. However, these values are still clearly
above the ED estimates (which are 22% for the maple-leaf
and 27% for the bounce lattice) of Ref. 4. We believe that
the CCM data reported here are more reliable than the ED
estimates because these ED results were extrapolated using
only two data points (N = 18 and 36),50 see also Sec. III B.
These rather small values of the order parameter, which are
significantly below that for the triangular lattice,4,12–16 indicate
that the GS magnetic LRO is fragile, and one can speculate
that slight modifications of the model parameters might lead
to nonmagnetic quantum GSs. We remark again that a related
experimental material called spangolite43 did not appear to
show magnetic LRO, and that this experimental result also
spurs us on to evaluate the more general model.

The results for the GS energy per spin are shown in
Fig. 4 as a function of J ′. CCM LSUBn results for the GS
energy are clearly converging rapidly with increasing n for
all values of J ′. We have also used our ED data for N = 18
and 36 to extrapolate them to N → ∞ (for the details of
the extrapolation, see Ref. 4). As already mentioned above,
this ED extrapolation has to be taken with caution, since
it is based only on two data points. We find a reasonable
agreement between the CCM and ED data for the GS energy.
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FIG. 4. (Color online) CCM results for the GS energy per spin
E/N as function of J ′. The CCM extrapolated values in the limit
n → ∞ are obtained using the extrapolation scheme E(n)/N = b0 +
b1(1/n)2 + b2(1/n)4. ED results for N = 18 and 36 as well as ED
extrapolated values using the extrapolation scheme E(N )/N = x0 +
x1N

−3/2 are also shown. The red straight line shows the exact energy
of the orthogonal-dimer state.

As indicated by the ED data, the GS energy becomes linear
in J ′ at larger J ′ � 1.5. This is related to the existence of
a dimer product eigenstate where all J ′ bonds carry a dimer
singlet.51 We find that this singlet orthogonal-dimer eigenstate
becomes the GS for J ′ > J ′

c. Hence our model has much
in common with the Shastry-Sutherland model17–22 that also
demonstrates a similar exact orthogonal-dimer GS. We use the
intersection point between the extrapolated CCM GS energy
per site and the energy of the orthogonal-dimer eigenstate
given by EOD/N = −3J ′/8 to determine the transition point
J ′

c = 1.449. (Note that the corresponding value based on the
ED data is J ′

c = 1.462.)
Next we use the CCM results for the magnetic order

parameter Ms to discuss the stability of magnetic LRO as a
function of J ′, see Fig. 5. It is obvious that the magnetic LRO
persists in the whole region 0 � J ′ � J ′

c. This conclusion is
supported by the extrapolated ED order parameter also shown
for comparison in Fig. 5. The obvious quantitative difference
between the ED and CCM curves (which is also present in
the GS energy per spin E/N , see Fig. 4) might by attributed
to the limited accuracy of ED extrapolations discussed above
(only two data points, the finite lattices do not have the the full
lattice symmetry of the infinite lattice).

Interestingly, the dependence of the order parameter on J ′
is fairly weak over the whole region 0 � J ′ � J ′

c. Thus the
extrapolated CCM order parameter varies only between 29%
and 37% of its classical value Mclas

s = 1/2. This behavior
might be interpreted as balanced interplay between increasing
of frustration and increasing of the number of nearest neigh-
bors when J ′ is growing. Our data for the order parameter lead
to the conclusion that there is probably a direct first-order
transition to the magnetically disordered orthogonal-dimer
singlet GS, although we cannot rule out that this transition
is of second-order type.

An additional confirmation of the above discussed behavior
comes from the ED data for the spin-spin correlation functions
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FIG. 5. (Color online) CCM results for magnetic order parameter
(sublattice magnetization) Ms as function of J ′. The data for the
quantum model are scaled by its corresponding classical value
Mclas

s = 1/2. The extrapolated values in the limit n → ∞ are found
using the extrapolation scheme Ms(n) = c0 + c1(1/n) + c2(1/n)2.
We also show extrapolated finite-lattice results for the ED order pa-
rameter m+ using the extrapolation scheme m+(N ) = y0 + y1N

−1/2.

