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Rare-earth-doped glasses are key materials for optical technology due to the luminescent properties of 4f n

ions. The crystal-field model describes the effect of local environment on transitions between 4f electrons. We
present a detailed modeling study of the optical spectra of sodium disilicate glass, 33Na2O · 67SiO2, doped with
0.2% and 1.0 mol% Eu2O3. This study uses very large molecular dynamics models with up to 100 Eu3+ ions,
the superposition model for covalent and overlap effects on crystal-field parameters, and realistic values for
homogeneous linewidth broadening. The simulated spectra are in reasonable agreement with experiment. The
trends in 7FJ energy levels across different Eu3+ ion sites have been examined and a very detailed analysis is
presented that looks at how features of the spectra are related to features of the local environment of Eu3+ ions.
Increasing the crystal-field strength Stotal causes the 7F0 energy level to decrease and causes the splitting of 7FJ

manifolds to increase, and this is due to increasing mixing of 4f wave functions. To a reasonable approximation
the crystal-field strength components Sk depend on angular positions of ligands independently of distances to
ligands. The former are seen to be more significant in determining Sk , which are closely related to the rotationally
invariant bond-orientational order parameters Qk . The values of S2 are approximately linear in Q2, and the values
of Q2 are higher for fivefold than sixfold coordinated rare-earth ions. These results can be of importance for
efforts to enhance the local environment of rare-earth ions in oxide glasses for optical applications.
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I. INTRODUCTION

Glasses containing rare-earth ions have been widely studied
for applications such as lasers and optical fiber amplifiers.
Glasses have a great advantage over crystalline systems, since
they can be easily prepared at high quality and with a range of
chemical compositions.1 The luminescent properties of these
glasses are directly related to the 4f -4f transitions of the
rare-earth ions. The energy levels of rare-earth 4f electrons
can be predicted by solving the Hamiltonian that describes the
interactions which the 4f electrons experience. The energy
levels are described using labels 2S+1LJ , where S, L, and J

are the quantum numbers of spin, orbital angular momentum,
and total angular momentum for the wave function of the 4f

electrons. The Eu3+ ions are known as excellent optical probes
because the ground state 7F0 and the first excited state 5D0 are
nondegenerate and well separated.2 Figure 1 schematically
shows the energy absorption and emission diagram of the Eu3+

ion.
The purpose of the present paper is to carry out a detailed

modeling study of the link between the optical spectra and
the local environment of Eu3+ ions in a glass. The glass
chosen for this study is Eu2O3-doped sodium disilicate glass
33Na2O · 67SiO2 because this glass has been well studied
using structural techniques, and reliable molecular dynamics
potentials exist. In addition, the optical spectra of this glass
have previously been reported.4

Crystal-field theory can be used to calculate the energy
levels for each individual Eu3+ ion. In previous studies the

crystal-field calculations were frequently made using the point
charge electrostatic model (PCEM).5 The PCEM assumes
that interactions between the Eu3+ ions and the ligand ions
are purely electrostatic. As a result, the short-range covalent
and overlap interactions are ignored, which is not physically
sound.6 The superposition model (SM) that takes into account
all these interactions has proved to be more realistic.6–9

Previously, the superposition model has often been applied
for crystal structures in which the rare-earth environment is
described using a particular symmetry group.6 In this paper
the superposition model is applied to glass structures without
assuming any symmetry.

The Eu3+ ion energy levels can be calculated from
the crystal-field theory using parameters obtained from the
superposition model. Similarly, the parameters to calculate
the transition probability between energy levels and, hence,
intensities can also be obtained from the superposition model.
The superposition model for the transition probability has only
been used for high symmetry crystal structures previously,10

and in this paper it will be used for glass structures for the first
time.

The shapes of transition lines in the spectra are broadened
according to two main mechanisms: homogeneous and inho-
mogeneous broadening.11 For the homogeneous broadening
mechanism, all the individual Eu3+ ions are assumed to
experience a lifetime broadening, and for the inhomogeneous
broadening mechanism, the individual Eu3+ ions experience
different local environments and thus contribute to different
parts of the spectra. The homogeneous broadening is described
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FIG. 1. (Color online) Schematic illustration of optical transitions
of the Eu3+ ion.3 The frequently observed absorption and emission
transitions are indicated.

using the Lorentzian profile, and the inhomogeneous broad-
ening is often approximated using a Gaussian profile. The
present study will use the molecular dynamics results to obtain
inhomogeneous broadening by summing up the different Eu3+

local environments so there is no need for approximating it
using a Gaussian profile.

A method to obtain the optical spectra of europium-
doped glass from molecular dynamics results was previously
presented in 1993.4,12 The final spectra in that paper were
generated by summing up the contributions from all the 150
Eu3+ ions, and a Gaussian profile was also added to give
additional broadening.4

In general, it is preferable to demonstrate a comprehen-
sive, straightforward, and sensible methodology to obtain
the optical spectra, which is the first aim of this paper.
The calculated results also enable us to investigate how the
local environment of the Eu3+ ions influences the associated
luminescence features, which is the second aim of this paper.

The paper will be organized in the following manner. In
Sec. II, the details of the molecular dynamic simulations will
be presented together with brief structural results for models
of europium-doped sodium disilicate glasses. Two models
of 0.2mol% and 1mol% Eu2O3-doped sodium disilicate
(33Na2O · 66SiO2) glass are generated with approximately
15 000 atoms each. In Sec. III, the superposition model will
be used to calculate the crystal-field parameters, and then
crystal-field theory will be used to calculate the energy levels
of individual Eu3+ ions. The transition probability between
different energy levels is also calculated via the superposition
model. By applying the homogeneous broadening mechanism
and then summing up the contributions from all the individual
Eu3+ local environments to represent inhomogeneous broad-
ening, the spectra will be simulated in detail, and they will be
quantitatively compared with experimental optical spectra. In

Sec. IV, we will investigate various factors that characterize
the local environment and that may influence the energy levels
of the Eu3+ ions. In particular, the influence of the crystal-field
strength S on the energy levels will be analyzed. In Sec. V, the
relation between the crystal-field strength components Sk and
the local environment of Eu3+ ions will be analyzed in terms
of the distributions of the ligand angular positions and ligand
distances. In Sec. VI, we discuss the significance of these
results for understanding which local environments reduce
inhomogeneous broadening. Finally in Sec. VII, we conclude.