〈sisj 〉 presented in Fig. 6. Again we see that the variation of the
correlation functions with J ′ is weak almost up to the transition
point J ′

c. Moreover, for J ′ < J ′
c the correlation functions of

the quantum model behave similarly to those of the classical
model.

Finally, in Fig. 7, we compare results for the classical pitch
angle αcl, see Sec. II, and for the quantum pitch angle αqu

calculated by the CCM. We see that both αcl and αqu are close
to each other and that there is only a slight variation of the pitch
angle with J ′ (the value of the quantum pitch angle in CCM-
LSUB8 approximation is αqu = π at J ′ = 0, αqu ≈ 0.895π ,
and it is still αqu ≈ 0.714π at J ′ = J ′

c). Moreover, the LSUB4
and LSUB8 data for αqu almost coincide.
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FIG. 6. (Color online) ED results for some selected spin-spin
correlation functions 〈s0si〉, i = 1,2,8,23, for the finite lattice of N =
36 sites shown in Fig. 3. The results for the quantum s = 1/2 model
are given by thin lines with symbols. The corresponding classical
results are given by thick lines with the same color without symbols.
The location of sites “0” and “i” in 〈s0si〉 can be found in Fig. 3. Note
that the classical curves for 〈s0s8〉 and 〈s0s23〉 coincide.
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FIG. 7. (Color online) Results for the quantum pitch angle αqu

as a function of J ′ calculated within CCM-LSUBn approximation
with n = 4 and 8. The classical result αcl is shown for the sake of
comparison.

Altogether, our data for the order parameter, the spin-
spin correlation functions, and the pitch angle, lead to the
conclusion that there is most likely a direct first-order transition
from a magnetically ordered state with spin orientations similar
to those of the classical GS to the magnetically disordered
orthogonal-dimer singlet GS.

V. MAGNETIZATION PROCESS

The magnetization process of frustrated quantum magnets
has attracted much attention due to the discovery of exotic
parts of the magnetization curve, such as plateaus and jumps,
see, e.g., Refs. 57–61. The magnetization curves for the pure
bounce (J ′ = 0) and maple-leaf (J ′ = 1) HAF were discussed
already in Ref. 4 based on ED data for N = 36, where no
indications for plateaus and jumps were found. On the other
hand, we have already seen that the interpolating maple-
leaf/bounce lattice AF model considered here, for larger values
of J ′, has much in common with the Shastry-Sutherland model,
in particular, that both have at zero field an orthogonal-dimer
singlet ground state. It is well known that the magnetization
curve of the material SrCu2(BO3)2 as well as that of the
corresponding Shastry-Sutherland model possesses a series
of plateaus, see, e.g., Refs. 4 and 62–66. Motivated by this, we
study in this section the magnetization curve M(h) (where M

is the total magnetization and h is the strength of the external
magnetic field) for the interpolating maple-leaf/bounce lattice
AF model using ED for N = 18 and 36 sites. ED results
for the relative magnetization m = M/Msat versus magnetic
field h for N = 36 sites are shown in Fig. 8. In accordance
with previous results,4 we do not see indications for a plateau
for 0 < J ′ � 1. Moreover, it is obvious that the finite-size
singlet-triplet gap determining the size of the first plateau
at m = 0 is small at J ′ = 0, J ′ = 1, and J ′ = 1.3. That
corresponds to our finding of a magnetically ordered GS for
these values of J ′, and therefore the m = 0 plateau should
disappear for N → ∞. However, a finite m = 0 plateau exists
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J’=0
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FIG. 8. (Color online) Results for the relative magnetization m =
M/Msat vs applied field of strength h obtained via ED for N = 36,
where Msat is the saturation magnetization.

in that parameter region where the orthogonal-dimer singlet
state is the zero-field GS, since this GS is gapped.

As for the Shastry-Sutherland model, there is a well-
pronounced 1/3 plateau appearing at larger values of J ′.
Interestingly, this plateau emerges already for values of J ′
below J ′

c ≈ 1.5. In Fig. 9, we show the width of the 1/3 plateau
versus J ′ (main panel) as well as the end points of the plateau
(inset) for N = 18 and 36. We observe a significant change at
J ′ = J ′

p1/3
≈ 1.07. Below J ′

p1/3
, the typical finite-size behavior

appears, i.e., the plateau width shrinks with system size N

and it vanishes at N → ∞. By contrast, for J ′ > J ′
p1/3

, there
are almost no finite-size effects. The plateau width increases
rapidly up to about J ′ ≈ J ′

c and then it remains almost constant
for J ′ � J ′

c, where the end points of the plateau grow linearly
with J ′. Moreover, from Fig. 8, we find that for larger values
of J ′ � 2, there is a jumplike transition between the m = 0
and the m = 1/3 plateaus.