II. MOLECULAR DYNAMICS SIMULATIONS

A. Molecular dynamics method

Molecular dynamics has been widely applied to investigate
glass structures.4,13–15 In this paper molecular dynamics is
carried out using the DLPOLY program.16 A very similar
procedure has previously been used by the authors to study
europium-doped silicate glass where potential parameters for
Eu3+ ion were presented.15

The form of the interatomic potential used was specifically
developed for modelling silicate glasses:17

Uij (r) = zizj e
2

r
+ Dij {[1 − e−aij (r−rij )]2 − 1} + Cij

r12
. (1)

The three terms in Eq. (1) correspond to the long-range
Coulomb potential, short-range Morse potential, and the repul-
sive potential, respectively. The values of potential parameters
in Eq. (1) are listed in Table I.

For the Coulomb potential, partial ionic charges are used:
+1.8e for Eu, −1.2e for O, +0.6e for Na, and +2.4e for Si. The
Coulomb interactions are evaluated by the Ewald method,18

using a cut-off radius of 12.0 Å and an Ewald precision factor
of 10−5. The short-range interaction cutoff is 7.6 Å. The
integration of Newton’s equations uses the Verlet Leapfrog
algorithm19 with a time step of 2 fs.

The number of atoms in the simulation box is a very
important factor, particularly when looking for dopant-related
structural information with high statistical quality. Models of
europium-doped sodium disilicate glasses have been made
with two compositions representing 0.2mol% and 1.0 mol%
Eu2O3 doping shown in Table II. The box size was chosen
to represent the experimental density of sodium disilicate
glass.

Each molecular dynamics simulation consists of six stages.
In the first three stages, the system equilibrates at the
temperatures 6000 K, 3500 K, and 2200 K for 80 000 time
steps. In the fourth stage, the system continuously quenches
from 2200 K to 300 K with a quenching rate of 1013 K/s.
This quenching process leads to the formation of a glass.15

TABLE I. Interatomic potential parameters.15

Pair (ij ) Dij (eV) aij (Å2) rij (Å) Cij (eV Å)

O-O 0.042395 1.379316 3.618701 22.0
Si-O 0.340554 2.006700 2.100000 1.0
Na-O 0.023363 1.763867 3.006315 5.0
Eu-O 0.000139 2.013200 4.351360 3.0
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TABLE II. Structure parameters of the models.

0.2mol% 1mol%

Eu2O3 : Na2O : SiO2 0.2 : 33.8 : 66 1 : 33 : 66
Number of Eu3+ ions 20 100
Number of Na+ ions 3380 3300
Number of Si4+ ions 3300 3300
Number of O2− ions 8320 8400
Total number of atoms 15020 15100

In the fifth stage, the system equilibrates at room temperature
for 80 000 time steps. Finally, structural data were collected
in the sixth stage every 50 time steps, with a total of 1600
configurations.

B. Glass models

The models of glass structures in Fig. 2 show that the
Eu3+ ions are well separated inside the glasses. It is not the
purpose of this paper to present detailed structural analysis
other than the local environments of Eu3+ ions. However,
some standard structural quantities are presented to show that
these are realistic models. The radial distribution function
and the bond angle distribution functions are calculated from
the 1600 configurations and are shown in Fig. 3 and Fig. 4,
respectively.

The radial distribution function Tij (r) is defined as13

Tij (r) = 1

r

⎧⎨
⎩ 1

Ni

Ni∑
l=1

⎡
⎣ Nj∑

m=1

δ(r − Rlm)

⎤
⎦

⎫⎬
⎭ , (2)

where Ni is the number of atoms of type i. The coordination
number CN is obtained from the integration of rTij (r) and
gives the average number of atom type j as a function
of distance r from atom type i. The peaks in Tij (r) give
information about local structure in the glass. The first peak
at 1.6 Å corresponds to silicon coordinated by 4.0 oxygens.
The next peaks are Na-O at 2.3 Å with average CN of 5.0 and
Eu-O at 2.3 Å with average CN of 5.7. Figure 3 also shows
that the 0.2mol% and 1mol% models have very similar Tij (r)
except for the Eu-Eu distribution. For the 0.2mol%, the Eu3+

ions are well isolated with no Eu-Eu distance less than 5 Å,
whereas there are a few Eu3+ ions separated by 3–5 Å for the
1mol% sample.

Figure 4 shows that the bond angle distribution functions of
the two models are very similar. The peaks at 109◦ and 142◦
correspond to SiO4 tetrahedra and Si-O-Si bonds in the silica
network. The large range of bond angles for O-Eu-O implies
that Eu3+ do not have well-defined coordination polyhedron
and lack site symmetry as expected in a glass. Nevertheless,
there are broad peaks near 90◦ and 180◦ that roughly resemble
a CN of 6 (e.g., approximate octahedral geometry).

The models of Eu2O3-doped sodium disilicate glass can
be compared with experimental diffraction measurements of
sodium disilicate glass. A diffraction experiment measures the

Eu

Na

Si

O

(a) 0.2mol%

(b) 1mol%

FIG. 2. (Color online) Models of Eu2O3-doped sodium disilicate
glass generated by molecular dynamics. Eu ions are large red spheres,
Na ions are medium cyan spheres, the silicate network is yellow, and
O ions are small blue spheres.

intensity of scattering as represented by the structure factor
S(Q) as a function of scattering angle 2θ with Q being the
scattering wave vector:

Q = 4π sin(θ )/λ, (3)

where λ is the wavelength of the x ray or neutron. The structure
factor S(Q) has a precise dependence on the Tij (r) of the glass
structure as shown by the following equation:20

Q[S(Q) − 1] =
∫ ∑

ij

wij (Q)[Tij (r) − 4πrρj ] sin(Qr)dr,

(4)

where wij (Q) are the weighting factors for scattering of x rays
or neutrons by atom types i and j and ρi is the atomic number
density of atom type j .
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FIG. 3. (Color online) Radial distribution functions Tij (r) and the
coordination number (CN).

Figure 5 shows the calculated S(Q) − 1 for the 1 mol%
sample compared with the experimental x-ray and neutron21

diffraction. As no diffraction data were available for Eu2O3-
doped sodium disilicate glass, the comparison has been made
with undoped sodium disilicate glass. The neutron diffraction
data are from the literature21 and the x-ray diffraction data
were previously collected by the authors at Station 9.1 of the
SRS (Daresbury Laboratory, UK).22 It can be assumed that
there is negligible contribution to the diffraction pattern from
Eu3+ ions because of the very low concentration of Eu3+ ions
in the glass. In fact, the agreement between S(Q) for model
and experiment is very good.