As already mentioned above, for the Shastry-Sutherland
model a series of plateaus was observed. For the model under
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FIG. 9. (Color online) ED results (N = 18 and 36) for the m =
1/3 plateau. Main panel: width � = h2 − h1 of the plateau versus J ′.
Inset: end points h1 and h2 of the plateau vs J ′.
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FIG. 10. (Color online) ED results (N = 18 and 36) for the width
of the m = 2/3 plateau in dependence on J ′.

consideration here, we find indications for a second plateau at
m = 2/3, see Figs. 8 and 10. This plateau emerges only for
quite large values of J ′ > J ′

p2/3
≈ 3. Again we observe very

weak finite-size effects of the plateau width for J ′ > J ′
p2/3

(see
Fig. 10). Furthermore, our ED data suggest an almost direct
jump from the m = 2/3 plateau to saturation m = 1.

Finally, we have to mention that our finite-size analysis
of the plateaus naturally could miss other plateaus present in
infinite systems, see, e.g., the discussion of the ED data of the
m(h) curve of the Shastry-Sutherland model in Ref. 4. Hence,
the study of the magnetization process needs further attention
based on alternative methods.

VI. CONCLUSIONS

In this paper, we have treated a J -J ′ spin-half HAF
interpolating between the HAF on the maple-leaf (J ′ = J )
and the bounce lattice (J ′ = 0). Moreover, we also discuss
the GS for larger values J ′ > J . This antiferromagnetic
system is geometrically frustrated and it is related to several
magnetic materials that have been experimentally investigated
recently.40,41,43 On the classical level, the ground state is a
commensurate noncollinear antiferromagnetic state. To study
the quantum GS of the spin-half model, we use the CCM for
infinite lattices and the ED for finite lattices of N = 18 and 36
sites.

We find evidence for a semiclassical magnetically ordered
commensurate noncollinear GS in a wide range of the ex-

change ratio 0 � J ′/J � J ′
c/J ≈ 1.45. However, due to frus-

tration and quantum fluctuations, the sublattice magnetization
amounts about 30% of the classical value only. Importantly,
we find that at J ′

c ≈ 1.45J there is a (most likely) first-
order transition to a magnetically disordered orthogonal-dimer
singlet product GS, which is the exact GS for J ′/J > J ′

c/J ,
although we cannot rule out that this transition is of second-
order type. Therefore the considered model is somewhat
similar to the Shastry-Sutherland model. This similarity is also
observed in the magnetization curve. Based on ED data we find
evidence for plateaus at zero magnetization for J ′/J > J ′

c/J

(which is related to the gapped orthogonal-dimer singlet GS),
at 1/3 of saturation for J ′ � 1.07J and at 2/3 of saturation
for J ′ � 3J . The transition to the 1/3 plateau and from the
2/3 plateau to saturation can be jumplike. Further plateaus
not compatible to the system sizes N = 18 and 36, and
therefore missed in the ED study, may appear in the infinite
system.

This model should be seen in light of a wide range of
related 2D quantum spin systems. A very broad spectrum
of behavior might occur in these systems, ranging from the
case of semiclassical ordering to valence bond solids, spin
liquids, and so on. Crucially though, a priori one never
seems to know what behavior will be seen for a specific
2D model; one needs to simulate the system directly to find
out. Indeed, this is what makes these systems so special and
interesting. Our results may also stimulate other studies on
this interesting 2D frustrated quantum system, using other
approximate methods to compare and contrast our results.
In particular, the influence of modifications of the exchange
bonds, which might be relevant for real-life materials, may
lead to a destabilization of magnetic order. Knowing that the
corresponding Shastry-Sutherland model exhibits a series of
magnetization plateaus, the search for further plateaus may
be also an interesting problem to be studied by different
means.
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