III. ABSORPTION AND EMISSION SPECTRA
CALCULATIONS

The glass structures generated from molecular dynamics
will be used to calculate the Eu3+ ion emission and absorption
spectra. For calculating the energy levels of an individual Eu3+

ion, the total Hamiltonian consists of three contributions:

Htotal = Hion + Hcorrect + HCF. (5)
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FIG. 4. (Color online) Bond angle distribution function.
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FIG. 5. (Color online) Comparison of the 1 mol% model with
experimental diffraction data for sodium disilicate glass.

A. Free ion model

The most important part of the free ion Hamiltonian is23

Hion = H0 +
∑

k=2,4,6

F (k)fk + ζAso, (6)

where H0 includes the kinetic energy and the electron-nucleus
interaction. H0 will not be considered, since it results in
identical 4f energy levels and hence does not contribute to the
4f energy levels splitting. fk and Aso represent the angular
parts of the electron-electron and spin-orbital interactions,
respectively. F (k) are electron-electron repulsion integrals that
are related to the radial dependence of 4f electron wave
function. ζ is the spin-orbital coupling parameter. Hcorrect in
Eq. (5) includes additional terms that affect the 4f energy
levels.9,23

The parameter values in Eq. (6) for Eu3+ ions are listed in
Table III.
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TABLE III. Parameter values within Hion for free Eu3+ ions
(unit cm−1).23

F (2) F (4) F (6) ζ α β γ

83125 59268 42560 1338 20.16 −566 1500

B. Crystal-field theory

The crystal field describes the perturbations to 4f electron
wave functions that result from the surroundings and that are
not experienced by a free ion. Historically, the crystal field is
considered from the starting point of an electrostatic model.
The crystal-field Hamiltonian HCF can be written as the sum
of the Coulomb interactions between the 4f electrons and the
surrounding charge distribution:

HCF = − e

4πε0

n∑
i=1

V (ri), (7)

where n is the number of f electrons, i.e., n = 6, for a Eu3+ ion.
Here −e is the electron charge, ε0 is the vacuum permittivity,
and ri is the position of the electron. The crystal-field potential
describes the surrounding charge distribution including a 1/r

term (relative to the 4f electron). Following the point-charge
electrostatic model (PCEM),5 we have

V (ri) =
L∑

j=1

∞∑
k=0

k∑
q=−k

qj er
k
i

Rk+1
j

C(k)∗
q (j )C(k)

q (i), (8)

where Rj is the ligand ion position and qj is the ligand ion
charge (for example, qj = −2 for O2−). C(k)

q (i) and C(k)
q (j ) are

the renormalized spherical tensor operators for the electrons
and ligands.6

The interior spherical multipole moments of the charge
distribution are24

I k
q =

L∑
j=1

qj e

Rk+1
j

C(k)∗
q (j ). (9)

It then can be seen that the widely used Stevens crystal-field
parameters Ak

q can be written in terms of the multipole
moments:25

Ak
q = − e

4πε0
I k
q . (10)

It can be seen that the Stevens crystal-field parameters differ
from the multipole moments only by a constant prefactor.
Since the electron position ri is a quantum mechanical quantity,
rk
i will be replaced by the expected value 〈rk

i 〉. Finally, the
crystal-field Hamiltonian can then be written

HCF =
n∑

i=1

∞∑
k=0

k∑
q=−k

〈
rk
i

〉
Ak

qC
(k)
q (i). (11)

An alternative representation of the crystal-field parameters
was introduced by Wybourne:26

Bk
q = 〈

rk
i

〉
Ak

q

= − e2

4πε0

L∑
j=1

〈
rk
i

〉 qj

Rk+1
C(k)∗

q (j ). (12)

TABLE IV. Parameter values in Eq. (14) and Eq. (21). The unit

of Bk is cm−1 and A
(λ)
k is 10−12 cm−1.

B2 B4 B6 τ2 τ4 τ6

725 441 378 4 6 7

A
(2)
1 A

(2)
3 A

(4)
3 A

(4)
5 A

(6)
5 A

(6)
7

−440 −410 50 220 −40 −250

τ
(2)
1 τ

(2)
3 τ

(4)
3 τ

(4)
5 τ

(6)
5 τ

(6)
7

3 5 5 7 7 9

Equation (12) is the expression for Bk
q within the PCEM.

It has been proved that for rare-earth ions, only k = 2,4,6
are needed to account for the splitting of 4f electron energy
levels.6,26 For Eu3+ ion this gives

HCF =
6∑

i=1

∑
k=2,4,6

k∑
q=−k

Bk
qC

(k)
q (i). (13)

C. Superposition model

As discussed in the introduction, the PCEM is oversim-
plified because the interactions between the electrons and
ligand ions are more complicated than a pure electrostatic
interaction.6 However, the superposition principle from the
PCEM is that the Hamiltonian is a sum over interactions with
individual ligands, and this remains valid for a realistic model
of the crystal field, in which overlap and covalency contribute
significantly to the crystal field. By taking account of all the
overlap, covalent, and other interactions, the superposition
model (SM) has been found to be more realistic and accurate.6

Via the superposition model, Bk
q is expressed as6

Bk
q =

L∑
j=1

Bk

(
R0

Rj

)τk

C(k)∗
q (j ), (14)

where Bk , τk , and R0 are empirical parameters. R0 is taken as
2.24 Å.6 Note that the complex interactions between the 4f

electrons and a ligand are described by the intrinsic parameter
Bk where the dependence of these interactions on ligand
distance is given by the factor ( R0

Rj
)τk . The published fitted

parameters for Eu3+ ions with oxygen ligands are listed in
Table IV.

The superposition model is a method for calculating the
crystal-field parameters that normally takes into account only
the nearest neighboring ligand ions because these dominate the
covalent and overlap interactions.6 For the current simulation,
the cut-off radius is taken as 3 Å to obtain the nearest-neighbor
oxygens of each Eu3+ ion.

After setting up all the Hamiltonians in Eq. (5), the coupled
basis |αLSJMJ 〉 is chosen for the current calculation, where
α is the seniority number.9 For the Eu3+ ion calculations, the
chosen basis starts from 7F0 and goes to 5L6; consequently, the
Hamiltonian is a 78 × 78 matrix. It is noted that an uncoupled
basis can also be employed.27 The matrix elements to calculate
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the energy levels are

〈α′L′S ′J ′M ′
J |Htotal|αLSJMJ 〉. (15)

The energy levels and associated eigenstates |ψa〉 can be com-
puted by diagonalizing this matrix.28 The resulting eigenstates
of all six 4f electrons together will be a mixing of the basis
states and can be expressed as

|ψa〉 =
∑

ν

cν |αLSJMJ 〉ν, (16)

where cν are the coefficients of the basis states.
During the calculations, full |αLSJMJ 〉 has been used and

the free-ion parameters in Table III are assumed to be fixed. Of
course, when the lanthanide ions are doped into crystals, the
covalency and nephelauxetic effect will change the values of
the free-ion parameters but their variations will be relatively
small because all lanthanide ions in this system are affected
by the same type of ligands.

D. Transition probability

Denoting |ψa〉 as the initial state and |ψb〉 as the final state
for an optical transition, the corresponding line strength for
the electric dipole (ED) transition is

SED
a,b,ε = e2|〈ψa|Dε|ψb〉|2, (17)

where Dε is the effective vector operator. Here ε = 0, ± 1 rep-
resents the spherical polarization bases. With the assumption
of cylindrical symmetry for each ligand, Dε can be calculated
by means of the Reid-Richardson parametrization:6,9,29,30

Dε =
∑

λ=2,4,6

∑
k=λ±1

k∑
q=−k

A(λ,k)
q

×U
(λ)
(q+ε)(−1)ε〈λ(q + ε),1 − ε|k,q〉 (18)

where U
(λ)
(q+ε) is the unit tensor operator and 〈λ(q + ε),1 −

ε|k,q〉 is the Clebsch-Gordan coefficient (note that the indices
we label as k, q are often found in the literature labeled as
t , p).8

A(λ,k)
q are called the transition probability parameters. They

are related to Ak
q in Eq. (11) and �(k,λ) in Axe’s paper31 based

on the Judd-Ofelt theory:6,32,33

A(λ,k)
q = −Ak

q�(k,λ)
(2λ + 1)

(2k + 1)1/2
. (19)

Therefore, the well-known Judd-Ofelt parameters �(λ) can be
expressed as:10,30

�(λ) = 1

2λ + 1

∑
k=λ±1

k∑
q=−k

∣∣A(λ,k)
q

∣∣2
. (20)

A(λ,k)
q represent the influence of the local environment due

to the ligands. Therefore, similar to the calculation of Bk
q in

Eq. (14), a superposition model can be applied to calculate
A(λ,k)

q using:9,10

A(λ,k)
q =

L∑
j

A
(λ)
k

(
R0

Rj

)τ
(λ)
k

C(k)∗
q (j ). (21)

The values of A
(λ)
k and τ

(λ)
k are listed in Table IV. As before,

A
(λ)
k are the intrinsic parameters representing interaction of 4f

electrons with ligands and the dependence of the interactions
on ligand instance is given by the factor ( R0

Rj
)τ

(λ)
k . There is little

literature on A
(λ)
k values for Eu3+ in silicates, so the values

in Table IV have been chosen to obtain calculated transition
intensities that are in reasonable agreement with experiment.
Nevertheless the values of A

(λ)
k in Table IV are similar to those

which have been reported for Eu3+ in fluoride and tungstate
crystals.10

The line strength for the magnetic dipole (MD) transition
is

SMD
a,b = (μB/e)2[〈ψa|L + 2S|ψb〉]2, (22)

where μB is the Bohr magneton. L and S are the total orbital
and spin angular momentum, respectively. Combining the ED
and MD transitions, the oscillator strength is34

fab = 8π2mcEab

3he2

[
χSED

ab + χ ′SMD
ab

]
, (23)

where m is the electron mass, h is the Plank constant, c is the
speed of light. Eab is the energy difference between |ψa〉 and
|ψb〉. Here χ and χ ′ are the Lorentz correction factors for the
ED and MD transitions, respectively.35 For emission,{

χ = η(η2+2)2

9

χ ′ = η3
, (24)

and for absorption, {
χ = (η2+2)2

9η

χ ′ = η
, (25)

where η is the refractive index and is taken as 1.505 for sodium
disilicate glass.35

The Lorentzian profile arising from the energy-time uncer-
tainty principle is employed for the homogeneous lineshape
broadening:11,36

g(E) = W

2π

1

(E − Eab)2 + (W/2)2
, (26)

where W is the full width at half maximum (FWHM), which
is taken to be 10 cm−1.37,38 This broadening is normally
approximated as being the same for each Eu3+ ion. The
inhomogeneous broadening is due to the different local
environments of Eu3+ ions and is calculated by summing up the
contributions from all the Eu3+ ions. In previous calculations
of luminescence spectra for glasses,4 after summing up the
contributions from all the Eu3+ ions, the inhomogeneous
broadening was augmented by using a Gaussian function with
large FWHM of 75 cm−1. The current work is the first where
the inhomogeneous broadening is entirely due to the sampling
over different rare-earth local environments in the model.

In summary, the whole methodology can be described using
the flowchart in Fig. 6.

For the absorption starting from 7F1 level, the Boltzmann
distribution can be taken into account. According to the
Boltzmann distribution, the ratio of 7F1 to 7F0 in contributing
to the absorption spectrum would be about 0.15 at room
temperature, whereas the ratio of 7F2 to 7F0 is about 0.01.
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Eu2O3 doped sodium disilicate glass:
use molecular dynamics

Crystal field parameters: Eq.(21)

Hamiltonian: Eqs.(5,6,7,20)

Energy levels: diagonalize matrix
whose elements are Eq.(22)

Transition probability parameters: Eq.(28)

Oscillator strength: Eqs.(24,25,29)

Lineshape broadening: convolve Eq.(30)
with Eq. (33) and sum up for all Eu3+ ions

FIG. 6. (Color online) Flowchart for calculation of optical spectra.

Therefore 7F2 does not need to be considered for the absorption
spectrum.

E. Simulated optical spectra

As mentioned for the molecular dynamics simulations,
there are 1600 configurations during the thermal motion at
room temperature. When calculating the optical spectra, this
thermal motion should be taken into account. Ten snapshots
during the thermal motion are used for the optical spectra
generation. Following the above procedure, the simulated
spectra are shown in Fig. 7 for both 0.2mol% and 1mol%
models. It shows that, although the Eu3+ concentrations differ,
their spectra are very similar. This is not surprising since the
structural features of the local environments of Eu3+ ions
are very similar in these two glass models as seen in the
Tij (r) of Fig. 3. Experimental spectra have been published
in the literature for emission in a 0.2mol% Eu2O3-doped
sodium disilicate glass and for absorption in a 1mol% Eu2O3-
doped sodium disilicate glass.4 In addition, new experimental
spectra have been measured by the authors in the present
study on both 0.2mol% and 1mol% Eu2O3-doped sodium
disilicate glasses (see Appendix A for details of experiment
measurements). Figure 8 shows the new experimental emission
spectra and that the spectra are very similar for both doping
levels.

Figure 9 shows the comparison between the simulated and
experimental optical spectra, including the previously reported
experimental spectra,4 and there is reasonable agreement.
Figure 9(a) shows that the emission spectra from 5D0 to the
lower energy levels agree well with the experimental data. The
quantitative absorption spectra in Fig. 9(b) also show that the
transition from 7F0 to the higher energy levels can be well
reproduced using this methodology.

F. Radiative lifetime

The radiative lifetime τ is the reciprocal of the sum of all
the emission probabilities in the emission spectrum:39

1

τ
=

∑
b

Pab, (27)
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(b) absorption

FIG. 7. (Color online) Simulated spectra for different Eu2O3

concentrations.

where Pab is the emission probability. For Eu3+, a stands for
the 5D0 state, and b are the lower 7FJ levels. Pab has a relation
with the oscillator strength:40

Pab = 2πe2E2
ab

ε0mc
fab. (28)

Combining with Eq. (23),

Pab = 16π3E3
ab

3hε0

[
χSED

ab + χ ′SMD
ab

]
. (29)

A well-known result for the radiative lifetime is that the
radiative lifetime is related to the shape of the emission
spectrum:41,42

1

τ
= P0η

3

(
Itotal

IMD

)
, (30)

where P0 is the spontaneous emission probability for the
5D0 → 7F1 transition in vacuum, and it is taken as 14.65s−1.41

Itotal/IMD is the ratio of the total area of the emission spectrum
to the area of the 5D0 → 7F1 band. Equation (30) can be used to
calculate the radiative lifetime τ from the experimental data in
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FIG. 8. (Color online) New experimental emission spectra mea-
sured by the authors for different Eu2O3 concentrations.

Fig. 9(a), and the value obtained is 5.2 ms. τ can be calculated
using Eq. (27), and the value obtained is 6.3 ms. From Table II
of Ref. 41, it can be seen that typical values of radiative life
time for various Eu2O3-doped materials are between 3 and
10 ms. In fact, the measured lifetime from decay curves for
two samples was about 3 ms. Our simulation results for lifetime
are, hence, reasonably consistent with the experimental data.

IV. FACTORS INFLUENCING THE ENERGY LEVELS

A comprehensive methodology has been demonstrated to
simulate the optical spectra of Eu3+ ions in models of Eu2O3-
doped sodium disilicate glass. Moreover, the simulation results
enable us to investigate the influence of factors from the local
environment of Eu3+ ions on the inhomogeneous broadening.
Figure 7 shows that the spectra are very similar for 0.2mol%
and 1mol% models, and the 1mol% model will be chosen for
the following analysis because it contains 100 Eu3+ ions so
gives better statistics.

First, we would like to analyze the energy levels near the
ground state 7F0 and the first excited state 5D0 with respect to the
7F0 → 5D0 transition energy. In particular, the fluorescence line
narrowing (FLN) technique is capable of probing Eu3+ ions
with specific 7F0 → 5D0 transition energies, and experimental
FLN43 results show that 7F1 and 7F2 manifolds get wider as
7F0 → 5D0 transition energy increases.

Figure 10 shows the 2S+1LJ energy levels near 7F0 and
5D0 that are split into manifolds with 2J + 1 separate levels
when the degeneracy of MJ is removed. Figure 10 shows
that as 7F0 → 5D0 transition energy increases, 7F0 energy level
decreases in energy but the 5D0 energy level remains steady.
The splitting of 7F1 and 7F2 manifolds increases continuously
with the transition energy, i.e., the splitting of manifolds
increases as the 7F0 energy level decreases, just as seen in
the experimental FLN results.43 These observations are also
consistent with published simulation results on europium-
doped fluoroaluminate glasses.44 The splitting of 5D1 and 5D2

manifolds also increases as the 7F0 → 5D0 transition energy
increases, but the widening of 5DJ levels is not so significant
as for 7FJ levels. Therefore, the 7F0 energy level will be chosen
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FIG. 9. (Color online) Spectra for Eu2O3-doped sodium disilicate
glasses. “Experiment” denotes data measured by the authors in the
present study. “Cormier et al” denotes data measured in Ref. 4.
“Calculation” denotes simulated spectra in the present study.

for the following investigations, since to a good approximation
the changes in energy levels and manifolds are seen to be
monotonic with the decrease in the 7F0 energy level.

In order to investigate what factors from the local envi-
ronment affect the 7F0 level, first we would like to examine
some commonly used structural quantities shown in Fig. 11.
Figure 11 shows that there are no distinct correlations between
the 7F0 energy and the Eu3+ coordination number CN or
distance-related quantities: the average ligand distance, 〈Rj 〉;
the standard deviation in ligand distance, stdevRj ; and the
minimum ligand distance, minRj .

Given that there is no obvious link between the commonly
used structural quantities of Eu3+ ion sites and the 7F0 energy
level, it is necessary to look for other factors to explain the
differences in energy levels from one Eu3+ ion site to another.
In the following graphs we will maintain the distinction
between the Eu3+ ion sites with different values of CN since
CN is a fundamental descriptor of ion sites in solids.
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FIG. 10. (Color online) Energy levels versus 7F0 → 5D0 transition
energy (unit cm−1). Different symbols are used to denote 2J + 1
levels within each 2S+1LJ manifold.

We, first, examine the components of the ground-state
wave function. Since the ground-state wave function is
overwhelmingly composed of the free-ion 7F0 state, it is
conventional to use the label 7F0 for the ground state even
if the ground state is no longer composed of 100% free-ion 7F0

state. The ground-state wave function also gets mixing from
other free-ion states as seen from Eq. (16). Figure 12 shows the
contribution of free-ion 7F0 state to the ground state which is
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FIG. 11. (Color online) Structural quantities versus 7F0 ground-
state energy. (Upper left panel) Ligand coordination number CN;
(upper right panel) average ligand distance 〈Rj 〉 (Å); (lower left panel)
standard deviation in distance (Å); (lower right panel) minimum
distance (Å). Circles for CN = 5, triangles for CN = 6 and squares
for CN = 7.

represented by the simulation software to two decimal places.
It can be seen that the more mixing, the lower the ground-state
energy.

The amount of mixing, and hence the change in the energy
levels, is ultimately due to the crystal-field parameters, since
the Hamiltonian in Eq. (15), which determines the ground-
state energy (i.e., the lowest energy eigenvalue), is calculated
from the quantities Bk

q in Eq. (13). Therefore, it is useful to
look for patterns in the data that show the influence of Bk

q

parameters. However, the complexity of the calculation makes
it very difficult to see by algebraic inspection how the matrix

-64040-64020-64000-63980

0.95

0.96

0.97

0.98

0.99

7F0 (cm−1)

pr
op

or
tio

n
of

fr
ee

-io
n

7 F
0

st
at

e

FIG. 12. (Color online) The proportion of free-ion 7F0 state in
the ground state versus the ground-state energy. Circles for CN = 5,
triangles for CN = 6, and squares for CN = 7.
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diagonalization is influenced by a particular numerical value
for a Bk

q parameter with given values of k and q.
More importantly, it is known that Bk

q take significantly
different values depending on the choice of axes orientations.45

For this reason, many previous studies have assumed a certain
site symmetry of C2v . In a glass, any choice of coordinate
axes would be arbitrary. In fact, ions with local environment
in all possible orientations must be present. Therefore, it is
appropriate to examine parameters that are independent of the
choice of coordinate axes. For this reason the rotation-invariant
crystal-field strength components Sk are often used:46,47

S2
k = 1

2k + 1

k∑
q=−k

∣∣Bk
q

∣∣2
. (31)

These second-order quantities are invariants because they
depend only on angles between ligands. (It is noted that for this
reason first-order rotation invariants are not possible.6) They
offer a comparative measure of the crystal-field properties that
is independent of the choice of axes orientations and, hence,
can be compared across different Eu3+ ion sites in a glass. The
crystal-field strength Stotal is defined as

S2
total = 1

3

(
S2

2 + S2
4 + S2

6

)
. (32)

This quantity offers an indication of the overall significance of
crystal-field effects.

Figure 13 shows that the crystal-field strength component
S2 increases proportionally while the 7F0 ground-state energy
decreases. The relations between S4 and S6 and the ground-
state energy are more scattered. Overall the right-hand lower
panel of Fig. 13 shows that a higher the crystal-field strength
Stotal tends to be associated with a lower ground-state energy
due to influence from S2. Combined with the observations in
Fig. 12, it can be concluded that the stronger crystal field can
lead to more mixing in the ground-state wave function that
lowers the ground-state energy, and this trend is primarily due
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FIG. 13. (Color online) Crystal-field strength components Sk and
crystal-field strength Stotal against the 7F0 ground-state energy. Circles
for CN = 5, triangles for CN = 6 and squares for CN = 7.
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FIG. 14. (Color online) Third-order rotation invariants versus the
7F0 ground-state energy. Circles for CN = 5, triangles for CN = 6,
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to the contribution from S2. The results in Fig. 10 show the
increase of crystal-field strength and, particularly S2, is also
associated with the increase in the splitting of 7FJ and 5DJ

manifolds. At this stage it can be noted that there is a tendency
for lower S2 values to occur for rare-earth sites with CN = 6
(triangles) than with CN = 5 (circles). This will be examined
further in Sec. V.

The crystal-field strength is related to the second-order ro-
tation invariants. Similarly, we can define third-order rotation
invariants as follows:48

v3(k1k2k3) =
∑

q1,q1,q3

(
k1 k2 k3

q1 q2 q3

)
Bk1

q1
Bk2

q2
Bk3

q3
, (33)

where (· · · ) in the right-hand side of Eq. (33) represents the
3j symbol.48 There are nine such invariants corresponding
to the nine inequivalent sets of k values: (k1k2k3) = (222),
(224), (244), (246), (266), (444), (446), (466), (666). Some
of the third-order rotation invariants are compared to the
7F0 ground-state energy in Fig. 14. It shows that there is
no distinguishable relation between the third-order rotation
invariants and the 7F0 ground-state energy. This is perhaps not
surprising since the local environment of Eu3+ ions does not
have any symmetry and the third-order invariations depend on
angles between three ligands that are probably not strongly
correlated.

V. RELATION BETWEEN THE CRYSTAL-FIELD
STRENGTH COMPONENTS AND THE LOCAL

ENVIRONMENT

As was shown in Sec. IV, the crystal-field strength Stot as
well as its components Sk play a key role in influencing the 7F0
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ground-state energy and also the splitting of 7FJ manifolds. In
this section, we want to examine the contributions to Sk and
how these are related to ligand positions Rj = (Rj ,θj ,φj ). In
fact, Eq. (31) shows that Sk depends on Bk

q , and Eq. (14) shows
that Bk

q depends on ligand distance via quantity ( R0
Rj

)τk and on
ligand angular position via quantity C(k)

q (j ).
It is known that for two independent variables x and y,⎛

⎝ 1

L

L∑
j=1

xj

⎞
⎠

⎛
⎝ 1

L

L∑
j=1

yj

⎞
⎠ = 1

L

⎛
⎝ L∑

j=1

xjyj

⎞
⎠ . (34)

If C(k)
q (j ) and ( R0

Rj
)τk are assumed to be independent for any

given ligand j , following Eq. (34) we can rewrite Eq. (14) as

Bk
q =

L∑
j=1

[
Bk

(
R0

Rj

)τk

C(k)∗
q (j )

]

≈
⎡
⎣ 1

L

L∑
j=1

C(k)∗
q (j )

⎤
⎦ ×

⎡
⎣ L∑

j=1

Bk

(
R0

Rj

)τk

⎤
⎦

= Q(k)
q × Tk, (35)

where Bk is a constant and the effects of angular positions
and distances of ligands can be described separately using the
functions:

Q(k)
q = 1

L

L∑
j=1

C(k)∗
q (j ) (36)

and

Tk =
L∑

j=1

Bk

(
R0

Rj

)τk

, (37)

where the latter does not depend on q. In fact Q(k)
q are

the bond-orientational order parameters previously defined in
the literature.49 The assumption that C(k)

q (j ) and ( R0
Rj

)τk are
independent means that ligand angular positions (θj ,φj ) are
not influenced by ligand distances Rj and vice versa.

We can then approximate Sk using

S ′2
k = 1

2k + 1

k∑
q=−k

∣∣Bk
q

∣∣2

≈ 1

2k + 1

k∑
q=−k

∣∣Q(k)
q

∣∣2
T 2

k

= Q2
kT

2
k . (38)

In this case S ′
k are proportional to Qk , where Qk are the

rotation invariants of the bond-orientational order and are
defined as49

Q2
k = 1

2k + 1

k∑
q=−k

∣∣Q(k)
q

∣∣2
. (39)

The bond-orientational order parameters Q(k)
q have values that

depend on the choice of axes but, as discussed in Sec. IV, a
rotationally invariant quantity is needed for describing local
environments in glasses. In fact, previous studies49,50 have

used Q2
k to characterize the angular correlations present in

local environments of atoms in disordered materials.
To consider the effects of ligand angular position and dis-

tance independently, we approximate the crystal-field strength
components using Eq. (38) as

S ′
k = QkTk, (40)

and, by analogy with Eq. (32), we define an approximation for
the crystal-field strength

S ′2
total = 1

3

(
S ′2

2 + S ′2
4 + S ′2

6

)
. (41)

The assumption that ligand angular position and ligand
distance are independent leads to the prediction that S ′

k =
Qk × Tk from Eq. (40) will be equal to Sk from Eq. (31).
Figure 15 shows this is a very good approximation for S ′

4 = S4

and S ′
6 = S6 and hence a fair approximation for S ′

total = Stotal.
The values of S ′

2 are roughly equal to S2, but S ′
2 tends to

underestimate S2, so the approximation of independence is
less accurate in this case.

Figure 16 enables a separate study of the roles of ligand
angular position, as represented by the rotational invariants of
bond-orientational order Qk in Eq. (36), and ligand distance,
as represented by Tk in Eq. (37), in contributing to the crystal-
field strength components Sk (and hence Stotal). Assuming
independent effects from ligand angular position and ligand
distance, Fig. 16 can be used to see which factor, i.e., Qk or Tk ,
is more important for explaining the variation in Sk from one
Eu3+ ion site to another. It is seen that the large variations in the
values of Sk corresponds with large variations in the values of
Qk . Instead, the values of Tk change by a small proportion. S6

does not show any strong correlations with Q6 or T6 although
S6 is correlated with Q6 × T6 as shown in Fig. 15. Instead, S4

is approximately proportional to Q4 that varies significantly,
while S4 is only slightly correlated with T4 which varies less.
For Q2 and T2, the assumption of independence is of limited
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FIG. 15. (Color online) Approximations to the crystal-field
strength as well as its components. Circles for CN = 5, triangles
for CN = 6, and squares for CN = 7.
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accuracy, but the rough trends are that S2 is proportional to
Q2, while S2 is not proportional to T2 that is independent of
S2. This suggests that most variation in Sk from one Eu3+ site
to another is due to the variation in Qk .

VI. DISCUSSION

The results presented here provide a basis for further
understanding the role of local environment for influencing
luminescence properties of rare-earth ions in oxide glasses.
Before continuing discussion of this point, we make some
further comments on the methodology.

The superposition model (SM) plays a key role in our
methodology. This approach was taken as a deliberate choice
to avoid the point charge electrostatic model (PCEM). The
PCEM has been extremely influential in the development of
crystal-field theory and has been used in previous calculations
of crystal-field effects in glasses. Nevertheless, the PCEM has
been criticized because it ignores short-range covalent and
overlap interactions.6

It is perhaps surprising that the PCEM is still a conceptually
useful way to introduce crystal-field theory. The crystal-field
Hamiltonian HCF is a function of the vectors ri and Rj and
such a function may be expressed as an expansion of spherical
harmonics C(k)

q (i) and C(k)∗
q (j ) and powers of ri and Rj . For

the PCEM the function goes as the inverse ligand distance and
the expansion involves factors of rk

i and R
−(k+1)
j (for ri < Rj ).

In general for a function that goes as the inverse nth power
of distance the expansion involves factors rk

i and R
−(k+n)
j .51

Interestingly the superposition model coefficients τk used to
calculate Bk

q and coefficients τ
(λ)
k used to calculate A

(λ,q)
k are

equal to k+2 (there is a single exception that is τ6 = 7) which
suggests n = 2.

The role of molecular dynamics in our methodology is well
established, as this is a standard and frequently used technique
for studying glass structures, including in previous simulations
of optical spectra. This is notwithstanding the acknowledged
limitation of molecular dynamics simulations of glasses, which
is the unrealistic quench rate.13 It is noteworthy that the
simulated optical spectra are extremely similar for models
with different doping levels of 0.2mol% and 1.0mol% Eu2O3.
This was also seen in experiment and implies that Eu3+ ions
at these concentrations are well mixed in the glass matrix and
not significantly affected by Eu-Eu interactions, both in the
models and in experimental glasses.

The role of symmetry also deserves emphasis. The values
of the crystal-field parameters Bk

q differ for different choices
of axes orientations and, hence, would differ if the same
model of glass structure was rotated by 90◦. However, this
has no effect on the calculation of observable quantities such
as optical spectra that must be independent of the choice
of axes orientation. In general, any given Eu3+ ion site will
have 27 unique Bk

q parameters, and these produce the splitting
of 7FJ manifolds, e.g., three levels for 7F1. The degeneracy
makes it impossible to uniquely extract Bk

q parameters from an
experimental fluorescence line narrowing (FLN) spectra. For
this reason previous experimental FLN studies43 have assumed
rare-earth sites have C2v symmetry, since this symmetry group
is sufficient to remove the degeneracy in 7FJ manifolds with
only six nonzero Bk

q parameters. However, this widely used
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FIG. 16. (Color online) Contributions to the crystal-field strength
components. Circles for CN = 5, triangles for CN = 6, and squares
for CN = 7.

assumption of C2v symmetry is invalid because molecular
dynamics models of glasses15 repeatedly show rare-earth sites
have no symmetry (i.e., they have C1 symmetry).

Since the choice of axes orientation cannot be significant for
glasses, it is important to analyze the rotation-invariant crystal-
field strength components Sk that are rotational invariants
of Bk

q . In the previous Sec. V, a useful approximation was
presented whereby Sk depends on separate functions of ligand
distances, Tk , and ligand angular positions, Qk , the latter being
the rotation-invariant bond-orientational parameters.

Some additional comments can be made about the influence
of coordination number (CN) on Qk and Tk as shown in Fig. 16.
For k = 4 and k = 6, there is no noticeable difference between
rare-earth sites with CN = 5 (circles) and CN = 6 (triangles).
For k = 2 it is seen that the T2 values are slightly larger for
CN = 6 (triangles) and slightly smaller for CN = 5 (circles).
To understand the significance of CN in determining the values
of Tk , we simplify the effect of ligand distance by assuming for
a given Eu3+ ion all ligands have the same distance Rj = Ravg

then

Tk ≈ LBk

(
R0

Ravg

)τk

. (42)

Increasing CN from 5 to 6 causes an increase in L that increases
Tk . However, it also causes an increase in Ravg that decreases
Tk due to the factor of ( R0

Ravg
)τk . For T4 and T6, these factors

cancel but for T2 the increase due to L is dominant so T2

values are slightly larger for CN = 6 and smaller for CN = 5.
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Figure 16 shows there is also a strong influence from CN
on Q2, where values of Q2 are significantly larger for CN = 5
(circles) and smaller for CN = 6 (triangles). This leads to
S ′

2 and S2 values being smaller for CN = 6 than CN = 5, as
seen in Fig. 16 and Fig. 13, respectively. This effect of CN
on Q2 has been seen in previous studies49,50 that used the
rotation-invariant bond-orientational order parameters Qk to
study the local environments in disordered materials. Using
sites based on trigonal bipyramid for CN = 5 and octahedra
for CN = 6 it was seen that the values of Q2 are nonzero for
the former and zero for the latter. Instead, the values of Q4 and
Q6 were nonzero for both CN = 5 and CN = 6.

Last, it is important to consider the possible implications
for optimizing the luminescent properties of rare-earth-doped
glasses. The present study has used Eu3+ ions as they make
very convenient optical probes, with relatively simple sets
of transitions. The results are expected to be transferable to
other lanthanide ions, including Tb3+ and Er3+, which are
important for optical applications. The present study has shown
for Eu3+ ions that the decrease in ground-state energy and
the splitting of Stark levels, which produce inhomogeneous
linewidth broadening, both occur in proportion to the crystal-
field strength components Sk , and particularly S2. Although
the literature is scarce, it has been reported for Er3+ ions that
the ground-state energy and the splitting of I15/2 Stark levels
are correlated, both in simulations52 and FLN measurements.53

Furthermore, it has been shown for lanthanide ions in general
that the maximum splitting in Stark levels is proportional
to the crystal-field strength Stotal.54 The remaining results
of the present study should have general validity because
they come from the mathematical properties of disordered
structures: There is a dependence of S2 on Q2, Q2 is larger for
CN = 5 compared CN = 6, so the inhomogeneous linewidth
broadening will be larger for rare-earth sites with CN = 5
compared to CN = 6.

It may be possible to control the inhomogeneous linewidth
broadening by altering the glass composition so the local
environment of rare-earth ions is biased toward a particular
CN. In fact, previous studies of Qk for different reference
clusters suggest that Q2 will be larger when CN is 5 or less,
and Q2 will be smaller when CN is 6 or higher.50 Since Tb3+
and Er3+ ions are smaller than Eu3+ ions, they are likely have
smaller CN than Eu3+. This might mean it is more difficult to
achieve CN = 6 for Tb3+ and Er3+ ions in silicate or oxide
glasses. Larger rare-earth CN may be possible in nonoxide
glasses, for example, a FLN study of fluorozirconate glasses
assumed CN of 7 or 8.55 Given the effect of CN on Q2,
structural characterization of the local environment of rare
earths in glasses will remain important for efforts to reduce
inhomogeneous linewidth broadening.

VII. CONCLUSION

A methodology has been demonstrated to calculate the
optical spectra of rare-earth-doped glasses. A combination
of features makes this methodology an improvement over
previous work of this kind via the use of a superposition model
to include covalent and overlap interactions, no use of higher
symmetry than C1, a realistic value for FWHM of 10 cm−1 for
homogeneous broadening, inhomogeneous broadening solely

due to the summation of contributions from all the Eu3+ ions,
and a quantitative comparison with experimental oscillator
strength in the absorption spectrum. Encouraging agreement
is obtained between calculated and experimental spectra.

Subsequently, the relationship between transition energies
and local environment of Eu3+ ions have been investigated
in detail by studying the rotationally invariant crystal-field
strength Stotal and its components Sk . As seen in previous
studies, the splitting of 7FJ manifolds increases as the ground-
state 7F0 energy decreases and this is due to increasing
mixing of 4f wave functions. These trends do follow the
increase in Stotal and show an approximately linear correlation
with S2.

Further analysis has examined rotation invariants of bond-
orientational order parameters Qk . The ligand distances and
angular positions are seen to act independently in determining
the values of S4 which is primarily influenced by Q4. For
the important component S2, the effect of ligand distances is
roughly constant and Q2 plays a major role in influencing the
values of S2. In fact, S2 is noticeably related to coordination
number where larger values of S2 occur for CN = 5 than for
CN = 6. This is a consequence of the properties of Q2 that
have previously been seen in studies of bond-orientational
order in local environments of disordered materials. The
detailed results presented here should prove helpful to glass
scientists who want to better understand the link between local
environment of rare-earth ions and inhomogeneous linewidth
broadening in rare-earth-doped glasses.
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APPENDIX: SAMPLE PREPARATION AND
SPECTROSCOPY MEASUREMENTS

Eu3+-doped sodium silicate glasses of molar
composition 33.8Na2O · 66SiO2O · 0.02Eu2O3 and
33Na2O · 66SiO2O · 1Eu2O3 were prepared by the
melt-quench technique. Stoichiometric amounts of analytical
grade Na2CO3 (Aldrich, 99.9%;), SiO2 (Aldrich, 99.9%;), and
Eu2O3 (Aldrich, 99.9%;) were thoroughly mixed in platinum
crucible and melted in an electric furnace at 1300◦C for 2 h in
air. The melts were quenched by pouring onto a cold copper
plate at room temperature and annealed for 2 h at 400◦C
under air atmosphere. The glasses were carefully polished for
the spectroscopic measurements. Transparent glass samples
of about 2 × 2 × 0.4 cm3 with excellent optical quality were
obtained.

Room-temperature absorption spectra in the UV and
visible regions were measured on careful polished glasses
with a Varian Cary 5000 double beam spectrophotometer,
using air as a reference. A spectral resolution of 1 nm
was used. Room-temperature emission spectra and decay
curves were measured using a tunable dye laser (Quanta
System) operating with Exalite 395, pumped by the third
harmonic (355 nm) of the fundamental radiation of a Quanta
System pulsed Nd-YAG laser as the excitation source. The
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emission radiation was collected using an optical fiber and
dispersed with a Jobin-Yvon HR460 half-meter monochro-
mator equipped with a 1200 lines/mm grating. The decay

curves were measured with a Hamamatsu GaAs photomulti-
plier connected to a Le Croy Waverunner 500-MHz digital
oscilloscope.
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